Realization of THz Band Mixer Using Graphene

Main Article Content

E. Ghasemi Mizuji
A. Abdolali
F. Aghamohamadi
M. Danaeifar
S. Hashemi
K. Nikooei Tehrani

Abstract

In this article a new method for creating mixer component in infrared and THz is suggested. Since the nonlinear property of admittance creates frequency components that do not exist in the input signal and the electrical conductivity is associated with admittance, in our work we have proven and simulated that the nonlinear property of graphene admittance can produce mixer component. The simulation results show that the mixer component is larger than other components, therefore the mixer works properly. Because of nano scale of graphene structure, this method paves the road to achieve super compact circuits.

Downloads

Download data is not yet available.

Article Details

How to Cite
Ghasemi Mizuji, E., Abdolali, A., Aghamohamadi, F., Danaeifar, M., Hashemi, S., & Nikooei Tehrani, K. (2014). Realization of THz Band Mixer Using Graphene. Advanced Electromagnetics, 3(1), 15-19. https://doi.org/10.7716/aem.v3i1.162
Section
Research Articles

References


  1. N. Papasimakis, Z. Luo, Z. Xi. Shen, F. De Angelis, E. Di Fabrizio, A. E. Nikolaenko, and N. I. Zheludev," Graphene in a Photonic Metamaterial", Optics Express, 8353-8360, 2010.
    View Article

  2. S. A. Mikhailov, K. Ziegler, "A New Electromagnetic Mode in Graphene", Phys. Rev. Lett. 66, 016803, 2004.

  3. David R. Andersen, "Graphene-based long-wave infrared TM surface plasmon modulator", JOSAB, Vol. 24, Issue 4, pp. 818-823, 2010.
    View Article

  4. V. P. Gusynin, S. G. Sharapov and J. P. Carbotte, "Magneto-optical conductivity in graphene", J. Phys.: Condens. Matter 16 026222,pp 1-26, 2004.

  5. V. P. Gusynin and S. G. Sharapov, "Transport of Dirac Quasiparticles in Graphene: Hall and Optical Conductivities", cond-mat,0512154, Phys Rev. B 43, 245411, 2006.
    View Article

  6. V. P. Gusynin, S. G. Sharapov and J. P. Carbotte, "Unusual Microwave Response of Dirac Quasiparticles in Graphene", cond-mat/0603264, Phys. Rev. Lett. 66, 256802 (2006).

  7. T. Stauber, N. M. R. Peres and A. K. Geim, Optical Conductivity of Graphene in The Visible Region of The Spectrum, physical review, 085432-1-802008.

  8. G. Y. Slepyan, S. A. Maksimenko, A. Lakhtakia, O. Yevtushenko, and A. V. Gusakov, "Electrodynamics of carbon nanotubes: Dynamic conductivity, impedance boundary conditions, and surface wave propagation," Phys. Rev. B, vol. 60, pp. 14136–14146, 1666.

  9. J.-N. Fucus, M. O. Goerbig, "Introduction to the Physical Properties of Graphene", Lecture Notes, 2008.

  10. A. V. Eletskii, I. M. Iskandarova, A. A. Knizhnik, D. N. Krasikov, "Graphene: Fabrication Methods and Thermophysical Properties", Physics, pp 224 - 258, 2011.

  11. A. Vakil, N. Engheta," One-Atom-Thick IR Metamaterials and Transformation Optics Using Graphene",accepted in physics.optics.

  12. A. Vakil, and N. Engheta," Transformation Optics Using Graphene", Science,Vol. 332 no. 6035, pp. 1291-1294, June 2011.
    View Article

  13. R. M. Westervelt, "Graphene Nanoelectronics", Science, Vol. 320 no. 5874 pp. 324-325, April 2008.
    View Article

  14. Y. M. Lin, C. Dimitrakopoulos, K. A. Jenkins, D. B. Farmer, H. Y. Chiu, A. Grill, and P. Avouris, "100 GHz transistors from wafer scale epitaxial graphene," Science, vol. 327, no. 5966, p. 662, Feb. 2010.
    View Article

  15. O. Habibpour, S. Cherednichenko, J. Vukusic, K. Yhland and J. Stake "A Subharmonic Graphene FET Mixer", Electron Device Let. IEEE, pp 71-74, Jan. 2012.

  16. G. W. Hanson, "Dyadic Green's Functions for an Anisotropic Non-Local Model of Biased Graphene", IEEE 2008. A. M. Barychev "Superconductor-Insulator- Superconductor THz Mixer Integrated with a Superconducting Flux-Flow Oscillator", PHD thesis, Delft university of technology, Netherland, 2005.

  17. S. A. Mass, "Analysis of Nonlinear Circuits", Artech House, 1988.