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Abstract

In this work, we present an analytical modeling of a highly
complex medium-based shielded microstrip line. The study
aims at a numerical evaluation of the characteristic
impedance and the dispersion characteristics of the
dominant hybrid mode in the microstrip line printed on an
anisotropic medium. The newly considered complex
anisotropy has a full 3x3 tensor form of permittivity and
permeability. The study is based on the derivation of the
Green's functions of the general complex-medium-based
structure in the Fourier domain. The spectral Method of
Moments (MoM) and the Galerkin's procedure are
combined to solve the resulting homogeneous system of
equations. The effect of the gyrotropic anisotropy on the
phase constant and the characteristic impedance is
particularly investigated. Original and interesting numerical
results are obtained and discussed. Our results are found to
be in good agreement with available isotropic case data
reported in literature.

1. Introduction

Because of the recent tendency towards miniaturization and
integration, microwave circuitry is currently fabricated
using integrated transmission lines, because of their planar
layout, rather than bulky waveguides. This feature is highly
attractive for higher frequency band and higher packing
density device technologies [1,2].

Due to their many potential applications in a large
number of practical problems in electromagnetic, optic and
acoustic domains, anisotropic media have attracted much
interest and support from researchers and industrials as
powerful instruments with a real future in microwave and
optic engineering [3,4]. Recently, various anisotropic
medium structures are intensively employed in optical
systems, optoelectronics, antenna [5], radar absorbers and
microwave devices [6][7]. Their anisotropic nature is an
attractive characteristic for advanced electronic application
devices based on the nonreciprocity property of complex
media [8,9]. In this class of complex materials, we find, for
instance, ferrite, chiral, and metamaterial which all seem to

include a great potential for promising applications in
microwave, infra-red and optical domains [10-13]. This
anisotropy results in additional degrees of freedom for the
design of electromagnetic devices and leads to new fields of
applications due to the introduction of new synthetic
electronic materials [14, 15].

A deep investigation of the material response to
electromagnetic waves may even allow the design and
fabrication of materials with properties not found in nature.
Microwave bi-anisotropic materials can be realized as
microstructures comprising small metal helices distributed
in isotropic matrices. When the helices are arranged in a
certain order, we obtain, for example, chiral media. One of
them is the so-called omega composite that consists of
embedded small Q-shaped inclusions in an isotropic
dielectric matrix [16]. The origin of the anisotropy is either
the nonspherical shape of the metallic inclusions in the 3D
systems, or the distribution of the inclusions (even if
spherical) on a substrate in the 2D configuration. In both
cases, it leads to an anisotropic effective medium [17].
Metamaterials are composite structures made of metallic
inclusions such as rods and split rings resonators properly
arranged in space in order to achieve negative values of the
permittivity and the permeability. Ferrites have a crystal
structure sintered by means of various metal oxides. In the
absence of an applied static field, demagnetized ferrites are
isotropic materials. In the presence of a static magnetic field,
ferrites exhibit a nonreciprocal anisotropic behavior [18].

To extract the effective constitutive parameters of
anisotropic materials, various techniques such as stepwise
method, S-parameters method, resonator method, coaxial
probe method, free-space characterization method,
rectangular waveguide measurements and recursive
algorithms have been employed [19] [20] [21].

It is crucial to predict the electromagnetic behavior of a
general anisotropic medium for their optimal use in the
design of transmission lines. Therefore, it is basically
essential to be able to evaluate the transmission line
characteristic impedance in all the frequency band of
operation. Reported results of the propagation
characterization in anisotropic substrate transmission lines,
show that the electromagnetic parameters of the substrate



present dominant effects on the wave propagation
characteristics and they are quite different according to the
type of used substrates [22-24].

