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Abstract 
Low power and compact radars have emerged with the 
development of electronic technology. This has enabled the 
use of radars in indoor environments and the realization of 
many applications. The detection, tracking and 
classification of human movements by radar are among the 
remarkable applications. Contactless detection of human 
vital signs improves the quality of life of patients being kept 
under observation and facilitates the work of experts. In this 
study, it was simulated that the movement of the chest wall 
was modeled and detected by the SFCW radar. Gaussian, 
Rician and uniformly distributed random noise types were 
added to the modeled chest motion at different levels. The 
noisy signal obtained at the receiver is denoised with 
different mother wavelet functions and the performances of 
these functions are presented comparatively. 

1. Introduction 
With the increasing quality of life, the average life 
expectancy of individuals is awaited to enhance in the 
following years. Depending on this, the number of elderly 
individuals shows parallelism. Therefore, in the future, it 
will be important to long-term home monitoring the 
elderly’s, the sick and the people in need of care. 
Traditionally, this process is carried out by connecting 
probes or sensors to specific parts of the body of 
individuals. This prevents the individuals to move freely 
and decreases the quality of life. Both in the context of the 
comfort of the patients being kept under observation and 
facilitating the work of the experts, the idea of obtaining 
non-contact vital signs using radar has been proposed [1-3]. 
The radars used for military purposes were developed and 
used for commercial purposes in the 1970s. In the last two 
decades with the advancing technology, the use of 
continuous wave radar (CW), ultra-wide band radar (UWB), 
frequency modulated continuous wave radar (FMCW) and 
step frequency continuous wave radar (SFCW) has become 
popular in indoor applications [4]. In addition to the 
monitoring of the elderly and the patients, burn and 
newborn cases, obstructive sleep apnea syndrome, security 
and the through the wall live detection are the areas of 
application of radars [5-8]. However, performing the 
applications in the indoor environment causes many 

unwanted signals that are reflected back from the non-target 
objects to be perceived as noise in the receiver.  
Signals are electrical quantities that provide meaningful 
information about the behavior of a system. The analysis of 
any system is directly related to how accurately the signals 
are processed. One of the most important points of signal 
processing is to have a noiseless signal. Unfortunately, it is 
impossible to obtain a noise free signal practically. In this 
context, one of the most interesting issues about signal 
processing is to model and eliminate the noise. If a model of 
the noise can be obtained, it can be eliminated by a reverse 
operation. There are several noise sources when real world 
problems are studied. Therefore, it is very difficult to model 
accurately the noise affecting a system. On the other hand, 
the distribution of the noise on a signal can be analyzed. It 
has been shown that different methods are successful to 
eliminate the various types of noise in many studies [9-13]. 
In noise removal operations, it is searched for a space in 
which the signal and the noise can be easily separated. After 
determining the space, the noisy signal is projected onto a 
line and the signal is denoised by a simple thresholding. In 
general the signals are moved from the time domain to the 
frequency or scale domains for the thresholding process. In 
order to change the domain Fourier Transform (FT), Short 
Time Fourier Transform (STFT) and Wavelet Transform 
(WT) is often used in literature. While FT permits to get 
only the frequency content of the signal, STFT and WT 
provide also time information. Unlike STFT, which 
provides a uniform time resolution, WT offers various time 
resolutions. The superiority of WT against conventional 
methods has been emphasized by many studies.[14-16]. 
In radar, the noise is caused by receiver circuit elements, 
detection environment and etc. It can be distributed in 
various ways and it has great importance to eliminate this 
noise. Ceylan and Canbilen have removed Random, 
Gaussian and Rician noises on the images using various 
Multi Resolution Analysis (MRA) techniques [9].  
In this study, firstly, the chest wall motion signal is modeled 
as the study [17]. The three different types of noise are 
added to this modeled signal. The received signal obtained 
by a SFCW radar is denoised by using several mother 
wavelet functions. The denoising performance of the 
wavelet functions on the chest wall motion signal received 
by the SFCW radar is presented. 
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2. Method 
Unlike traditional continuous wave radars, a SFCW radar 
system allows to determine the target range. Different from 
Frequency Modulated Continuous Wave (FMCW) radar, it 
provides high range resolution owing to its higher 
bandwidth. A chest wall motion model is used as the target 
of the SFCW radar in this work. The noisy return signal is 
denoised by using WT with various mother functions. 
Denoising process is done for different noise distributions. 
The signal which has been moved to scale-time domain is 
thresholded. The denoised signal is obtained after inverse 
WT.  

