An Insight into Impact of Partial Ground and Dual Trapezoidal Slots on Bandwidth and Gain considerations for a Microstrip Antenna Array for WiMax Application
Main Article Content
Abstract
In this work, design and analysis of microstrip patch antenna is carried out. A (2 X 1) antenna array is considered, with dimensions (W x L) as 35.11 mm x 27.13 mm. The dielectric substrate is taken to be FR4 epoxy with dielectric constant as 4.3 and loss tangent of 0.02. Dual trapezoidal slots are introduced to improve the gain considerations for the considered antenna array. The simulations are carried out and it is observed that the gain is improved. As a second stage in the work, to improve the bandwidth of operation for the dual trapezoidal antenna array, the concept of partial ground is taken into consideration. The simulations are carried in HFSS. It is found out that the introduction of partial ground improved the bandwidth of the antenna structure considered while preserving the gain to the maximum extent possible. The gain was found to be 7.0875 dB with centre frequency 2.4020 GHz. The frequency range below -10dB for the considered antenna array structure with partial ground was around 2.3 GHz to 2.6 GHz. This range is utilized in the WiMax application which covers the frequency ranges (2.3 GHz to 2.4 GHz) and (2.496 GHz to 2.690 GHz).
Downloads
Article Details
Authors who publish with this journal agree to the following terms:
- Authors retain copyright and grant the journal right of first publication with the work simultaneously licensed under a Creative Commons Attribution License that allows others to share the work with an acknowledgement of the work's authorship and initial publication in this journal.
- Authors are able to enter into separate, additional contractual arrangements for the non-exclusive distribution of the journal's published version of the work (e.g., post it to an institutional repository or publish it in a book), with an acknowledgement of its initial publication in this journal.
- Authors are permitted and encouraged to post their work online (e.g., in institutional repositories or on their website) prior to and during the submission process, as it can lead to productive exchanges, as well as earlier and greater citation of published work (See The Effect of Open Access).