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Abstract 
In this paper, we have studied the analysis of current 
distributions and radar cross sections of the line source 
scattering from an impedance strip. The problem was solved 
with the fractional derivative method previously. Here, the 
specific case of the fractional derivative method is 
investigated. The problem under consideration on the basis 
of various methods is studied well, however, they are 
mainly done by numerical methods. The fractional 
derivative method allows one to obtain an analytical 
solution in a specific situation. This method allows to obtain 
analytical solution of impedance strip for a special case 
which is fractional order 𝜈 is equal to 0.5. When fractional 
order is 0.5, there is an analytical solution which is 
explained in this paper and current distribution, radar cross 
section and near field patterns are derived. Here, as a first 
time, the current distribution, the bi-static radar cross 
section and the near field for the upper and the lower part of 
the strip are studied. 
 

1. Introduction 
 
The application of the fractional calculus such as fractional 
operators, transforms or the fractionalization of some known 
operators are studied well previously [1 - 4]. This allows us 
to describe intermediate states for different physical 
phenomena. In the electromagnetic theory, fractional 
operators firstly are used by N. Engheta and the study is 
called as “fractional paradigm in electromagnetic theory” 
[3]. Here, our purpose is to use the fractional derivative 
method (FDM) which is firstly proposed by E. I. Veliyev for 
solving diffraction problems.  
 
Here, the two-dimensional infinitely thin surface strip is 
studied. As a source term, line source is introduced. 
Previously, the general formulation and field distributions 
for the upper space of the strip, the monostatic radar cross 
section were studied [5, 6] whereas, in this paper, the current 
distribution, the upper and the lower part of the scattered and 
the total field and bi-static radar cross sections for the line 
source with an arbitrary distance and angle are studied for 

the fractional order (FO) 𝜈 , 0.5. In order to solve this 
specific diffraction problem, new fractional boundary 
condition (FBC) on the strip is introduced. FBC covers both 
perfect electric conducting (PEC) and the perfect magnetic 
conducting (PMC) cases with the change in the FO [5].  
 
The fractional derivative is denoted as 𝐷#$ which means the 
derivative with respect to y variable and the order of 
derivative is	𝜈. Here, we will use the Riemann - Liouville 
definition of the derivative which is valid for the fractional 
order between (0, 1) [5]. Due to knowing that the derivative 
is a linear operator, derivatives with other fractional orders 
can be found a combination of integer derivative with the 
fractional derivative. 

𝔇#
$𝑓(𝑦) =

1
𝛤(1 − 𝜈)

𝑑
𝑑𝑦 0

𝑓(𝑡)
(𝑦 − 𝑡)$

#

23

𝑑𝑡	 

(1) 
 

where, the fractional order 𝜈	𝜖	(0,1) and Γ(𝜈) is the Gamma 
Function. In order to define the fractional derivative fully, 
(2) is given. 
 

𝔇8
9f(y) = <

𝑓(𝑦),			𝜈 = 0
𝔇8
9f(y),			0 < 𝜈 < 1
𝑓>(𝑦),			𝜈 = 1

 

(2) 
 

After the definition, it is needed to express the fractional 
boundary condition, mathematically which is the boundary 
condition can cover both known Dirichlet and Neumann 
boundary conditions (FBC) [5].  For our problem which is 
two-dimensional strip located at 𝑦 = 0  with some finite 
width, FBC can be found as  
 

		𝔇?#
$ 𝐸A(𝑥, 𝑦)C#D±F = 0 

(3) 
 

where, 𝐸A is the total electric field component along z-axis 
on the surface of the strip. In (3), for different 𝜈 values, the 
fractional boundary condition corresponds to different 
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materials. If the fractional order 𝜈 is equal to 0, the boundary 
is PEC, on the other hand, if 𝜈 = 1, the boundary becomes 
PMC. 
 

2. Formulation of the Problem 
 
The problem is to investigate what is the current distribution 
on the surface of the strip, the near electric field and the bi-
static radar cross section which has not studied yet. A two-
dimensional strip of width 2a on the plane y = 0 is located.  
The strip along the z-axis is infinite. The source of the 
cylindrical wave 𝐽I = 𝑧𝐽I𝛿(𝑥 − 𝑥L)𝛿(𝑦 − 𝑦L)			is located at 
the point (𝑥L,	𝑦L) as shown in Fig. 1. The time dependency 
is given as 𝑒2NOP   and throughout the problem, it will be 
omitted. 

