
 ADVANCED ELECTROMAGNETICS, VOL. 7, NO. 4, SEPTEMBER 2018 

 

Spectral and Dispersion Properties of Long Period Fiber Grating for 
Optical Communication Systems 

 
V. Jain1, S. Pawar2*, S. Kumbhaj1, P. K. Sen1 

 
1Department of Applied Physics, S.G.S Institute of Technology & Science, 23, Park Road Indore (M. P.) 452003, India 

2Department of Electronics & Communication, Dr. A. P. J. Abdul Kalam University, Indore-Dewas Bypass Road, Arandia, 
Indore (M. P.) 452016, India 

*corresponding author, E-mail: spawargsits@gmail.com 
 
 

Abstract 
Present work deals with the analytical study of spectral and 
dispersion properties of long period fiber grating (LPFG) 
under linear regime. The standard parameters in the 
understanding of the optical features of an LPFG have been 
analyzed using the linear coupling processes such that one 
can appreciate without going through the cumbersome 
mathematical treatment of coupled mode equations the 
basic characteristics of the grating. We have analyze 
transmittance, phase factor, group delay and group velocity 
dispersion (GVD) of the LPFG as functions of physical 
parameters like operating wavelength, grating length, 
induced index change, and detuning parameter. Special 
attention is paid to the study of GVD with second and third 
order dispersion contribution as well as the filter 
characteristics and delay response of the grating. In case of 
strong grating, we find that at a particular grating strength 
the resonance band splits into two bands. Negative group 
delay for certain values of coupling strength suggested that 
an LPFG can also be used as dispersion compensator in 
optical fiber communication. 

1. Introduction 
In the era of light wave technology, long period fiber 
gratings (LPFGs) have attracted a great deal of interest 
because of their importance in designing new optical 
devices for future need of optical communication and 
sensing systems. An intense research work is available in 
the literature to investigate the possibility of the grating 
based devices for all optical ultrafast applications.  

Many interesting research activities related with long 
period grating in the fields of photonics and sensors have 
been found in the literature. For the first time Vengsarkar et 
al. [1] proposed a new class of fiber grating called long 
period fiber grating (LPFG) that functions as spectrally 
selective loss element and acted as inline, low-loss and 
band-rejection filter. At present, long period fiber gratings 
are utilized in various applications such as gain flattening 
filters for erbium doped fiber amplifiers [2], dispersion 
compensator [3], add drop multiplexer [4], optical fiber 
polarizer [5], strain, temperature sensors [6]. The most 
significant properties of the LPFG is its tunability for the 

desired transmission characteristics by changing the grating 
parameters like refractive index, modulation depth, grating 
length, period etc. 

Various mechanism has been proposed for fabrication of 
LPFGs using ultraviolet (UV) irradiation [7], ion 
implantation [8], irradiation by femto second pulses in the 
infrared [9], irradiation by CO2 lasers [10], diffusion of 
dopants into the core [11], relaxation of mechanical stress 
and electrical discharges [12, 13]. Also, many researchers 
have reported their works on long period grating structure in 
different types of optical fiber including photonic crystal 
fibers [14], polymer optical fibers [15] and even 
chalcogenide optical fibers [16] to study their spectral 
characteristics at various physical conditions. Such gratings 
implemented using a range of different approaches, 
including micro-bend grating [17] and acoustic gratings 
[18] that are completely reconfigurable. 