Exact solutions of electromagnetic radiation and

propagation problems have become an increasingly
important area of research. There have been many works
reported in literature using spectral domain technique in
analyzing microstrip lines [25-22]. Solving electromagnetic
field problems, analysis and designs need numerical
computational methods to be employed. Various methods
and techniques maybe used to investigate and optimize
mono and multilayered microstrip structures [23,29,30].
To predict accurately the electromagnetic behavior of
transmission lines over a given frequency band, the Moment
Method is used in the spectral domain to obtain a solution.
This technique is commonly used for planar structures such
as microstrip lines and antennas with perfect conductors,
and it is first applied in microwave domain by Harrington in
1968 [31-34].

2. Analytical formulation

The general microstrip line geometry and the appropriate
coordinate system with the z-axis as direction of propagation
are shown in Fig. 1. The metal involved in the structure is
assumed to be perfect conductor.
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Figure 1: Configuration of a shielded microstrip.

In this study, we consider a most general complex
anisotropic medium (region 1) characterized by full 3x3
permittivity and permeability tensors. For this medium, the
following conditions on the permittivity and permeability

constants are considered £=z", u=px" and additional

conditions are necessary to ensure the decoupling of the TE
and TM modes independently of the direction of propagation
in the medium [35] :

g,+¢,=0, ¢ +¢6,=0, & +¢ =0 and p=t&',
which gives:
€ xp xz
&= Eo| — gx,v 8.»31 |2 (13)
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Assuming the temporal dependence e’ of the fields and
considering Maxwell's equations in the Fourier domain with
0/0z=—jp and 6/ox =—ja assumptions, we derive the
transverse electromagnetic field components as functions of
the longitudinal electric and magnetic components E:l and

PNIZ] in region 1.
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which results in the following complex wave equation for
the components Ezl and H -1 given in the Fourier domain:
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where ‘T’l stands for longitudinal components FE
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H_ , and the dispersion relation for such an unbounded

&, J(4)

Due to the perfect side walls of microstrip structure,
electromagnetic fields are only defined for x from —a to a

(Fig. 1). «, is the discrete Fourier transform variable, with

complex medium is found to be
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values for even modes: a, = (1 —0.5)7/a and for odd modes

a, =nn/a, defined within the microstrip line [26,36,37].

3. Method of solution

Eq. (3) admits a general solution, in the bounded complex
medium region, of the form

¥, = Asinh(y, y) + Beosh(y, y), Q)

where 4 and B are complex constants.

To determine the complex constants appearing in the
expressions of the electromagnetic field components, the
following boundary conditions are used.

at y=0,
E =E =0, (6a)
and at y=d,
E,—E =0, (6b)
E,-E =0, (6¢)
H,-H,=-J_, (6d)

-H,=7J, (6¢)

where jx and j are the Fourier transforms of the
transverse current density J_ (x) and the longitudinal current
density J_(x), respectively. These basis functions are chosen

such that they are nonzero only on the strip |x|< w at y=d.

3.1. Derivation of Green's functions

Extensive algebraic manipulations of the resulting
mathematical equations lead to the expressions of the
electric field evaluated at the interface between the two

media with respect to the current densities .7X and .7 .

Green’s tensor elements are determined according to the
following system of equations [31, 36].

E.(a,.d,f)=G,(a,.d,p)], +G,(a,d,B)].(Ta)

n?

Ex(an’d’ﬁ) = GZI(an’d’ﬁ)jv + 522(“ d?ﬂ)j (7b)
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3.2. Dispersion characteristics

For a given frequency the propagation constant can be
obtained by setting the determinant of deduced matrix from
Equation (7) equal to zero (to have non-trivial solutions) and
searching for the root of the resulting equation [28].

3.3. Evaluation of the characteristic impedance

Because of the non-TEM nature of the propagation mode,
there are more than one definition for the characteristic
impedance. We used herein the power current definition to
calculate the characteristic impedance [38].