2.1. Transmitted signal 

In a SFCW radar, the transmitting signal is a continuous 
wave signal with step frequencies. In a Coherent Processing 
Interval (CPI), with 𝑛 frequency steps the transmitting signal 
𝑆#(𝑡) is expressed as [4] 
 

𝑆#(𝑡) = 𝐶#(𝑡) cos(2𝜋(𝑓/ + 𝑛𝛥𝑓)𝑡 + 𝜃#) (1) 
 
where 𝛥𝑓 is the amount of the increase in frequency, 𝜃# is 
the phase of the step 𝑛, 𝑓/ is the initial frequency and 
𝐶#(𝑡)	is the amplitude value which is decreasing with 
respect to time. The duration of the each consecutive 
sinusoid  𝑇5 is constant and affects the range resolution. The 
𝑁 different frequency steps provide to enhance the range 
resolution. This is main advantage of the SFCW radar. The 
higher range resolution is obtained with the higher 
bandwidth. The range resolution of SFCW radar is evaluated 
as  

𝛥𝑅 =
𝑐𝑇9
2𝑁  (2) 

 
The time-frequency and time-amplitude form of the 
transmitting signal is given in Figure 1. 
 

 
Figure 1: SFCW Radar waveform [4] 

2.2. Received signal 

Doppler theorem is benefitted when SFCW radar is used to 
detect the vital signs such as respiratory rate and pulse rate. 
The chest wall displacement of a person is detected first. 
The respiratory and heartbeat rate can be determined with 
this information [18-20]. The displacement is calculated 
using the delay between the signals sent from the transmitter 
and received from the target. The mathematical expression 
of the signal reflected from the target is can be written as 
 
𝑟#(𝑡) = 𝐶;#(𝑡) cos(2𝜋(𝑓/ + 𝑛𝛥𝑓)(𝑡 − 𝜏(𝑡)) + 𝜃#)  (3) 

 
where 𝐶;#(𝑡)	is the amplitude value which is decreasing with 
respect to time and 𝜏(𝑡) is time delay caused by the chest 
wall motion. 	𝜏(𝑡) is expressed as [21] 
 

𝜏(𝑡) =
𝑅 − 𝑥(𝑡)
𝑐/2  (4) 

 
Where 𝑐 is the propagation speed of the wave, 𝑅 is the 
distance between the radar and the target while 𝑥(𝑡) 
corresponds to the chest wall displacement. When 2𝜋𝑛𝛥𝑓 +
𝜃#	 is an even multiple of π/2, null points occur and the 
displacement can’t be evaluated correctly. I/Q 
modulation/demodulation is one of the popular methods to 
overcome this problem. When it is used, the transmitted and 
received signals have both real and imaginary parts. Thus, 
the received signal is expressed as 
 

𝑟#(𝑡) = 𝐶;#(𝑡)𝑒A(BC(DEF#GD)(HIJ(H))FKL) (5) 
 
After the frequency down conversion and demodulation the 
receiver signal becomes   
 

𝑦#(𝑡) = 𝐶;#(𝑡)𝑒ABC#GDJ(H) (6) 
 
In order to obtain the displacement 𝜏(𝑡), FT can be used by 
considering  

𝑦#(𝑡) = 𝐶;#(𝑡)𝑒ABCOP#QR (7) 

𝐹T =
𝛥𝑓𝜏(𝑡)
𝑇9

 
(8) 

where FV is the is the baseband signal frequency. 