Zhao and Palais investigated coherence spectrum 
properties of long period fiber Bragg grating using mode 
selection rule and coupling equations [19]. Navruz and 
Altuncu proposed multiband rejection filter based on the 
optimization of a periodically phase shifted long period 
grating [20]. They reported that spectral position and 
bandwidth of each reflection band can be controlled by 
varying the grating length and the period. Jeong and Oh 
analyzed theoretically transmission spectrum of long period 
grating for an optical fiber whose material dispersion in the 
cladding region was modified by doping a transition metal 
Cr3+ [21]. The doping metal ion change the effective indices 
of cladding modes and subsequently the phase matching 
condition for coupling with the core modes in a long period 
fiber grating. This technique is applicable in novel filters for 
a wide band optical communication system. Bai and Chiang 
analyzed the transmission spectra of a coupler consisting of 
two parallel uniform or non-uniform long period waveguide 
grating (LPWG) using coupled mode theory [22]. Patrick et 
al. demonstrated the change in wavelength of a long period 
fiber grating attenuation band with changes in external 
index of refraction which can be enhanced by proper 
selection of the grating period.  The changes in the spectrum 
over a wavelength range from 1100 to 1600 nm and 1< n 
<1.72 index range are also presented [23]. Chiang et al. 
reviewed on the development of long-period fiber grating 
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devices for application in optical communication. In this 
study they highlighted the realization of long-period 
gratings in optical planar waveguides [24]. Rastogi and 
Chiang presented a theoretical analysis of light propagation 
in a four-layer planar waveguide that consists of long period 
grating having a period of the order of 100 µm [25]. Using 
the coupled-mode theory, they have shown such structure is 
capable of coupling light from the fundamental guided 
mode to the cladding modes at a specific wavelength 
(resonance wavelength) and thus results in sharp rejection 
bands in the transmission spectrum of the waveguide. Their 
numerical results show that the resonance wavelengths as 
well as the transmission spectrum can be significantly 
changed with the waveguide and grating parameters.  

Deparis et al. have fabricated band pass filters based on 
p-shifted long-period gratings for application in actively 
mode-locked erbium fiber lasers. The Introduce of p-phase 
shift in the middle of the grating opens a band pass within 
the core-cladding mode resonance peaks. These all-fiber 
filters have the advantages of low insertion loss (<0.5 dB) 
and a wide bandwidth (10 - 20 nm) [26]. Gu and Chiang 
have explored the effects of average index variation on the 
transmission characteristics of an index-apodized long-
period fiber grating (LPFG) by the transfer matrix method 
and studied that how these effects depends up on the grating 
length, grating profile, modal dispersion factor, and the duty 
cycle of the index modulation [27]. M. Das and K. 
Thyagarajan have proposed the use of uniform LPG 
fabricated on relatively high refractive index difference 
fibers as efficient dispersion compensator [28]. They have 
shown that such compensators have high dispersion values 
with reasonable pulse compression ratio with negligible 
delay ripple. The proposed device has a very simple 
structure, low insertion loss, negligible delay ripple and is 
suitable for optical communication link.  

The objective of present work is to describe the 
theoretical study of spectral characteristics and dispersion 
compensation properties of LPFG. Though several methods 
have been adopted by the researchers to study LPFG 
characteristics, the coupled mode theory is most popular 
and simplest among them [29-33]. In this paper the coupled 
mode theory is used and according to this theory the field 
amplitude for co-propagating core and cladding modes has 
been derived considering the propagation of a steady state 
quasi CW beam under linear regime. Analytical expression 
of transmission coefficient, phase and delay response of the 
grating have been obtained. Throughout this paper, our 
notation follows most closely that of G. P Agrawal [34] 

This work entirely covers the fundamental optical 
properties of long period fiber grating and its applications in 
optical communication system for high speed modern 
photonic technology. The work in this paper is organised as 
follows: Section II, describe the mathematical method to 
solve coupled mode equation. This section provides a 
complete analytical treatment to describe the quasi CW 
light propagation in periodic structure. The filter 
characteristics of LPFGs in transmission mode are 
investigated in Section III. The estimation of LPFG 

bandwidth and its variation with various physical 
parameters is described in Section IV. Section V gives a 
brief description of optical phase response of grating for 
different values of grating strength. In Section VI, the 
grating induced dispersive properties are examined. Also 
the group delay and group velocity dispersion are calculated 
to examine the dispersion compensation capabilities of 
LPFGs. 