2P

c: 2 2
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where /o is the effective current flow along the z axis on
the strip and the power is given by the flux of the Poynting
vector through the microstrip line cross section

1o tf= e -
P—ERe_!‘J;ExH ‘u_-dx-dy, )

4. Results and discussion

To validate the developed analytical formulations, we have
firstly calculated the dispersion characteristics f of an
isotropic-medium shielded microstrip transmission line
case, evaluated for the following structure parameters:
d=0.635 mm, h=4d, a=10d, w=d/2, and by setting
(&n=&y=8-=&1=10, &y=6&:=6-=0, 1=1/&1), for a
frequency range up to 15 GHz. Fig. 2 shows good
agreements with published results [26].
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Figure 2: Dispersion characteristics of the dominant mode

compared with literature.
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Figure 3: Calculated characteristic impedance compared
with literature.

A comparison representation of the characteristic
impedance for the same configuration parameters used



above is given in Fig. 3. The representation shows good
agreements with available experimental data reported in
literature [37].

4.1. Effect of the anisotropy on the phase constant and
the characteristic impedance

Initially, we treat the case of uniaxial anisotropy by
examining the effect of the diagonal elements of the tensors
of permittivity and permeability on the phase constant § and
the characteristic impedance Zc with respect to frequency.
The other gyrotropic elements (&y, &z &:) are taken to be
null and 7=1/&. The obtained results are presented by Fig.
4, and are compared with the isotropic case (&:=10), for the
following dimensional parameters (d=0.635 mm, h=4d,
a=10d, w=d/2).
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phase constant
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Figure 4.b: Effect of uniaxial anisotropy on the

characteristic impedance

According to these results, we notice that & is the least
influential element on £ and Z. and in particular in the range
of lower frequencies. The elements & and g, have almost
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the same influence on S, and the variation of this latter is
directly proportional to the variation of these two elements.

For the characteristic impedance, it is directly
proportional to & and inversely proportional to gy. It should
be noted that the characteristic impedance presents the
weakest variation with respect to frequency in the case of
negative anisotropy of the element &, (i.e. &x=0.8&1< &1),
and the most important variation in the case of positive
anisotropy of the same element (i.e. &x=1.2&1> &1).
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Figure 5.a: Effect of real valued &, on the normalized phase
constant
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Figure 5.b: Effect of real valued &, on the characteristic

impedance

Now, we examine the case of gyrotropic anisotropy by
varying the higher and lower elements of permittivity and
permeability matrix &y &: and &:: non diagonal elements
which can take positive, negative, real or imaginary values.
In this case the diagonal elements are taken equal to the
isotropic case permittivity (ew=gy=&:=&1=10). The
obtained results for each element are shown on Figs. 5-10,
compared to the isotropic case. Figs. 5 and 6 present the &,



effect. This latter presents an important effect on £. The
increase in absolute value of real valued &, leads to an
increase in the phase constant and with no effect on Z. (Fig.

5(b)).
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Figure 6.a: Effect of imaginary valued &, on the normalized
phase constant
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For imaginary values, &y presents an important effect on S
and Z.. The positive values have more effect on £ and
practically the same effect on Zc as negative values by
increasing £ and decreasing Zc (Fig. 6(a) and (b)).

The gyrotropic anisotropy associated with the element &
behaves differently compared to &, towards £ and Z.. For
real values of &, the effect is negligible either on S or Z.

(Fig. 7).

Whereas for imaginary values (Fig. 8), this element has less
important effect than &, on £ and an effect on Z. which
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increases more and more with frequency contrary to the
element &, (Fig. 6).
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The effect of the real values of the element &: on g (Fig.
9(a)) is almost the same as that of imaginary values with
opposite sign (Fig. 10(a)). For the effect of this element on
Z., it is completely different compared to the other elements:
for &:real (Fig. 9), the variations of £ and Z. are directly
proportional, which is the reverse for imaginary values.
Moreover, the variation of Z. is more significant for real
valued &:and is directly proportional (Fig. 9(b)).
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Figure 10.a: Effect of imaginary valued &: the normalized
phase constant
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Figure 10.b: Effect of imaginary valued &: on the