 
 

Figure 1:    The geometry of the problem 
 

 Let us consider the case of an E-polarized wave, i.e. 
𝐸Q⃗ AN(0, 0, 𝐸A), 𝐻QQ⃗ ANS𝐻T, 𝐻#, 0U. In this case, the source field 
has the form [7] 
 

        𝐸Q⃗ AN(𝑥, 𝑦) = −𝐽IQQQ⃗
VW?
X
𝐻F
(Y)S𝑘[(𝑥 − 𝑥L)\ + (𝑦 − 𝑦L)\U								      

    (4) 
 

Here,  𝐻F
(Y)(𝑘х)  is the Hankel function of the first kind and 

zero order, 𝜂F is the impedance of free space, and 𝑘 = \`
a

  is 
the wave number. The total electric field can be represented 
as a superposition of the fields below. 
 

𝐸Q⃗ A = 𝐸Q⃗ AN + 𝐸Q⃗ Ab 
                                                                          (5) 

 
Our purpose is to find the scattered field which must satisfy 
FBC. The scattered field can be found as (6). 
 

𝐸Ab(𝑥, 𝑦) = 0 𝑓Y2$(𝑥>)𝐺$(𝑥 − 𝑥>, 𝑦)𝑑𝑥>
3

23

 

(6) 
Here, 𝑓Y2$(𝑥>) is an unknown function, which we will call 
the fractional density of the potential, and the fractional 
Green's function 𝐺$(𝑥) has the form [5 - 8]. We can use the 
spectral representation of the Hankel Function. 
 

𝐺$(𝑥 − 𝑥>, 𝑦) = −
𝑖
4𝔇?#

$ 𝐻F
(Y) f𝑘[(𝑥 − 𝑥>)\ + 𝑦\g 

 (7) 
where, 
 
𝐻F
(Y) f𝑘[(𝑥 − 𝑥>)\ + 𝑦\g

=
1
𝜋 0 𝑒N?(ST2TiUjk|#|[Y2jm)

𝑑𝛼
√1 − 𝛼\

3

23

 

 
Here, Im p√1 − 𝛼\ > 0r  is assumed. Im {𝑓(𝛼)}  means 
imaginary part of the function	𝑓(𝛼). 
 
Using (6) and (7), the scattered field can be found as 
 
       	𝐸Ab(𝑥, 𝑦) 

= −𝑖
𝑒N
`
\$

4𝜋 0 𝐹Y2$(𝛼)𝑒N?vjTk#[Y2j
mw(1 − 𝛼\)

$2Y
\ 𝑑𝛼

3

23

 

(8) 
where, 
 
𝐹Y2$(𝛼) = ∫ 𝑓yY2$(𝜉)𝑒2N{j|𝑑𝜉Y

2Y , 𝑓yY2$(𝜉) = 𝑎𝑓Y2$(𝑎𝜉) 
 
𝜀 = 𝑘𝑎, 		𝜉 = T

�
 ,     𝑓yY2$(𝜉) = {

\` ∫ 𝐹Y2$(𝛼)𝑒N{j|𝑑𝛼3
23  

 
Here, 𝐹Y2$(𝛼) is the Fourier transform of 𝑓yY2$(𝜉) which is 
the normalized current density on the strip. 
 
After, finding the scattered field expression, the FBC given 
in (9) needs to be applied to the total field.  
 

		𝔇?#
$ 𝐸A(𝑥, 𝑦)C#D±F = 0 

(9) 
 

where,  𝑥, 		 − 𝑎 < 𝑥 < 𝑎 and 𝜈 is a fractional order (FO). 
 
After applying FBC, we obtain the following integral 
equation (IE) given in (10). 
 

−𝑖
𝑒N`$

4𝜋 0 𝐹Y2$(𝛼)𝑒N?jT(1 − 𝛼\)$2Y \⁄ 𝑑𝛼
3

23

 

= 𝐽I
𝜂F𝑘
4𝜋 𝑒

N`\$ 0 𝑒N?((T2TW)j2#W[Y2jm)(1 − 𝛼\)
$2Y
\ 𝑑𝛼

3

23

 

(10) 
 

For the general solution, both sides of (10) with 𝑒2N?T� 
needs to be multiplied and needs to be taken the integral 
from –a to +a with respect to x variable. Then, (10) becomes 
as (11) given below. 
 