2. Mathematical Analysis 
Long-period gratings can be considered as a special class of 
fibre Bragg gratings in which the period of the index 
modulation is such that it satisfies a phase matching 
condition between the fundamental core mode and a forward 
propagating cladding mode of an optical fibre. For an LPFG, 
the periodic modulation of the index of refraction in the 
fibre core has a period typically in the range of 100 µm to 
1000 µm. The presence of modulation along the length of 
LPFG causes the coupling between the co-propagating core 
mode and specific cladding mode. This results in a series of 
attenuation bands centered at discrete wavelengths in the 
transmission spectrum. Each attenuation band is 
corresponding to the coupling of fundamental core mode to 
a different cladding mode. The interaction of one mode of a 
fiber with other modes is commonly described with the help 
of coupled-mode theory in which only two modes are 
supposed to be nearly phase-matched and capable of 
resonant coupling. Based on this theory, the phase matching 
condition is: 

     (1) 

here, Λ is the grating period of LPFG. ,  are the 
Propagation constant of fundamental core mode and for the 
mth cladding mode of LPFG, respectively and are given as
  and .    (2) 

Whereas, is the resonance wavelength of the resonance 

band. ,  are the effective refractive indices of 
core and mth cladding modes, respectively. Equation (1) and 
(2) leads the phase matching condition as 

.    (3) 

In the above Equation,  is the difference in the effective 
indices of refraction of the core and cladding modes.  

We assume that the fiber is lossless and single mode in 
the wavelength range of interest. Moreover, we assumed that 
the fiber is weakly guiding, i.e. the difference between the 
refractive indices in the core and the cladding is very small, 
as well as the electric and magnetic fields are approximately 
transverse to the fiber axis, thus we can ignore all 
polarization effects due to the fiber structure and consider 
solely the scalar wave equation.  

According to the coupled mode theory, the total field at 
any value of z can be written as a superposition of the two 
interacting modes and the coupling process results in z-
dependent amplitude of the two coupled modes. It is 
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assumed that the long period grating within the single-mode 
fiber has a forward propagating core mode and a co 
propagating cladding mode. Thus, the total electric field 
within the grating is given as 

     (4) 
here,     (5) 
and .    (6) 
In the above equations ,  and ,  
represents the slowly varying amplitudes, the transverse 
modal field distribution function for two co- propagating 
core and cladding modes coupled by the grating, 
respectively. In order to examine the characteristics of the 
co- propagating core and cladding modes coupled by the 
grating, following pair of linear coupled mode equations 
(LCMEs) have been used. [34, 35] 
 

    (7) 

and 
.    (8) 

Here β11=1/ Vg1, β12=1/Vg2 and β21, β22 are first and second 
order dispersion parameters related to the group velocity. 
These parameters can be different for the two modes 
because of their different mode indices. δ and κ are detuning 
parameter and linear coupling coefficient for the grating, 
respectively, and are defined as  

, and   .    (9) 

Where ng is induced modulation in the refractive index of 
core arising while grating in the fiber is written.  In the 
steady state CW linear regime, dispersion parameters are 
neglected. With these assumptions LCMEs take the 
simplified forms as,  

   (10) 

and  .  (11)  

Differentiation of equations (10) and (11) with respect to z 
and further simplification provides  

   (12) 

and .   (13) 

Here parameter q is the dispersion parameter of long period 
fiber grating given by the dispersion relation 

.   (14)  
General solutions of the Equations (12) and (13) are 
obtained as 

    (15) 
and 

 .  (16) 
The above equations show that, the z dependent parts of co-
propagating core and cladding modes in LPFG varies 

exponential with the propagation constant q. The constant 
C1, C2, D1 and D2 in Equations (15) and (16) are 
interdependent and satisfy following four relations: 

  (17)      
.  (18) 

 
Using Equations (17), (18) in Equations (15), (16), the 
general solutions for amplitudes of core and cladding modes 
can be written in terms of an effective transmission 
coefficient t(q) as 
 

   (19) 
   (20) 

here, 

  (21) 
 
The q dependent transmission coefficient (Eq. 21) and the 
dispersion relation (Eq.14) indicate that both the magnitude 
and phase of the transmitted wave depends upon the 
frequency ω of propagating beam in the LPFG. 