characteristic impedance

Fig. 11, gives a more favorable selection of a combination
of gyrotropic anisotropy elements for the characteristic
impedance. It should be noted that among these
combinations, those with imaginary values are most
influential on the characteristic impedance. Moreover, they
present minor variations of the characteristic impedance
with respect to frequency. This variation is about 3.95 Q for
a 3-30 GHz frequency range for the combination &y=2j,
&:=2j, &-:=2j, and about 3.89 Q for the combination &,=-
2j, &:=-2j, &:=2j.
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Though in this study we considered the effect of each
parameter individually, results showed that the combined
effects are not mutually compensated in a predicted way, i.e.
the coexisting elements will mutually interact and affect the
propagation and the characteristic impedance. The
individual element effect is not quite absolute or
independent, this is due to the above considered conditions
that are necessary to ensure the decoupling of the TE and
TM modes especially Eq. (1b).

5. Conclusions

In this work, a complex and rigorous characterization of a
planar transmission line printed on an anisotropic substrate
is presented employing the method of moments formulated
in the spectral domain. The anisotropic effect of the
permittivity elements on the phase constant and the
characteristic impedance is analyzed. Original results were
carried out, commented on and compared with isotropic
case available in literature, good agreement is reached with
experimental results of the isotropic characteristic
impedance, which validates our theoretical calculations as
well as the numerical method of resolution adequately
adopted to our complex medium case.

It is worth noting that the effect of the gyrotropic anisotropy
permittivity is completely different from the uniaxial
anisotropy and the behavior of each element of the
permittivity tensor particularly differs from the other
elements. This has helped to achieve an optimal
combination of the anisotropic elements to reach an optimal
variation of the characteristic impedance on a wide
frequency range.

These results are the outcome of a full wave technique study
which is likely to give exact solutions and a predictive
insight of the behavior of anisotropic media.

References

U. Zaman, V. Vassilev, H. Zirath and N. Rorsman, “Novel
Low-Loss Millimeter-Wave Transition From Waveguide-to-

(1]

21

Microstrip Line Suitable for MMIC Integration and
Packaging,” IEEE Microwave and Wireless Components
Letters, Vol., No. 99, pp. 1-3, 2017.

D. Kim, J. M. Woo, H. W. Kim, et al. Quad-band THz

frequency selective surface based on a split ring resonator

loaded with multiple slots. Journal of Electromagnetic Waves

and Applications. Vol. 29, pp. 2472-2478, 2015.

S. Barzegar-Parizi, and B. Rejaei, “Calculation of Effective

Parameters of High Permittivity Integrated Artificial

Dielectrics,” IET Microwaves, Antennas & Propagation, Vol.

9, No. 12, pp. 1287-1296, 2015.

M. Norooziarab, S. Bulja, R. Cahill, R. Kopf and A. Tate,

“Complex Dielectric Permittivity Extraction Based on

Multilayer Thin Film Microstrip Lines,” IET Microwaves,

Antennas & Propagation, Vol. 11, No. 7, pp. 955-960, 2017.

S. Bedra, S. Benkouda, M. Amir, & T. Fortaki. Resonant

frequency of tunable microstrip ring antenna printed on

isotropic or uniaxially anisotropic substrate. Advanced

Electromagnetics, Vol. 2(2), 6-9, 2013.

A. Kumar, R. Patel & M. V. Kartikeyan. Investigation on

Microstrip Filters with CSRR Defected Ground Structure.

Advanced Electromagnetics, Vol. 5(2), pp. 28-33, 2016.

D. Zarifi, M. Soleimani, A. Abdolali, and S. E. Hosseininejad,

“Parameter reconstruction of materials with off-diagonal

anisotropy using the state transition matrix method,” AEU-

International Journal of Electronics and Communications,

Vol. 68, No. 9, pp. 877-882, 2014.

S Daoudi, F Benabdelaziz, C Zebiri, D Sayad, FM

Abdussalam, R. Abd-Alhameed. “Dispersion Characteristics

of a Gyro-Chiro-Ferrite Shielded Multilayered Microstrip

Line Using the Generalized Exponential Matrix,” Internet

Technologies and Applications (ITA), 12-15 Sept. 2017, pp

293 - 298.

