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Abstract

In this paper, we have studied the analysis of current
distributions and radar cross sections of the line source
scattering from an impedance strip. The problem was solved
with the fractional derivative method previously. Here, the
specific case of the fractional derivative method is
investigated. The problem under consideration on the basis
of various methods is studied well, however, they are
mainly done by numerical methods. The fractional
derivative method allows one to obtain an analytical
solution in a specific situation. This method allows to obtain
analytical solution of impedance strip for a special case
which is fractional order v is equal to 0.5. When fractional
order is 0.5, there is an analytical solution which is
explained in this paper and current distribution, radar cross
section and near field patterns are derived. Here, as a first
time, the current distribution, the bi-static radar cross
section and the near field for the upper and the lower part of
the strip are studied.

1. Introduction

The application of the fractional calculus such as fractional
operators, transforms or the fractionalization of some known
operators are studied well previously [1 - 4]. This allows us
to describe intermediate states for different physical
phenomena. In the -electromagnetic theory, fractional
operators firstly are used by N. Engheta and the study is
called as “fractional paradigm in electromagnetic theory”
[3]. Here, our purpose is to use the fractional derivative
method (FDM) which is firstly proposed by E. I. Veliyev for
solving diffraction problems.

Here, the two-dimensional infinitely thin surface strip is
studied. As a source term, line source is introduced.
Previously, the general formulation and field distributions
for the upper space of the strip, the monostatic radar cross
section were studied [5, 6] whereas, in this paper, the current
distribution, the upper and the lower part of the scattered and
the total field and bi-static radar cross sections for the line
source with an arbitrary distance and angle are studied for

the fractional order (FO) v, 0.5. In order to solve this
specific diffraction problem, new fractional boundary
condition (FBC) on the strip is introduced. FBC covers both
perfect electric conducting (PEC) and the perfect magnetic
conducting (PMC) cases with the change in the FO [5].

The fractional derivative is denoted as Dy which means the
derivative with respect to y variable and the order of
derivative is v. Here, we will use the Riemann - Liouville
definition of the derivative which is valid for the fractional
order between (0, 1) [5]. Due to knowing that the derivative
is a linear operator, derivatives with other fractional orders
can be found a combination of integer derivative with the
fractional derivative.
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where, the fractional order v € (0,1) and I'(v) is the Gamma
Function. In order to define the fractional derivative fully,
(2) is given.

f@), v=0
Dyf(y) = Dyf(y), 0<v<1
', v=1

@

After the definition, it is needed to express the fractional
boundary condition, mathematically which is the boundary
condition can cover both known Dirichlet and Neumann
boundary conditions (FBC) [5]. For our problem which is
two-dimensional strip located at y = 0 with some finite
width, FBC can be found as

%yEz(x;y)|y:i0 = 0
3)
where, E, is the total electric field component along z-axis

on the surface of the strip. In (3), for different v values, the
fractional boundary condition corresponds to different



materials. If the fractional order v is equal to 0, the boundary
is PEC, on the other hand, if v = 1, the boundary becomes
PMC.

2. Formulation of the Problem

The problem is to investigate what is the current distribution
on the surface of the strip, the near electric field and the bi-
static radar cross section which has not studied yet. A two-
dimensional strip of width 2a on the plane y = 0 is located.
The strip along the z-axis is infinite. The source of the
cylindrical wave fe =ZJ,6(x —x,)6(y —y,) is located at
the point (x,, ¥,) as shown in Fig. 1. The time dependency

is given as e~™! and throughout the problem, it will be
omitted.
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Figure 1: The geometry of the problem

Let us consider the case of an E-polarized wave, i.e.
Ei(0,0,E,), Hi(H,, H,,0). In this case, the source field
has the form [7]

Ei(x,y) = —Je B2 HGY (ke = 2,2 + & = ¥0)?)
@)

Here, Hél) (kx) is the Hankel function of the first kind and
zero order, 7, is the impedance of free space, and k = 2771 is

the wave number. The total electric field can be represented
as a superposition of the fields below.

—

E,=

E} + ES
(5)

Our purpose is to find the scattered field which must satisfy
FBC. The scattered field can be found as (6).

ES(x,y) = f FIVEE (x - 2, y)da!

(6
Here, f17V(x') is an unknown function, which we will call
the fractional density of the potential, and the fractional
Green's function GV (x) has the form [5 - 8]. We can use the
spectral representation of the Hankel Function.
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where,
Hél) (k (x—x")?%+ yz)
_1 f pik((x-xaiyi—a?) 9%
m ) N

Here, Im {\/1 —a?> 0} is assumed. Im {f(a)} means
imaginary part of the function f (a).