3. Filter Response of Long Period Fiber Grating 
To study the filter response of LPFG, we have determined 
transmission coefficient (tLPFG) of LPFG by applying 
boundary condition that light is incident only at the front 
end at z = 0 of LPFG i.e., 

and    (22) 
Using equation (22) in equation (20) we find 

.    (23) 

The transmission coefficient of the long period fibre grating 
is define as the ratio of amplitudes of the core mode at z = L 
and at z=0.Thus the transmission coefficient, 

.  (24) 

The corresponding expression for the transmittance in the 
linear regime is found as    

.  (25) 

At resonance δ =0, the transmission is minimum for core 
mode and given as  

.   (26) 
Also, the maximum cross transmission  i.e. the 
fraction of energy transmitted to the cladding mode is found 
to be 

.   (27) 
Using equation (25), the transmittance of the grating is 
plotted in Fig. 1 as a function of wavelength for different 
grating lengths such as (1) L = 0.25 cm, (2) L = 0.5 cm, (3) 
L = 1.0 cm, (4) L = 1.5 cm (5) L = 2.0 cm and (6) 2.5 cm. 
We have considered silica glass LPFG with physical 
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parameters, ncore = 1.458, cladding index nclad = 1.450, ng ≈ 
1×10-4, 197.5 µm and λR ≈ 1550 nm.  

To study the transmission response of grating first we 
consider the grating coupling strength  as shown in 
Fig. 1. In this coupling strength long period fiber grating 
shows “sinc” shaped dip in transmitted spectrum at 
resonance wavelength, whose bandwidth is inversely 
proportional to the grating length and depth of transmitted 
dip depends upon the value of κ, but the overall spectral 
shape and bandwidth is determined only by the grating 
length L. 

Figure 1: Calculated transmission response as a function of 
wavelength for six different long period grating structures with 
increasing lengths. 
 
The grating design at it does not make a suitable 
band rejection filter, because it partially transmits the input 
signal. However, there are number of cases where the “sinc” 
shaped spectral response is desirable this type of designed 
grating is very useful. In many binary communications 
systems, the encoded signal has precisely at the same “sinc”-
shaped spectral response. If we consider the grating coupling 
strength , the spectral response has one or two dips 
with very narrow band, as shown in Fig. 1. At this coupling 
strength, grating shows very low transmittance within a band 
of frequencies can be called as the attenuation band. Outside 
of the band, the spectrum shows a series of undesirable 
ripples or side lobes. These side lobes originate at the two 

grating ends where the refractive index changes suddenly as 
compared to its value outside the grating region. These lobes 
decrease as we move away from the resonance wavelength 
until the structure is effectively transparent. If the grating is 
made longer without changing the value of

 
κ, the bandwidth 

of attenuation band remains unchanged, but spectrum splits 
into one or two dips and the side lobes get closer together.  

The minimum transmittance (TLPFG) min at the resonance 
wavelength λR is the most important parameter of interest to 
design long period fiber grating. 

Figure 2: Minimum transmittance as a function of grating length 
(L), calculated for different values of grating index (1) 0.5 × 10-4 
(dotted curve), (2) 1.0 × 10-4 (dashed curve) and (3) 1.5 × 10-4 
(solid curve). 
 
Fig. 2 shows the dependence of minimum transmittance 
(TLPFG) min on the grating length (L) and refractive index 
change (ng). It is clear, that the minimum transmittance at 
resonance wavelength vary as a cosine function with length. 
Also it is observed that the same minimum transmittance 
can be achieved with shorter gratings using high ng values. 
Hence proper selection of physical parameter of long period 
fiber grating enable us to utilize this device as a 
single/double band rejection filter at a particular 
wavelength/band in optical communication system. 