K. Vytovtov, L. Mospan. Penetration effect in gyrotropic slab:

Theory and applications. J. Opt. Soc. Am. A. Vol. 29, pp. 877-

882, 2012.

[10] E. Abdo-Sanchez, T. M. Martin-Guerrero & C. Camacho-
Penalosa. Multiband Slot-Based Dual Composite Right/Left-
Handed Transmission Line. Advanced Electromagnetics, Vol.
1(3), pp. 56-60, 2012.

[11] C. Zebiri, M. Lashab, and F. Benabdelaziz, “Effect of
Anisotropic Magneto-Chirality on the Characteristics of a
Microstrip  Resonator,” IET  Microwaves, Antennas
Propagation, Vol. 4, No. 4, pp. 446-452, 2010.

[12] AM. Lerer, V.S. Mikhalevskii, and A.G. Shchuchinskii.
Electrodynamic theory of a microstrip line on a ferrite
substrate. Radiotekhnika i Elektronika. Vol. 29. No. 6, pp.
1039-1048, 1984.

[13]1 S. Aib, F. Benabdelaziz, C. Zebiri, and D. Sayad,
“Propagation in Diagonal Anisotropic Chirowaveguides,”
Advances in OptoElectronics, Vol. 2017, 2017.

[14] F. Bayatpur, A.V Amirkhizi and S. Nemat-Nasser,
“Experimental ~ Characterization of Chiral Uniaxial
Bianisotropic Composites at Microwave Frequencies,” IEEE
Transactions on Microwave Theory and Techniques, Vol.60,
No. 4, pp. 1126-1135, 2012.

[15] C. Zebiri, S. Daoudi, F. Benabdelaziz, M. Lashab, et al. Gyro-
chirality effect of bianisotropic substrate on the operational of
rectangular microstrip patch antenna. International Journal of
Applied Electromagnetics and Mechanics. Vol. 51, pp. 249-
260, 2016.

[16] A. A. Sochava, C. R. Simovski, and S. A. Tretyakov. Chiral
effects and eigenwaves in bi-anisotropic omega structures.
Advances in complex electromagnetic materials. Springer,
Dordrecht, 1997. 85-102, 1997.

(9]



[17]S. Berthier. Anisotropic effective medium theories. J. Phys. I
France 4 (1994) 303-318.

[18] M. Jaroszewski, S. Thomas, & A. V. Rane. Advanced
Materials for Electromagnetic Shielding: Fundamentals,
Properties, and Applications. Wiley, 2018.

[19] U. C. Hasar, J. J. Barroso, C. Sabah, Y. Kaya, and M.
Ertugrul, “Stepwise technique for accurate and unique
retrieval of electromagnetic properties of bi-anisotropic
metamaterials,” J. Opt. Soc. Amer. B, Opt. Phys., vol. 30, pp.
1058-1068, Apr. 2013.

[20] U. C. Hasar, A. Muratoglu; M. Bute; J. J. Barroso; M.
Ertugrul, "Effective Constitutive Parameters Retrieval Method
for Bi-anisotropic  Metamaterials Using Waveguide
Measurements," IEEE Transactions on Microwave Theory
and Techniques, vol. PP, n0.99, pp.1-10, 2017.

[21]U. C. Hasar, G. Buldu, Y. Kaya and G. Ozturk,
"Determination of Effective Constitutive Parameters of
Inhomogeneous Metamaterials With Bi-anisotropy," in IEEE
Transactions on Microwave Theory and Techniques, vol. 66,
no. 8, pp. 3734-3744, Aug. 2018.

[22] T. Kitazawa, “Nonreciprocity of Phase Constants,
Characteristic Impedances, and Conductor Losses in Planar
Transmission Lines with Layered Anisotropic Media,” IEEE
Transactions on Microwave Theory and Techniques, Vol. 43,
No. 2, pp. 445-451, 1995.