0 𝐹Y2$(𝛼)
sin ε(𝛼 − 𝛽)

𝛼 − 𝛽
(1 − 𝛼\)$2

Y
\𝑑𝛼	 = 	

3

23
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−4𝑖𝐵𝜋𝑒2N
`
\$ 0 𝑒N?v2TWjk#W[Y2j

mw sinε(𝛼 − 𝛽)
𝛼 − 𝛽

(1 − 𝛼\)
$2Y
\ 𝑑𝛼

3

23

 

(11) 
where, 𝐵 = −𝐽I

VW?
X`

 
 
For the fractional order 𝜈  is equal to 0.5, the normalized 
current density can be found directly from (10) and the 
current density becomes as (12) by using the inverse Fourier 
transform. 
 
𝑓yF.�(𝜉) = 

−𝑖2𝜀𝐵𝑒∓N
�
� ∫ 𝑒Nv({j|2?TWj)k?#W[Y2j

mw(1 − 𝛼\)2
�
�𝑑𝛼3

23   
and,    

                  
𝐹F.�(𝛼) = 

−𝑖4𝐵𝑒∓N
`
X 0

sin 𝜀(𝛽 − 𝛼)
(𝛽 − 𝛼) 𝑒Nv(2?TW�)k?#W[Y2�

mw(1 − 𝛽\)2
Y
X𝑑𝛽

3

23

 

(12) 
 

Equations (12) are the special case where the normalized 
current density 𝑓yF.� and the Fourier transform of the current 
density 𝐹F.� have been found analytically. 
 
It is better to examine the cylindrical line source in the far 
field with an arbitrary angle. In the cylindrical coordinate 
system	(𝜌, φ), x can be written as 𝜌cosφ and y can be written 
as 𝜌sin φ. Then, by using the steepest descent method and the 
coordinate change [6], for the large values of	𝑘𝜌F, the part of 
(12) related to the Fourier transform of the current density 
becomes as 
 
𝐹F.�(𝛼) = 

−𝑖4𝐵𝑒∓N
`
X�

2𝜋
𝑘𝜌F

[𝑠𝑖𝑛𝜃F
sin	(𝜖(𝑐𝑜𝑠𝜃F + 𝛼))

(𝑐𝑜𝑠𝜃F + 𝛼)
𝑒N?�W2N`/X 

(13) 
 

If k𝜌→ ∞, we can use the method of stationary phase to 
derive the expression for the far-field	𝐸Ab(𝜌, φ) as follows 
 

𝐸Ab(𝜌, φ) = 𝐴(𝑘𝜌)Φ$(φ)  while k𝜌 → ∞           (14) 
 
where, 

𝐴(𝑘𝜌) = � \
`?�

𝑒N?�2N`/X 

 

ΦF.�(φ) = −
𝑖
4
(±𝑖)$𝐹F.�(𝑐𝑜𝑠φ)[𝑠𝑖𝑛φ 

(15) 
For (15), (+) sign is taken into account if 0 < φ < 𝜋, ), and 
(-) sign is taken into account if 𝜋 < φ < 2𝜋. The function 
Φ$(φ) stands for the radiation pattern (RP) of the scattered 
field. As given in (15), the far field expression is found 
analytically when the fractional order 𝜈, is equal to 0.5. 
 

As shown in [9, 10], the fractional order is related to the 
impedance. The relation between the fractional order 𝜈 and 
the impedance 𝜂$  can be derived for the normal incidence 
plane wave as shown in (16) 
 

𝜈 =
1
𝑖𝜋 𝑙𝑛

1 − 𝜂$
1 + 𝜂$

,				𝜂$ =
1
𝑖 tan(

𝜋𝜈
2 )	 

                                                        (16) 
 

Here, we need to note that, this result is for the plane wave 
scattering, on the other hand, for the large value of 	𝑘𝜌F (see 
Fig. 1), it can be approximated as a plane wave and also in 
this article, and the approximation approach is given in (13) 
and (15).  For the values of the fractional order 0 < 𝜈 < 1, 
𝜂$ is always pure imaginary [5].  
 
The value ν = 0 corresponds to the impedance 𝜂$ = 0 (PEC) 
and ν = 1 corresponds to 𝜂$ = − 𝑖 ∞ (PMC). For the 
intermediate values 0 < ν < 1 the impedance has pure 
imaginary values between 0 and −	𝑖∞. For a special case 
(𝑘𝜌F → ∞ ), when ν = 0.5, impedance η9  becomes – 𝑖  by 
using (16). 
 