4. Estimation of bandwidth of LPFG 
Many applications of long-period fiber gratings are based 
on the narrow band rejection filtering, for which the 
transmission bandwidth is a critical parameter. A useful 
measure of this bandwidth is the separation between the 
first two zeros of grating spectrum. For a uniform long 
period grating in which at most one complete exchange of 
power between the two modes occurs, the transmission 
bandwidth Δλ is defined as [29] 

 
.   (28) 

Whereas, κL ≤ π and for a given value of minimum 
transmittance (TLPFG) min. The transmission bandwidth is 
calculated from equation (26). For strong gratings, 
undesirable side lobes become significantly more 
pronounced and hence, a better measure of the bandwidth is 
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the FWHM of the envelope traced by the peaks of the side 
lobe. The calculated values for bandwidth of attenuation 
band of LPFGs are shown in Table 1.In equation (28)  value 
of Δneff depends upon effective indices of core and cladding 
modes .These effective indices are determined using two-
layer fiber geometry of step index fiber proposed by 
vengsarkar et.al [1]. The values of remaining physical 
parameter are same as considered in previous section.  
 

Table 1: Calculated bandwidth of a long period fiber grating at 
different values of κL. 

 

 
Table 1 reveals that we can obtained a desired bandwidth of 
long period grating by choosing appropriate values of 
grating length. It is important to note that for a given value 
of minimum transmittance (TLPG) min of long period grating 
and band width , grating length can be determined using 
Equation (26) and (28). And we can design a fiber grating as 
per the need of specific optical communication system. 

5. Phase Response of Long Period Grating 
In previous sections we have estimated the amplitude and 
bandwidth of long period grating. For complete 
characterization of the LPFG, it is also essential to know the 
phase response of the grating.  

 
Figure 3: Variation in (a) The real part (XL) (b) the imaginary part 
(YL) and (c) the phase factor (fL) of transmission coefficient (tLPG) 
plotted as a function of wavelength for different grating strength κL 
= 1 (dotted curve) and κL = 2 (solid curve). 

From equation (24), it is observed that the transmission 
coefficient of LPFG can be written in phasor form as [36] 

.   (29) 

Where  and  are amplitude and phase of LPFG. 
On arranging the equation (24) in the form of , 
we get 

.  (30) 

Here  and  are representing the real 

and imaginary part of the complex transmission coefficient. 
This gives phase factor of the transmitted wave at a distance 
L of LPFG as 

.  (31) 

The variation of real part, imaginary part and phase of 
transmission coefficient as a function of the wavelength for 
two different grating strength  and is shown in 
Figure 3. This Figure revels that at outside of the attenuation 
band, the variation in the phase of the transmitted wave is 
just like unperturbed fiber core and inside the attenuation 
band, the phase decreases slowly with increasing strength of 
the grating. 

6. Delay and Dispersion Properties of LPFG 
 

 
 

Figure 4: Dispersion curves showing variation of dispersion 
parameter q with detuning parameterd. 
 
As reported earlier [37] long period fiber grating exhibits an 
important property known as the dispersion property, which 
can be seen in Figure 4. In this figure detuning parameter d 
given by equation (14) is plotted as a function of dispersion 
parameter q for both uniform medium (dashed line) and a 
periodic medium (solid line). Since the slope is constant in 
case of uniform medium thus the dispersion is negligible. 
This dispersion is modified on introducing a grating in the 
fiber. If the dispersion parameter lies in the range of             
0 < q /κ<1 the core and cladding modes are coupled by the 
grating and hence these modes are attenuated. To understand 
the dispersive effect of long period fiber grating, we expand 
effective propagation constant of grating (βe) in a Taylor 
series around the carrier frequency (ω0) of the pulse as [34] 
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 (32) 

here, 
   (33) 

Is referred as mth order (with m =1, 2, 3....) dispersion 
parameter. And is the group velocity of pulse in the 
absence of grating ( ). In the present work we have 
analyzed first, second and third order dispersion parameters.  