[23] Z. J. Mangi¢, V. V. Petrovic. Strong FEM formulation for
quasi-static analysis of shielded striplines in anisotropic
homogeneous dielectric. Microwave and Optical Technology
Letters. Vol. 54, pp. 1001-1006, 2012.

[24] A. N. A. Helal, K. Y. Elwasife, S. A. Taya. Characteristics of
electromagnetic waves in slab waveguide structures
comprising chiral nihility film and left-handed material
claddings. Optik-International Journal for Light and Electron
Optics. Vol. 149 332-343, 2017.

[25] H. Yang, Z. Y. Chen, and K. Y. Lv, “Analysis of Dispersion
Characteristic of Microstrip Lines on Ferrite and Silicon
Structures  with  Spectral-Domain  Method,”  Applied
Mechanics and Materials, Vol. 130, pp. 1244-1249. Trans
Tech Publications, 2012.

[26] D. S. Mirshekar. Spectral domain method for microwave
integrated circuits. John Wiley and Sons Inc; 1990.

[27] T. Itoh and R. Mittra, “A Technique for Computing
Dispersion Characteristics of Shielded Microstrip Lines,”
IEEE Trans. Microwave Theory Tech., Vol. 22, pp. 896-898.
Oct. 1974.

[28] C. Zebiri, S. Daoudi, F. Benabdelaziz, M. Lashab, D. Sayad,
& R. A. Abd-Alhameed. Gyro-chirality effect of bianisotropic
substrate on the resonant frequency and half-power bandwidth
of rectangular microstrip patch antenna. CMC-Computers
Materials & Continua. Vol. 52, pp. 123-131, 2016.

[29] S. Daoudi, F. Benabdelaziz, C. Zebiri, and D. Sayad,
“Generalized Exponential Matrix Technique Application for
the Evaluation of the Dispersion Characteristics of a Chiro-
Ferrite shielded Multilayered Microstrip Line,” Progress In
Electromagnetics Research M, Vol. 61, pp. 1-14, 2017.

[30] M. Aneesh, A. Kumar, A. Singh, and J. A. Ansari, Design and
Analysis of Microstrip Line Feed Toppled T Shaped
Microstrip Patch Antenna using Radial Basis Function Neural
Network, ” Journal of Electrical Engineering & Technology,
Vol. 10, No 2, pp. 634-640, 2015.

[31] D. Sayad, F. Benabdelaziz, C. Zebiri, S. Daoudi, and R. A.
Abd-Alhameed, “Spectral Domain Analysis of Gyrotropic
Anisotropy Chiral Effect on the Input Impedance of a Printed
Dipole Antenna,” Progress In Electromagnetics Research M,
51, pp. 1-8, 2016.

22

[32] W. C. Gibson. The method of moments in electromagnetics.
NW: Chapman and Hall/CRC Taylor and Francis Group,
2008.

[33] R. F. Harrington.Field computation by moment methods.
IEEE Press. 1993.

[34] J.C. Minor and D.M. Bolle. Modes in shielded microstrip on a
ferrite substrate transversely magnetized in the plane of
substrate. IEEE Transactions on Microwave Theory and
Techniques, Vol. MTT-19. No. 7, pp. 570-577, 1971.

[35] P. L. Uslenghi. TE-TM decoupling for guided propagation in
bianisotropic media. IEEE Trans. Antennas Propag. Vol. pp.
45, 284-286, 1997.

[36] T. Q. Ho, B. Beker. Spectral-domain analysis of shielded
microstrip lines on biaxially anisotropic substrates. IEEE
Transactions on Microwave Theory and Techniques. Vol. 39,
pp. 1017-1021, 1991.

[377M. K. Krage, G. 1. Haddad. Frequency dependent
characteristics of microstrip transmission lines. IEEE Trans.
on Microwave Theory and Tech. Vol. 20, pp. 678-688, 1972.

[38] T. Itoh. Numerical techniques for microwave and millimeter
wave passive structures. John Wiley and Sons. 1988.