Using (6) and (7), the scattered field can be found as

E5(x.y)
Ly 2 _
— —i% f Fl_v(a)eik[ax+y\/1—a2](1 _ az)vz—lda
) ®)
where,

F'oV(a) = 2 1 (@©e e dg, 177 () = af ™" (af)

e=ka, &

~ O = [P (@e e da

Here, F1~V(a) is the Fourier transform of f17V(&) which is
the normalized current density on the strip.

After, finding the scattered field expression, the FBC given
in (9) needs to be applied to the total field.

Diy B0y, =0
)

where, x, —a < x < a and v is a fractional order (FO).

After applying FBC, we obtain the following integral
equation (IE) given in (10).

. (oo}
LTV

—i = fFl—V(a)eikax(l _a2)v—1/2da
=]e%ei%" f eik((x—xo)a—yox/l—az)(l _ az)vT_lda
) (10)
—ikxp

For the general solution, both sides of (10) with e
needs to be multiplied and needs to be taken the integral
from —a to +a with respect to x variable. Then, (10) becomes
as (11) given below.

| @ —Sinz(f;,ﬁ 21— @) 3da =



[ee)

_41'371.6—1'%11 f eik[—xwﬂ/g«/ﬁ] sine(a — f5) (1- aZ)VZ;lda
a—=p
(11
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where, B = —/, -~

For the fractional order v is equal to 0.5, the normalized
current density can be found directly from (10) and the
current density becomes as (12) by using the inverse Fourier
transform.

F5@) = 1
—i2eBe™ [ ei[(f“f—kxoa)+kym/1—a2](1 — a?)hda
and,
FO.S (O_’) —
—i4Be™ i fSin(;fL)a)ei[(—kxOﬁHkya\/l——ﬁz] a —ﬁz)_%dﬁ
-«

—00

(12)

Equations (12) are the special case where the normalized
current density £°5 and the Fourier transform of the current
density F%° have been found analytically.

It is better to examine the cylindrical line source in the far
field with an arbitrary angle. In the cylindrical coordinate
system (p, ), X can be written as pcos¢ and y can be written
as psin ¢. Then, by using the steepest descent method and the
coordinate change [6], for the large values of kp,, the part of
(12) related to the Fourier transform of the current density
becomes as

FO.S (a,) —
—. | 2T
—i4Be™'z ’E,/sineo
0

If kp— o, we can use the method of stationary phase to
derive the expression for the far-field E; (p, @) as follows

sin (e(cosf, + a))
(cosBy + ) ¢

ikpo—im/4

(13)

E; (p, @) = A(kp)®Y(¢) while kp — oo (14)
where,
— ’ 2 ikp—im/4
A(kp) = Mel p—ITT
i
D5 (@) = 5 FD'F 05(cos@)y/sine
(15)

For (15), (+) sign is taken into account if 0 < ¢ < m, ), and
(-) sign is taken into account if m < ¢ < 2m. The function
@V () stands for the radiation pattern (RP) of the scattered
field. As given in (15), the far field expression is found
analytically when the fractional order v, is equal to 0.5.

110

As shown in [9, 10], the fractional order is related to the
impedance. The relation between the fractional order v and
the impedance 7, can be derived for the normal incidence
plane wave as shown in (16)

1

—in
s

1_771/
1+n,

1 %
V= n, = ?tan(7)

(16)

Here, we need to note that, this result is for the plane wave
scattering, on the other hand, for the large value of kp, (see
Fig. 1), it can be approximated as a plane wave and also in
this article, and the approximation approach is given in (13)
and (15). For the values of the fractional order 0 <v < 1,
7, is always pure imaginary [5].

The value v = 0 corresponds to the impedance 7, = 0 (PEC)
and v 1 corresponds to n,= —iow (PMC). For the
intermediate values 0 < v < 1 the impedance has pure
imaginary values between 0 and — ioo. For a special case
(kpy = ), when v = 0.5, impedance 1, becomes -i by
using (16).

In order to understand the scattering phenomena, the Radar
Cross Sections (RCS) also need to be investigated.
Previously, the monostatic radar cross sections have been
studied. Here both Bi-static and mono-static radar cross
sections are studied. The formula for the bi-static RCS

22d and the mono-static RCS 0,4 is derived from the

expression for the RP ®" as given in (15). In order to
calculate radar cross sections, (17) is used for the bi-static
and the monostatic radar cross section, respectively [7].

224 (@) = 2|®(@)|? ; gza(monostatic) = 224 (6,)

(17)

3. Numerical Analysis

In order to discretize and solve IE (11) for any arbitrary
fractional order, the current density can be given as
following [9, 10].
~ 1
Fr@=a-y7T)

n=0

v ()

v

(18)

where, CY(§) denotes Gegenbauer polynomials which
satisfy the boundary condition, and f; is the unknown
coefficients. The current density needs to satisfy (19) at the
edges [11].