2.2.1. Chest wall motion 

There are several ideas to model the chest wall motion in 
literature. While the displacement signal was taken as a 
sinusoidal signal in some studies [22], alternatively, in some 
other works, it was derived from the sinusoidal change of air 
in the lungs during respiration. A simulated and measured 
chest wall motion is given in the study of Fauladi and Öncü 
as in Figure 2 [17]. The movement is divided into 4 separate 
intervals. The first part of the movement refers to breathing 
and the second part is a short period of waiting. The third 
part is exhalation while the last part is relaxation. The 
mathematical expressions of the signal at the first and third 
intervals are given in [17] as 
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𝐴XYZ	 ×
1
2 (1 − cos	(

𝜋𝑡
𝑇]
) (9) 

𝐴XYZ	 ×
1
2 (1 − cos	(

𝜋(𝑡 − 𝑇] − 𝑇B)
𝑇 ) (10) 

 

 
Figure 2: chest wall motion a) modeled b) measured [17] 

2.2.2. Noise distributions 

In order to process a signal to get the meaningful data, one 
of the first steps is noise removing. However, the success of 
the noise removal techniques can alter from one type of the 
noise to another. This study presents the success of different 
mother wavelet functions to remove three types of noise. 
Rician, Gaussian and uniformly distributed random noises 
are handled. The mathematical expressions of the 
probability density functions of the noises are given in 
Equations (11)-(13), respectively. Here, 𝜇 is the mean, 𝜎 is 
the standard deviation, 𝑎 and 𝑏 are the limits of the random 
numbers creating the uniformly distributed noise. 
 

𝑓(𝑥|𝜇, 𝜎) =
𝑥
𝜎B 𝑒

dIef
gFhg
Big jk

𝐼/(
𝑥𝜇
𝜎B) 

(11) 

𝑓(𝑥|𝜇, 𝜎) =
1

√2𝜋𝜎B
𝑒
dIefIh

g

Big jk (12) 

𝑓(𝑥|𝑎, 𝑏) =
1

𝑏 − 𝑎 (13) 

2.3. Denoising Process 

In order to remove the noise from the received signal, a 
suitable domain which is able to separate the noise and the 
desired signal is searched. While it is not possible to remove 
the noise in amplitude-time domain, frequency-time or 
scale-time domains may achieve it. In wavelet based 
denoising, the amplitude-time domain of the noisy signal is 
changed to scale-time domain first. Here, noise can be 
removed by a thresholding process. Then, with the inverse 
wavelet transform the domain changed back to the original.  

2.3.1. Wavelet transform 

The wavelet transform can be applied discretely and 
continuously. The discrete and continuous wavelet 
transforms are defined as 
 

𝑊(𝑗, 𝑘) =qq𝑥(𝑘)2I
A
B

rA

𝜓(2IA𝑛 − 𝑘) (14) 

𝑇(𝑎, 𝑏) =
1
√𝑎

t 𝑥(𝑡)𝜓∗
∞

I∞
(
𝑡 − 𝑏
𝑎 )𝑑𝑡 (15) 

 
In Equation (14), 𝜓(𝑛) is called the mother wavelet function 
while 𝑥(𝑛) is the signal to be converted. Similarly, 𝜓∗(𝑡) is 
conjugate of the mother wavelet function and 𝑥(𝑡) is the 
noisy signal. The parameters 𝑗 and 𝑎 are the scale 
parameters when 𝑘 and 𝑏 are the position parameters. With 
these equations, the wavelet transform can be defined as the 
sum of the multiplication of the mother wavelet functions 
and the signal with different scale and positions. Unlike the 
continuous wavelet transform, discrete wavelet transform 
calculation is less complex owing to selecting the scaling 
and position parameters as the power of two. Hence, faster 
processing capability is achieved in real-time applications. 
It is possible to apply the WT repeatedly. In every step, an 
approximation and a detail signal are created as the output of 
the WT. After 𝑛 level transform, we obtain an 
approximation signal and 𝑛 detail signals. The sum of these 
signals gives the main signal. The approximation and detail 
signals are obtained by low-pass 𝑔[𝑛]  and high-pass	ℎ[𝑛]  
filtering the main signal. The low frequency approximation 
signal 𝑦{[𝑘] and the high frequency detail signal 𝑦|[𝑘] is 
defined as 
 

