Light-Controlled Polarization of MM-Waves with Photo-Excited Gratings in a Resonant Semiconductor Slab
Main Article Content
Abstract
We investigated photoconductive gratings in the resonant semiconductor layers as light-controlled polarizers for the millimeter (MM) waves. We compared the effects of strip-like, wire-like, and fin-like gratings excited by the red light and the IR radiation in Silicon wafers, respectively. The fin-like gratings are shown to be the preferred structures that can operate at the limited light intensity. The light-sensitive shift of maxima of transmitted power and polarizing efficiency towards the lower frequency band is observed. The effect makes photoconductive gratings and similar patterns potentially suitable for the design of light-controlled frequency-tuning and frequency-modulating components of resonant quasi-optical devices.
Downloads
Article Details
Authors who publish with this journal agree to the following terms:
- Authors retain copyright and grant the journal right of first publication with the work simultaneously licensed under a Creative Commons Attribution License that allows others to share the work with an acknowledgement of the work's authorship and initial publication in this journal.
- Authors are able to enter into separate, additional contractual arrangements for the non-exclusive distribution of the journal's published version of the work (e.g., post it to an institutional repository or publish it in a book), with an acknowledgement of its initial publication in this journal.
- Authors are permitted and encouraged to post their work online (e.g., in institutional repositories or on their website) prior to and during the submission process, as it can lead to productive exchanges, as well as earlier and greater citation of published work (See The Effect of Open Access).
References
S. Busch, B. Scherger, M. Scheller, M. Koch, Optically controlled terahertz beam steering and imaging, Opt. Lett. 37: 8: 1391-1393, 2012.
A. Kannegulla, Md. Itrat Bin Shams, L. Liu, L.-J. Cheng, Photo-induced spatial modulation of THz waves: opportunities and limitations, Opt. Express 23: 25: 32098-32112, 2015.
L.-J. Cheng, L. Liu, Optical modulation of continuous terahertz waves towards cost-effective reconfigurable quasi-optical terahertz components, Opt. Express 21: 23: 28657-28667, 2013.
X. Wang, Z. Xie, W. Sun, S. Feng, Y. Cui, J. Ye, Y. Zhang, Focusing and imaging of a virtual alloptical tunable terahertz Fresnel zone plate, Opt. Lett. 38: 22: 4731-4734, 2013.
Q. Zhou, Y. Shi, A.Wang, L. Li, D. Zhao, J. Liu, H. Sun, C. Zhang, Ultrafast optical modulation of terahertz metamaterials, J. Opt. 13: 11: 125102, 2011.
Y. C. Jun, I. Brener, Electrically tunable infrared metamaterials based on depletion-type semiconductor devices, J. Opt. 14: 11: 114013, 2012.
T. F. Gundogdu, M. Gokkavas, K. Guven, M. Kafesaki, C. M. Soukoulis, E. Ozbay, Simulation and micro-fabrication of optically switchable split ring resonators, Photonics Nanostruct. Fundam. Appl. 5: 106-112, 2007.
G. Kenanakis, R. Zhao, N. Katsarakis, M. Kafesaki, C. M. Soukoulis, E. N. Economou, Optically controllable THz chiral metamaterials, Opt. Express 22: 10: 12149-12159, 2014.
A. A. Vikharev, G. C. Denisov, V. V. Kocharovskii, S. V. Kuzikov, V. V. Parshin, N. Y. Peskov, A. N. Stepanov, D. I. Sobolev, M. Y. Shmelev, A highspeed quasi-optical wave phase switch based on the induced photoconductivity effect in Silicon, Tech. Phys. Lett. 33: 9: 735-737, 2007.
I. F. D. Costa, D. H. Spadoti, A. C. Sodre Jr., A. L. D. Silva, J. S. R. Paez, R. P. Ramırez, V. Olmos, J. Jose, I. T. Monroy, Optically controlled reconfigurable antenna for 5G future broadband cellular communication networks, J. Microwaves, Optoelectronics and Electromagnetic Applications 16: 1: 208-217, 2017.
J. Ren, Y. Deng, Y. Shi, A. Kannegulla, Y.-C.Wang, P. Fay, L.-J. Cheng, L. Liu, Optically controlled reconfigurable terahertz waveguide filters based on photo-induced electromagnetic band gap structures using mesa arrays, OSA Continuum 1: 4: 1429- 1436, 2018.
I. Chatzakis, P. Tassin, L. Luo, N. H. Shen, L. Zhang, J.Wang, T. Koschny, C. M. Soukoulis, Oneand two-dimensional photo-imprinted diffraction gratings for manipulating terahertz waves, Appl. Phys. Lett. 103: 043101, 2013.
N. Yu, P. Genevet, M.A. Kats, F. Aieta, J.-P. Tetienne, F. Capasso, F. Gaburro, Light propagation with phase discontinuities: generalized laws of reflection and refraction, Science 334: 6054: 333- 337, 2011.
L. Fekete, F. Kadlec, P. Kuzel, H. Nemec, Ultrafast opto-terahertz photonic crystal modulator, Opt. Lett. 32: 6: 680-682, 2007.
V. Yurchenko, M. Ciydem, M. Gradziel, A. Murphy, A. Altintas, Light-controlled photonics-based mm-wave beam switch, Opt. Express 24: 15: 16471, 2016.
H. J. Eichler, Laser-induced Grating Phenomena, Optica Acta: Int. J. Opt. 24: 1977.
A. Miller, D. A. B. Miller, S. D. Smith, Dynamic non-linear optical processes in semiconductors, Adv. Phys. 30: 6: 697-800, 1981.
H. J. Eichler, P. Gunter, D. W. Pohl, Laser-Induced Dynamic Gratings, Springer-Verlag, Berlin, 2013.
H. J. Eichler, C. Hartig, J. Knof, Laser induced gratings in CdS, Phys. Stat. Sol. (a) 45: 2: 433-438, 1978.
E. Gaubas, K. Jarasiunas, J. Vaitkus, Light induced transient grating decay in Si and some AIIBIV compounds, Phys. Stat. Sol. (a) 69: 1: K87-K90, 1982.
J. Vaitkus, K. Jarasiunas, E. Gaubas, L. Jonikas, R. Paranaitis, L. Subacius, The diffraction of light by transient gratings in crystalline, ion-implanted, and amorphous Silicon, IEEE J. Quantum Electron. 22: 8: 1298-1305, 1986.
N. A. Kudryashov, S. S. Kucherenko, E. A. Mazur, A. N. Petrovskii, M. P. Yakovlev, Dynamics of
light-induced diffraction gratings in Silicon excited by picosecond pulses, Sov. Phys. J. 33: 3: 246-250, 1990.
M. A. Bryushinin, P. M. Karavaev, I. A. Sokolov, Optically induced space-charge and conductivity gratings in wide-bandgap semiconductors, Phys. Procedia 86: 136-140, 2017.
M.A. Green, M.J. Keevers, Optical properties of intrinsic Silicon at 300 K, Prog. Photovoltaics Res. Appl. 3: 3: 189-192, 1995.
.M. Sze, Semiconductor Devices, Physics and Technology, John Wiley and Sons, Hoboken, NJ, 2002.
J.-M. Jin, The Finite Element Method in Electromagnetics, 3rd Edition, John Wiley and Sons, Hoboken, NJ, 2015.
V.B. Yurchenko, M.L. Gradziel, J.A. Murphy, Dual-layer grid polarizers for mm and sub-mm waves: theory and experiment, Proc. MSMW'2010, Kharkov, Ukraine, W-5, 2010.