Using equation (33) and dispersion relation equation (14) 
the group velocity of the wave inside the grating is 
calculated as  
   (34) 

Where, is the first order dispersion parameter .From 
equation (34), it is clear that for δ → κ, VG = √2 Vg with the 
group velocity of pulse inside the grating become √2 times 
of the group velocity of pulse outside the grating. The 
second order dispersion parameter  represents dispersion 
of group velocity and hence also called group velocity 
dispersion (GVD) parameter. This parameter is calculated as 

.  (35) 

The grating induced group velocity dispersion is shown in 
Figure 5, where GVD parameter  is plotted as a function 
of wavelength (l). The GVD exhibits two regimes, first for 
wavelength λ < λR and > 0, here the long period grating 
is said to exhibit normal dispersion and second for 
wavelength λ > λR and , where the long period 
grating exhibit anomalous dispersion. In the normal 
dispersion regime, high-frequency (blue-shifted) 
components of an optical pulse travel slower than low-
frequency (red-shifted) components of the same pulse. The 
opposite occurs in the anomalous dispersion regime where, 
low-frequency (red-shifted) components of an optical pulse 
travel slower than high-frequency (blue-shifted) components 
of the same pulse. It may be noticed from the figure that 
under the normal dispersion regime, GVD is higher for 
smaller coupling coefficient. While under anomalous 
dispersion regime behavior is opposite. 

The third order dispersion in an LPFG given by . 

Though it’s contribution is very small as compared to . 
But For ultra-short pulse propagation, it is necessary to 
include the β3 term even when β2≠0. Using equation (33), 
this parameter is obtained as 

. (36) 

The long period grating induced third-order dispersion ( ) 
as a function of wavelength (l) is plotted in Figure 6. From 

this Figure it is observed that the parameter remains 
negative on both branches of the dispersion curve. We find 
that the behavior of second and third order dispersion is 
quite different than those of the uniform fiber.  changes 
two sides of resonance band centered at the resonance 
wavelength, whose location can be easily controlled, 
whereas β2 for the fiber changes sign at zero dispersion 
wavelengths and that can be varied only in the range         
1.3 µm - 1.6 µm. 

 
Figure 5: Grating induced group velocity dispersion (GVD) plotted 
as a function of wavelength (l) for three values of the coupling 
coefficient κ = 2 cm-1 (dotted curve), κ = 3cm-1 (dashed curve) and 
κ = 4cm-1 (solid curve). 
 

 
Figure 6: Grating induced third order dispersion plotted as a 
function of wavelength (l) for three values of the coupling 
coefficient κ = 2 cm-1 (dotted curve), κ = 3 cm-1 (dashed curve) and 
κ = 4 cm-1 (solid curve). 
 
The third-order dispersion β3 is always positive and distorts 
the optical pulse in optical fiber such that it becomes 
asymmetric with an oscillatory structure near one of its 
edges [34]. Thus the second-order dispersion β2 and third-
order dispersion β3 induced pulse broadening in optical fiber 
can be compensated by the grating induced  GVD parameter 

 and third order dispersion . In section V the phase 
response of the grating is obtained in Equation (32). Using 
this Equation the group delay experienced by the frequency 
component w is calculated as [28] 

( ) ( ) ( ) ( ) ....
6
1

2
1

3
3

02
2

0100 +-+-+-+= gggg
e bwwbwwbwwbwb

m

m
m

g
m

m
g
m d

qd
vd

qd
dw

b ÷
÷
ø

ö
ç
ç
è

æ
»=
1

gv
0=k

2

2

1

1
1
11

d
k

d
b

+=

÷
÷
ø

ö
ç
ç
è

æ
== g

g

gG v

d
dq

v

V

g
1b

g
2b

( )