𝑦}[𝑘] =q𝑥[𝑛]𝑔[2𝑘 − 𝑛]
#

 (16) 

𝑦~[𝑘] =q𝑥[𝑛]ℎ[2𝑘 − 𝑛]
#

 (17) 

 
The decomposition of a 3-level discrete wavelet transform is 
given in Figure 3. As shown in the figure, after filtering, 
down conversion is done to keep the total signal length 
constant. 
 

 
Figure 3: Discrete wavelet transform 
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2.3.2. Thresholding 

Thresholding is the main process in wavelet based 
denoising. Firstly, a basic threshold level is determined to 
separate the signal and the noise. This level is calculated 
depending on the standard deviation of the noise. The 
standard deviation (𝜎) estimation of the noises are evaluated 
as in Equation (18). After determining the 𝜎 the level is 
calculated as in Equation (19). 
 

𝜎 =
𝑚𝑒𝑑𝑖𝑎𝑛(𝑑�I],r)

0.6745 , 𝑘 = 0, 1, … , 2�I] − 1 (18) 

𝑡 = 𝜎�𝑙𝑜𝑔B𝑁 (19) 

 
In hard thresholding, the values lower than the thresholding 
level are forced to be zero while the rest remain unchanged.  
 

�
𝑦 = 𝑥													𝑖𝑓				|𝑥| ≥ 𝑡
𝑦 = 0													𝑖𝑓				|𝑥| < 𝑡	� (20) 

 
In soft thresholding, the threshold value is subtracted from 
the values over the level. The rest are forced to be zero 
again. 
 

� 𝑦 = 𝑠𝑖𝑔𝑛(𝑥) ∙ (|𝑥| − 𝑡	)						𝑖𝑓							|𝑥| ≥ 𝑡
𝑦 = 0																																								𝑖𝑓							|𝑥| < 𝑡	� (21) 

 

3. Discussion 
While using SFCW radar, complex samples of the received 
data whose frequency is down-converted to baseband are 
placed to a matrix. While the rows of the matrix correspond 
the consecutive return signals in different frequencies and 
referred as fast time, the columns correspond the samples of 
these signals handled as slow time.  
 

Table 1. The I/Q matrix 

 𝑆𝑎𝑚𝑝𝑙𝑒	1 𝑆𝑎𝑚𝑝𝑙𝑒	2 … 𝑆𝑎𝑚𝑝𝑙𝑒	𝐿  

𝑓/ I+JQ I+JQ I+JQ I+JQ 
 

𝑓] I+JQ I+JQ I+JQ I+JQ 
 

⋮ I+JQ I+JQ I+JQ I+JQ 
 

𝑓� I+JQ I+JQ I+JQ I+JQ 
 

 
In this study, a human chest wall is the target of the SFCW 
radar. The 𝑥(𝑡) signal is defined as mentioned in Equations 
(9) and (10) with		𝑇] = 1, 𝑇B = 0.25, 𝑇 = 1.5, 𝑇� = 1. The 
initial frequency is selected as 			𝑓/ = 2	𝐺𝐻𝑧		 with 𝛥𝑓 =
20	𝑀𝐻𝑧. Each consecutive signal is sampled with 100	𝐻𝑧. 
Thus, a 100 × 375 I/Q matrix is created. By using the 
Fourier transform, the range profile is obtained. The 
modeled and detected chest wall motion is given in Figure 4. 

 
a 

 
b 

Figure 4: The modeled (a) and received (b) chest wall motion 

The range profile evaluation is the step before the WT. After 
obtaining the range profile, WT, thresholding and the 
inverse WT steps are carried out and the noise removal 
operation is finalized. The denoising process of a SFCW 
radar return signal is given in Figure 5. 
 

