Surface Plasmon - Guided Mode strong coupling

Main Article Content

A. Castanié
D. Felbacq
B. Guizal


It is shown that it is possible to realize strong coupling between a surface plasmon and a guided mode in a layered structure. The dispersion relation of such a structure is obtained through the S-matrix algorithm combined with the Cauchy integral technique that allows for rigorous computations of complex poles. The strong coupling is demonstrated by the presence of an anticrossing in the dispersion diagram and simultaneously by the presence of a crossing in the loss diagram. The temporal characteristics of the different modes and the decay of the losses in the propagation of the hybridized surface plasmons are studied.


Download data is not yet available.

Article Details

How to Cite
Castanié, A., Felbacq, D., & Guizal, B. (2012). Surface Plasmon - Guided Mode strong coupling. Advanced Electromagnetics, 1(2), 85-88.
Research Articles


  1. H. Raether, Surface plasmons on smooth and rough surfaces and on gratings, Springer Verlag, Berlin 1988.

  2. K. H. Drexhage, Interaction of light with monomolecular dye layers, Progress in Optics, 12, E. Wolf ed., North Holland publishing, 1974.
    View Article

  3. P. T. Worthing, R. M. Amos, W. L. Barnes, Modification of the spontaneous emission rate of Eu3+ ions embedded within a dielectric layer above a silver mirror, Phys. Rev. A, 59, 865, 1999.
    View Article

  4. C. Weisbuch, M. Nishioka, A. Ishikawa, Y. Arakawa, Observation of the coupled exciton-photon mode splitting in a semiconductor quantum microcavity, Phys. Rev. Lett., 69 (23), 3314, 1992.
    View Article

  5. J. Bellessa, C. Symonds, K. Vynck, A. Lemaitre, A. Brioude, L. Beaur, J. C. Plenet, P. Viste, D. Felbacq, E. Cambril, P. Valvin, Giant Rabi splitting between localized mixed plasmon-exciton states in a two-dimensional array of nanosize metallic disks in an organic semiconductor, Phys. Rev. B., 80, 033303, 2009.
    View Article

  6. J. Bellessa, C. Bonnand, J. C. Plenet, Strong coupling between surface plasmons and excitons in an organic semiconductor, Phys. Rev. Lett., 93, 036404, 2004.
    View Article

  7. R. L. Chern, D. Felbacq, Artificial magnetism and anticrossing interaction in photonic crystals and splitring structures, Phys. Rev. B, 79, 075118, 2009.
    View Article

  8. D. Felbacq, Poles and zeros of the scattering matrix associated with defect modes, J. Phys. A : Math. Gen., 33, 7137, 2000.
    View Article

  9. A. Taflove, S. C. Hagness, Computational electrodynamics : The finite difference time domain method, Artech House, 2nd ed., 2000.

  10. A. Mohammadi, M. Agio, Dispersive contour-path finite-difference time-domain algorithm for modelling surface plasmon polaritons at flat interfaces, Optics Express, 14 (23), 11330, 2006.
    View Article

  11. M. Born, E. Worlf, Principles of Optics, Cambridge U. Press, 7th ed., 1999.

  12. D. M. Sullivan, Electromagnetic simulation using the FDTD method, IEEE Press, 2000.
    View Article

  13. E. Palik, Handbook of optical constants of solids Academic Press, Inc., New York, 1985.

  14. J. Bellessa, S. Rabaste, J. C. Plenet, J. Dumas, J. Mugnier, O. Marty, Eu3+-doped microcavities fabricated by sol-gel process, Inc., New York, 1985.

  15. D. J. Bergman, M. I. Stockman, Surface plasmon amplification by stimulated emission of radiation: Quantum generation of coherent surface plasmons in nanosystems, Phys. Rev. Lett., 90, 027402, 2003.
    View Article

  16. M. A. Noginov, G. Zhu, A. M. Belgrave, R. Bakker, V. M. Shalaev, E. E. Narimanov, S. Stout, E. Herz, T. Suteewong, U. Wiesner, Demonstration of a spaserbased nanolaser, Nature Letters, 460, 1110, 2009.
    View Article