F@=o(a-e2). -4

(19)

The Fourier Transform of (18), in (20), F1™V(a) can be
found [9, 12].



1-v — nev Jn+v(£a)
F@ = +1)Z( R

(20)

Here, Sy =T (n +2v) / T (n + 1) and J,4,(ea) are the
Bessel functions. Putting (20) into IE (10), we obtain a
system of linear algebraic equations (SLAE) for determining
the unknown coefficients f,;. SLAE has the form given in

(21).
D OB =
n=0
21)
Here,
v 2 V—l da
Cmn = f Jn+v(ga)(7m+v(ga)(1 —a ) zﬁ
and
Ym =

q f sz:v(ga) ei[—kx0a+kyo\/1—a2](1 _ a,Z)V%l da

where, ) = il"(v +1)e 2"

4. Numerical Results

In previous sections, the analytical and the numerical
analysis have been studied. Here, for the fractional
order v = 0.5, the near field scattered and the total electric
field given in Fig. 2-7. Then, the bi-static radar cross section
(RCS) are investigated for the different source locations,
angles and €. The results for bi-static RCS are given in Fig.
8 and 9. For bi-static RCS results, (17) is utilized. In Fig. 10
— 12, the normalized current densities for different angles of
the incidence are shown. For these results, (18) is taken into

account. As the purpose of this paper, the fractional order v
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for all figures, is 0.5. In all calculations, B = —] used in

(11) is assumed to be 1.
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Figure 2: The Amplitude of the Scattered Electric Field
EZS fora=1,e =2m,xy =0and y, = 21
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Figure 3: The Amplitude of the Total Electric Field E;
fora=1,e =2m,x, =0and y, = 2m
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Figure 4: The Amplitude of the Scattered Electric Field
EZS fora=1,e=m,xy =2randy, = 2m
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Figure 5: The Amplitude of the Total Electric Field
Eifora=1,e=mx,=2mandy, = 21
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Figure 6: The Amplitude of the Total Electric Field E;
fora=1,e =2m,xy, =0and y, = 61
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Figure 7: The Amplitude of the Total Electric Field E;
fora=3,e =2m,x, =0and y, = 2m

In Fig. 8 and 9, Bi-static RCS with different € = ka values
are shown. The location of the source line and the angle with
respect to the strip are given in order. 1 is responsible
for 8, = 90°, x, = 0, y, = €. 2 is responsible for 6, = 90°,
Xy =0, y, = 20€. 3 is responsible for 8, = 45°, x, = 3¢,
yo = 3€ and 4 is responsible for 8, = 60°, x, = 3¢, y, =

3+/3e.
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Figure 8: Bi-static Radar Cross Section for € =
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Figure 9: Bi-static Radar Cross Section for € = 2x

In Fig. 10, 11 and 12, the normalized current density are
shown for the different € and the source position p,, The
location of the source line and the angle with respect to strip
are given in order. Arrows 1, 2 and 3 are responsible
for 8, = 90°, 8, = 40°, 8, = 60°, respectively.
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Figure 10: The normalized Fractional Current Density
|[f1v(&)| for e = mand p, = 3
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Figure 11: The normalized Fractional Current Density

|[f1=v(&)| for e = mand p, = 30
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Figure 12: The normalized Fractional Current Density
|[f1v(&)| for € = 3mand p, = 3

5. Conclusion

In this study, the scattering analysis of a cylindrical wave
from an impedance strip by using the fractional derivative
approach (FDM) is studied. The problem of diffraction of
the cylindrical wave by a strip with FBC has been
formulated and for fractional order v, 0.5, the analytical
expression of the field is found. FBC is characterized by the
value of the fractional order v between 0 and 1. The
impedance of the strip is found for the specific angle with
the special assumption. When the fractional order v equals
to 0.5, the impedance of the strip becomes — i for the normal
incidence (valid for large value kp,). If there was a surface
with the impedance — i, the properties of scattering of the
cylindrical wave from the two-dimensional strip would be
the same as the study done here. Such a surface has a very
special characteristic in the sense of the radiation and the
current distribution. As shown in the paper, the current
distribution for v, 0.5 is very smooth. Furthermore, there are
resonances for the specific angles of the incidence
depending on the frequency parameter € given in (8) as seen
in Bi-static RCS results whereas such resonances are not
observed in PEC or PMC structures [9]. Previously, the
monostatic radar cross section, the far-field expressions and
the near field expression for y>0 were studied. Here,
especially, the current distribution for specific angles, bi-
static radar cross section and the near field distribution for
y<0 and y>0 are investigated. This method can be applied
for different geometries such as double strips as a resonator,
two strips with an arbitrary angle and the distance between
each other. Introducing the fractional derivative method can
lead to a promising technique in the modeling of scattering
from complicated surfaces when the fractional order is
defined from physical parameters [6, 9].
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