 
Figure 5: Denoising process of a SFCW radar signal 

In order to investigate the power of wavelet transform on 
different noise levels, the denoising process is done with the 
SNR of 5, 15 and 25 dB. The Gauss distributed noisy range 
profiles and their denoised forms are given in Figure 6. 
 

 
Figure 6: Gauss distributed noisy signals (a, b, c) and their 
denoised forms (d, e, f) 
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Figure 7. (a-e) 5 level noisy signal details, (f-j) 5 level original signal details and (k-o) 5 level denoised signal details 

Daubechies, Coiflets, Symlets, Fejer-Korovkin, Discrete 
Meyer and Biorthogonal wavelet families, which are 
popularly used especially in signal processing applications, 
are used in this study. Each of these families has several 
members. The difference between the members in a family 
is the number of vanishing points they used. Considering the 
one with the minimum number of vanishing points as the 
simplest, the optimum family member is searched starting 
from simplest ones. Searching is continued as long as 
noticeable improvement on SNR is achieved.  
The decomposition level is selected as 5 by the experimental 
results. The thresholding value is estimated with respect to 
the standard deviation of the first level detail coefficients. 
Hard thresholding is applied to detail coefficients, while 
approximation coefficients are remaining unchanged. The 
original, noisy and denoised detail coefficients for Daub45 
are given in Figure 7. 
The performance of the wavelet functions are measured with 
Root Mean Square Error (RMSE) and given in Table 2. As 
seen from the table, Sym24 provide the best results for all 
three SNR levels for the Gauss distributed noise. The 
Daub45 and Discrete Meyer become stronger when the SNR 
is higher. None of these functions is clearly superior to 
remove the Rician distribution, but Discrete Meyer seems 
the most powerful one. Sym24 and Bior6.8 are the two 
functions having least RMSE values for uniformly 
distributed random noise for these three SNR values. 
 
 
 

Table 2: The performance of the Wavelet functions 

SNR Wavelet 
Function 

Norm. 
Dist. 

Random 
Gaussian Rician 

5 

Daub45 0,542 0,058 0,59 
Discrete 
Meyer 0,543 0,043 0,574 

Fk22 0,548 0,003 0,576 
Sym24 0,523 0,003 0,595 
Coif5 0,537 0,034 0,590 
Bior6.8 0,542 0,003 0,592 

10 

Daub45 0,250 0,019 0,314 
Discrete 
Meyer 0,254 0,010 0,310 

Fk22 0,263 0,010 0,327 
Sym24 0,243 0,002 0,320 
Coif5 0,258 0,024 0,304 
Bior6.8 0,248 0,006 0,326 

20 

Daub45 0,091 0,001 0,095 
Discrete 
Meyer 0,088 0,002 0,090 

Fk22 0,090 0,005 0,097 
Sym24 0,088 0,001 0,094 
Coif5 0,088 0,005 0,094 
Bior6.8 0,084 0,004 0,093 

4. Conclusions 
The contactless measurement of human vital signs has a 
great importance for many areas. SFCW radars are one of 
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the most popular ones in recent years because the fact that it 
provides a high range resolution. In this study, SFCW radar 
working principle is handled first. The need of I/Q 
modulation is underlined. Since the null points cause the 
range ambiguity, the SFCW radar is considered with I/Q 
modulation/demodulation. Secondly, the usage of the I/Q 
matrix to obtain the range profile is explained. After 
mentioning three possible noise distributions briefly, the 
wavelet transform and thresholding processes are presented. 
The performance of the six different wavelet functions are 
compared according to the RMSE they provide. The 
denoising process is performed for three SNR levels. The 
results show that the  Daub45 and Discrete Meyer wavelet 
functions becomes more powerful with the increasing SNR 
for a Gaussian distributed noise when Biort6.8 and Fk22 
come to the fore. The results also indicate that the global 
thresholding with respect to the first level details provide 
smaller RMSE when Gaussian distributed noise is removed. 
On the other hand, the method seems weak to handle with 
the Rician and uniformly distributed noise. Generally, 
Discrete Meyer does its best for Rician distribution, while 
Sym24 is the best choices for uniformly distributed random 
noise. 
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