( )2
3

22

2

2

2

2
2

2

sgn
1

kd

kd

d
b

+
=÷

÷
ø

ö
ç
ç
è

æ
== g

g

g v
d
qd

v

g
2b

g
2b

02 <
gb

g
3b
g
2b

( )2
5

22

2

3

3

3
3

.3

3

3

3
1

kd

kd

dw
b

+

-

=÷
÷
ø

ö
ç
ç
è

æ
»= g

g

g v
d
qd

vd
qd

g
3b

g
3b

g
2b

1549.5 1550.0 1550.5
-1200
-1000
-800
-600
-400
-200
0

200
400
600
800
1000
1200

Anomalous Dispersion Regime

           bg

2
 <0

 

 

bg 2(p
s2
/c
m
)

Wavelength(nm)

Normal Dispersion Regime

         bg

2
 >0

1549.5 1550.0 1550.5

-250

-200

-150

-100

-50

0

bg 3(ps
3 /cm

)

 

 

Wavelength (nm)

g
2b

g
3b



 
 

115 

.           (37) 

Differentiating Eq.(37) with respect to wavelength (l), we 
obtained the expression for delay in the form 
 

. (38) 

Equation (38) shows the delay response of the grating. It is 
observed that we can easily vary the delay experienced by 
the frequency components by proper selection of the grating 
length and magnitude of induced index change.  

 
 
 
Figure 7: Delay Response of the LPFG as a function of grating 
coupling strength for different values of incident wavelength (a)    
l = 1550 nm (b) l = 1550.25 nm and (c) l = 1550.50 nm.  
 
Figure 7, illustrate the delay response of the LPFG as a 
function of coupling strength κL for three different values of 
incident wavelength (1) l = 1550 nm (2) l = 1550.25 nm 
and (3) l = 1550.50 nm. The figure (7.a) plotted at incident 
wavelength 1550 nm, in this sketch we obtain three negative 
values of delay as (1) -240.6ps at value κL =1.60 (2) -
248.55ps at value κL =4.76 and 3) -257ps at value κL =7.90. 
It is observed that, at other values of κL the value of delay 
swing between negative to positive values. Figures (7.b) and 
(7.c) are plotted for incident wavelength at 1550.25 nm and 
1550.50 nm, respectively. These figures revels that the delay 
increases in a positive manner as a sinusoidal form or as a 
stepwise fashion. Thus for the application of dispersion 
compensation in optical communication system the LPFG 
can be as a dispersion compensator with physical parameter 
as: design wavelength lD= 1550 nm and the coupling 
strength as  κL = 1.60, 4.76 and 7.90. The rate of change of 
group delay with frequency determines the dispersion 

experienced by the frequency component. Thus the group 
velocity dispersion can be calculated as  
 

.  (39) 

This equation shows the dependency of group velocity 
dispersion on the wavelength of incident wave inside the 
grating. The grating induced dispersion coefficient Dρ 

determines the temporal broadening of the pulse, if Dρ < 0 
then grating shows the normal (positive) GVD and if Dρ    > 
0 grating shows the anomalous (negative) GVD. 
 

7. Conclusions  
The objective of this work is to provide a complete 
analytical study of long period fiber grating and to 
highlights its applications in optical communication system, 
as an optical filter and a dispersion compensator, we show 
that, how a long period grating is capable of coupling light 
from the fundamental guided mode to the cladding modes at 
specific wavelengths (resonance wavelengths) leading to 
the formation of so called rejection bands in the 
transmission. The role of physical parameters such as 
grating length and induced refractive index change of 
grating on filter characteristics, dispersion properties and 
group delay spectra are also analysed. It is envisaged that 
the waveguide based LPFG should provide a useful 
approach to the design of a wide range of integrated-optical 
devices, including wavelength-tunable filters, dispersion 
compensator, switches, and environmental sensors without 
compromising much with the numerical accuracy. 
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