In order to understand the scattering phenomena, the Radar 
Cross Sections (RCS) also need to be investigated. 
Previously, the monostatic radar cross sections have been 
studied. Here both Bi-static and mono-static radar cross 
sections are studied. The formula for the bi-static RCS 
£m¤
¥
	 and the mono-static RCS 𝜎\§   is derived from the 

expression for the RP Φ$	 as given in (15). In order to 
calculate radar cross sections, (17) is used for the bi-static 
and the monostatic radar cross section, respectively [7].  
 

£m¤
¥
(φ) = \

¨
|Φ(φ)|\		;	 𝜎\§(𝑚𝑜𝑛𝑜𝑠𝑡𝑎𝑡𝑖𝑐) = 	

£m¤
¥
(𝜃L) 

(17) 

3. Numerical Analysis 
 
In order to discretize and solve IE (11) for any arbitrary 
fractional order, the current density can be given as 
following [9, 10]. 

				𝑓yY2$(𝜉) = (1 − 𝜉\)$2
Y
\«𝑓¬$

𝐶¬$(𝜉)
𝜈

3

¬DF

 

(18) 

where, 𝐶¬$(𝜉)  denotes Gegenbauer polynomials which 
satisfy the boundary condition, and 𝑓¬$  is the unknown 
coefficients. The current density needs to satisfy (19) at the 
edges [11]. 

				𝑓yY2$(𝜉) = 𝑂 ¯(1 − 𝜉\)$2
Y
\° , 𝜉 → ±1 

(19) 

The Fourier Transform of (18), in (20), 𝐹Y2$(𝛼)  can be 
found [9, 12].  
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𝐹Y2$(𝛼) =
2𝜋

Γ(𝜈 + 1)«
(−𝑖)¬𝑓¬$𝛽¬$

𝒥¬k$(𝜀𝛼)
(2𝜀𝛼)$ 	

3

¬DF

 

(20) 

Here,  𝛽¬$  = Γ (n +2 ν) / Γ (n + 1) and 𝒥¬k$(𝜀𝛼) are the 
Bessel functions. Putting (20) into IE (10), we obtain   a 
system of linear algebraic equations (SLAE) for determining 
the unknown coefficients	𝑓¬$. SLAE has the form given in 
(21).	

«(−𝑖)¬𝑓¬$𝛽¬$𝐶²¬$ = 𝛾²$
3

¬DF

 

(21) 

Here, 

𝐶²¬$ = 0 𝒥¬k$(𝜀𝛼)𝒥²k$(𝜀𝛼)(1 − 𝛼\)
$2Y\

𝑑𝛼
𝛼\$

3

23

 

and 
 
𝛾²$ = 

Ω 0
	𝒥²k$(𝜀𝛼)

𝛼$ 𝑒Nv2?TWjk?#W[Y2j
mw(1 − 𝛼\)

$2Y
\ 	𝑑𝛼

3

23

 

 
where, Ω = N

\`
Γ(𝜈 + 1)𝑒2N

�
m$ 

 

4. Numerical Results 
 
In previous sections, the analytical and the numerical 
analysis have been studied. Here, for the fractional 
order	𝜈 = 0.5, the near field scattered and the total electric 
field given in Fig. 2-7. Then, the bi-static radar cross section 
(RCS) are investigated for the different source locations, 
angles and	𝜖. The results for bi-static RCS are given in Fig. 
8 and 9. For bi-static RCS results, (17) is utilized. In Fig. 10 
– 12, the normalized current densities for different angles of 
the incidence are shown. For these results, (18) is taken into 
account. As the purpose of this paper, the fractional order 𝜈 
for all figures, is 0.5. In all calculations, 𝐵 = −𝐽I

VW?
X`

 used in 
(11) is assumed to be 1. 
 

