Comparative study of optical properties of the one-dimensional multilayer Period-Doubling and Thue-Morse quasi-periodic photonic crystals

Main Article Content

Y. Bouazzi
M. Kanzari

Abstract

The last decades have witnessed the growing interest in the use of photonic crystal as a new material that can be used to control electromagnetic wave. Actually, not only the periodic structures but also the quasi-periodic systems have become significant structures of photonic crystals. This work deals with optical properties of dielectric Thue-Morse multilayer and Period-Doubling multilayer. We use the so-called Transfer Matrix Method (TMM) to determine the transmission spectra of the structures. Based on the representation of the transmittance spectra in the visible range a comparative analysis depending on the iteration number, number of layers and incidence angle is presented.

Downloads

Download data is not yet available.

Article Details

How to Cite
Bouazzi, Y., & Kanzari, M. (2012). Comparative study of optical properties of the one-dimensional multilayer Period-Doubling and Thue-Morse quasi-periodic photonic crystals. Advanced Electromagnetics, 1(3), 1-6. https://doi.org/10.7716/aem.v1i3.49
Section
Research Articles

References


  1. K. Busch, Photonic band structure theory: assessment and perspectives, Comptes Rendus Physique, Vol 3, Issue 1, pp 53–66, 2002.
    View Article

  2. B. Suthar, A. Bhargav, Tunable multi-channel filtring using 1-D photonic quantium well structure, Progress In Electromagnetics Research Letters, Vol. 27, pp 43-51, 2011.
    View Article

  3. E. Yablonovitch, Photonic Ban-Gap structure, J. Opt. Society, Vol 10, 1993.

  4. A. Bahabad, R. Lifshitz, N. Voloch, A. Arie, Nonlinear photonic quasicrystals for novel optical devices, Phil. Mag. Vol 88, pp 2285-2293, 2008.
    View Article

  5. E. Macia, Exploiting aperiodic designs in nanophotonic devices, Rep. Prog. Phys. Vol 75, Issue 3, pp. 036502, 2012.
    View Article

  6. E. Macia, The role of aperiodic order in science and technology, Rep. Prog. Phys., Vol 69, pp 397–441, 2006.
    View Article

  7. K. Buscha., G. von Freymannb, S. Lindenb, S.F. Mingaleeva,c, L. Tkeshelashvilia, M. Wegenerd, Periodic nanostructures for photonics, Physics Reports, Vol 444, pp 101–202, 2007.

  8. E. Ozbay, I. Bulu, K. Aydin, H. Caglayan, K. Guven, Physics and applications of photonic crystals, Photonics and Nanostructures – Fundamentals and Applications, Vol 2, pp 87–95, 2004.

  9. L. Kroon, R. Riklund, Renormalization of aperiodic model lattices: spectral properties, J. Phys. A: Math. Gen., Vol 36, pp 4519–4532, 2003.
    View Article

  10. A.N. Poddubny, E. L. Ivchenko, Photonic quasicrystalline and aperiodic structures, Physica E, Vol 42, pp 1871–1895, 2010.
    View Article

  11. G. Zhang, X.Yang, Y. Li, H. Song, Optical transmission through multi-component generalized Thue–Morse superlattices, Physica B, Vol 405, pp 3605–3610, 2010.
    View Article

  12. X. Wang, U. Grimm, M. Schreiber, Trace and antitrace maps for aperiodic sequences: Extensions and applications, Vol 62, Num 21, pp 14 020-14 031, 2000.

  13. V. Agarwal, Miguel E. Mora-Ramos, B. Alvarado-Tenorio, Optical properties of multilayered Period-Doubling and Rudin-Shapiro porous silicon dielectric heterostructures, Photonics and Nanostructures – Fundamentals and Applications, Vol 7, pp 63-68, 2009.

  14. K. Ben Abdelaziz, J. Zaghdoudi, M. Kanzari, B. Rezig, A broad omnidirectional reflection band obtained from deformed Fibonacci quasi-periodic one dimentional photonic crystals, J. Opt A : Pure Appl. Opt., Vol 7, pp 544-549, 2005.
    View Article