Exploring microwave absorption by non-periodic metasurfaces

Main Article Content

J. K. Hamilton
https://orcid.org/0000-0002-6532-7827
I. R. Hooper
C. R. Lawrence

Abstract

In recent years there has been a large body of work investigating periodic metasurface microwave absorbers. However, surprisingly few investigations have focused on the absorption performance of similar non-periodic designs. In this work, the electromagnetic response of a large area (310 mm x 310 mm) microwave absorber that lacks a global periodicity is experimentally studied. The top metallic layer of the ultra-thin (0.3 mm) absorber is structured with rectangular patches given by a procedurally generated non-periodic pattern, known as the toothpick sequence. The specular reflectivity of both p-polarised and s-polarised incident radiation shows coupling to an additional low frequency mode when compared to a standard square patch periodic absorber. To further explore the coupling efficiency of such non-periodic absorbers, finite element models were used to investigate the influence of increasing sample size.

Downloads

Download data is not yet available.

Article Details

How to Cite
Hamilton, J. K., Hooper, I. R., & Lawrence, C. R. (2021). Exploring microwave absorption by non-periodic metasurfaces. Advanced Electromagnetics, 10(3), 1–6. https://doi.org/10.7716/aem.v10i3.1803
Section
Research Articles

References

C. M.Watts, X. Liu, and W. J. Padilla. Metamaterial electromagnetic wave absorbers. Advanced materials, 24(23):98-120, 2012.

View Article

L. B. Kong, Z. W. Li, L. Liu, R. Huang, M. Abshinova, Z. H. Yang, C. B. Tang, P. K. Tan, C. R. Deng, and S. Matitsine. Recent progress in some composite materials and structures for specific electromagnetic applications. International Materials Reviews, 58(4):203-259, 2013.

View Article

B. A. Munk. John Wiley & Sons, Ltd, 2000.

A. Tittl, P. Mai, R. Taubert, D. Dregely, N. Liu, and H. Giessen. Palladiumbased plasmonic perfect absorber in the visible wavelength range and its application to hydrogen sensing. Nano letters, 11(10):4366-4369, 2011.

View Article

C. Bauer and H. Giessen. Light harvesting enhancement in solar cells with quasicrystalline plasmonic structures. Optics express, 21(103):A363- A371, 2013.

View Article

A. P. Hibbins, J. R. Sambles, C. R. Lawrence, and J. R. Brown. Squeezing millimeter waves into microns. Phys. Rev. Lett., 92:143904, 2004.

View Article

N. I. Landy, S. Sajuyigbe, J. J. Mock, D. R. Smith, and W. J. Padilla. Perfect metamaterial absorber. Physical review letters, 100(20):207402, 2008.

View Article

J. R. Brown, A. P. Hibbins, M. J. Lockyear, C. R. Lawrence, and J. R. Sambles. Angle-independent microwave absorption by ultrathin microcavity arrays. Journal of Applied Physics, 104(4):043105, 2008.

View Article

J. R. Brown. The microwave response of ultra thin microcavity arrays. PhD thesis, University of Exeter, 2010.

J. R. Brown, A. P. Hibbins, C. R. Lawrence, M. J. Lockyear, and J. R. Sambles. Microwave resonances of ultrathin hexagonally symmetric microcavity arrays. Journal of Applied Physics, 112(1):014904, 2012.

View Article

M. Camacho, A. P. Hibbins, and J. R. Sambles. Resonantly induced transparency for metals with low angular dependence. Applied Physics Letters, 109(24):241601, 2016.

View Article

X. Lleshi, R. Grelot, T. Q. Van Hoang, B. Loiseaux, and D. Lippens. Wideband metal-dielectric multilayer microwave absorber based on a single step fdm process. 2019 49th European Microwave Conference (EuMC), pages 678-681, 2019.

View Article

Z. Wei, H. Li, C. Wu, Y. Cao, J. Ren, Z. Hang, H. Chen, D. Zhang, and C. T. Chan. Anomalous reflection from hybrid metamaterial slab. Optics Express, 18(12):12119-12126, 2010.

View Article

Y. Cui, J. Xu, K. Hung Fung, Y. Jin, A. Kumar, S. He, and N. X. Fang. A thin film broadband absorber based on multi-sized nanoantennas. Applied Physics Letters, 99(25):253101, 2011.

View Article

J. Xu, R. Li, S. Wang, and T. Han. Ultra-broadband linear polarization converter based on anisotropic metasurface. Opt. Express, 26(20):26235- 26241, 2018.

View Article

D. H. Werner and S. Ganguly. An overview of fractal antenna engineering research. IEEE Antennas and propagation Magazine, 45(1):38-57, 2003.

View Article

F. Venneri, S. Costanzo, and A. Borgia. A dual-band compact metamaterial absorber with fractal geometry. Electronics, 8(8):879, 2019.

View Article

S. Costanzo, F. Venneri, G. Di Massa, A. Borgia, A. Costanzo, and A. Raffo. Fractal reflectarray antennas: state of art and new opportunities. International Journal of Antennas and Propagation, 2016, 2016.

View Article

W. Zuo, Y. Yang, X. He, D. Zhan, and Q. Zhang. A miniaturized metamaterial absorber for ultrahigh-frequency rfid system. IEEE Antennas and Wireless Propagation Letters, 16:329-332, 2016.

View Article

F. Venneri, S. Costanzo, and G. Di Massa. Fractal-shaped metamaterial absorbers for multireflections mitigation in the uhf band. IEEE Antennas and Wireless Propagation Letters, 17(2):255-258, 2017.

View Article

Mitchell Kenney, James Grant, Yash D Shah, Ivonne Escorcia-Carranza, Mark Humphreys, and David RS Cumming. Octave-spanning broadband absorption of terahertz light using metasurface fractal-cross absorbers. Acs Photonics, 4(10):2604-2612, 2017.

View Article

Q. Yang, X. Chen, Y. Li, X. Zhang, Y. Xu, Z. Tian, C. Ouyang, J. Gu, J. Han, and W. Zhang. Aperiodic-metamaterial-based absorber. APL Materials, 5(9):096107, 2017.

View Article

Mohammadreza F. Imani, David R Smith, and Philipp del Hougne. Perfect absorption in a disordered medium with programmable meta-atom inclusions. Advanced Functional Materials, 30(52):2005310, 2020.

View Article

D. Applegate, O. E. Pol, and N. J. A. Sloane. The toothpick sequence and other sequences from cellular automata. arXiv preprint arXiv:1004.3036, 2010.