 
 

Figure 2: The Amplitude of the Scattered Electric Field 
𝐸Q⃗ Ab for 𝑎 = 1,	𝜖 = 2𝜋,	𝑥F = 0 and 𝑦F = 2𝜋 

 
 
Figure 3: The Amplitude of the Total Electric Field 𝐸Q⃗ AN  
for 𝑎 = 1,	𝜖 = 2𝜋,	𝑥F = 0 and 𝑦F = 2𝜋 
 

 
 
Figure 4: The Amplitude of  the Scattered Electric Field 
𝐸Q⃗ Ab for 𝑎 = 1,	𝜖 = 𝜋,	𝑥F = 2𝜋 and 𝑦F = 2𝜋 

 

 
 
Figure 5:  The Amplitude of the Total Electric Field 
𝐸Q⃗ AN 	for 𝑎 = 1,	𝜖 = 𝜋,	𝑥F = 2𝜋 and 𝑦F = 2𝜋 
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Figure 6: The Amplitude of the Total Electric Field 𝐸Q⃗ AN  
for 𝑎 = 1,	𝜖 = 2𝜋,	𝑥F = 0 and 𝑦F = 6𝜋 
 
 

 
 
Figure 7: The Amplitude of the Total Electric Field 𝐸Q⃗ AN  
for 𝑎 = 3,	𝜖 = 2𝜋,	𝑥F = 0 and 𝑦F = 2𝜋 
 
In Fig. 8 and 9, Bi-static RCS with different 𝜖 = 𝑘𝑎 values 
are shown. The location of the source line and the angle with 
respect to the strip are given in order. 1 is responsible 
for	𝜃F = 90F, 𝑥F = 0, 𝑦F = 𝜖. 2 is responsible for 𝜃F = 90F, 
𝑥F = 0, 𝑦F = 20𝜖. 3 is responsible for 𝜃F = 45F, 𝑥F = 3𝜖, 
𝑦F = 3𝜖  and 4 is responsible for 𝜃F = 60F , 𝑥F = 3𝜖 , 𝑦F =
3√3𝜖. 
 
 

 
 
Figure 8: Bi-static Radar Cross Section for 𝜖 = 𝜋 
 

 
 
Figure 9: Bi-static Radar Cross Section for 𝜖 = 2𝜋 
 
In Fig. 10, 11 and 12, the normalized current density are 
shown for the different 𝜖  and the source position 𝜌F , The 
location of the source line and the angle with respect to strip 
are given in order. Arrows 1, 2 and 3 are responsible 
for	𝜃F = 90F,	𝜃F = 40F,	𝜃F = 60F, respectively. 
 

 
 
Figure 10: The normalized Fractional Current Density 
|𝑓yY2$(𝜉)| for 𝜖 = 𝜋	and 𝜌F = 3 
 

 
 
 
Figure 11:   The normalized Fractional Current Density 
|𝑓yY2$(𝜉)| for 𝜖 = 𝜋	and 𝜌F = 30 
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Figure 12: The normalized Fractional Current Density 
|𝑓yY2$(𝜉)| for 𝜖 = 3𝜋	and 𝜌F = 3 
 

5.  Conclusion 
 
In this study, the scattering analysis of a cylindrical wave 
from an impedance strip by using the fractional derivative 
approach (FDM) is studied. The problem of diffraction of 
the cylindrical wave by a strip with FBC has been 
formulated and for fractional order 𝜈, 0.5, the analytical 
expression of the field is found. FBC is characterized by the 
value of the fractional order 𝜈 between 0 and 1. The 
impedance of the strip is found for the specific angle with 
the special assumption. When the fractional order 𝜈 equals 
to 0.5, the impedance of the strip becomes – 𝑖 for the normal 
incidence (valid for large value	𝑘𝜌F). If there was a surface 
with the impedance – 𝑖, the properties of scattering of the 
cylindrical wave from the two-dimensional strip would be 
the same as the study done here. Such a surface has a very 
special characteristic in the sense of the radiation and the 
current distribution. As shown in the paper, the current 
distribution for 𝜈, 0.5 is very smooth. Furthermore, there are 
resonances for the specific angles of the incidence 
depending on the frequency parameter 𝜖 given in (8) as seen 
in Bi-static RCS results whereas such resonances are not 
observed in PEC or PMC structures [9]. Previously, the 
monostatic radar cross section, the far-field expressions and 
the near field expression for y>0 were studied. Here, 
especially, the current distribution for specific angles, bi-
static radar cross section and the near field distribution for 
y<0 and y>0 are investigated. This method can be applied 
for different geometries such as double strips as a resonator, 
two strips with an arbitrary angle and the distance between 
each other. Introducing the fractional derivative method can 
lead to a promising technique in the modeling of scattering 
from complicated surfaces when the fractional order is 
defined from physical parameters [6, 9]. 
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