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Abstract

Present work deals with the analytical study of spectral and
dispersion properties of long period fiber grating (LPFG)
under linear regime. The standard parameters in the
understanding of the optical features of an LPFG have been
analyzed using the linear coupling processes such that one
can appreciate without going through the cumbersome
mathematical treatment of coupled mode equations the
basic characteristics of the grating. We have analyze
transmittance, phase factor, group delay and group velocity
dispersion (GVD) of the LPFG as functions of physical
parameters like operating wavelength, grating length,
induced index change, and detuning parameter. Special
attention is paid to the study of GVD with second and third
order dispersion contribution as well as the filter
characteristics and delay response of the grating. In case of
strong grating, we find that at a particular grating strength
the resonance band splits into two bands. Negative group
delay for certain values of coupling strength suggested that
an LPFG can also be used as dispersion compensator in
optical fiber communication.

1. Introduction

In the era of light wave technology, long period fiber
gratings (LPFGs) have attracted a great deal of interest
because of their importance in designing new optical
devices for future need of optical communication and
sensing systems. An intense research work is available in
the literature to investigate the possibility of the grating
based devices for all optical ultrafast applications.

Many interesting research activities related with long
period grating in the fields of photonics and sensors have
been found in the literature. For the first time Vengsarkar et
al. [1] proposed a new class of fiber grating called long
period fiber grating (LPFG) that functions as spectrally
selective loss element and acted as inline, low-loss and
band-rejection filter. At present, long period fiber gratings
are utilized in various applications such as gain flattening
filters for erbium doped fiber amplifiers [2], dispersion
compensator [3], add drop multiplexer [4], optical fiber
polarizer [5], strain, temperature sensors [6]. The most
significant properties of the LPFG is its tunability for the

desired transmission characteristics by changing the grating
parameters like refractive index, modulation depth, grating
length, period etc.

Various mechanism has been proposed for fabrication of
LPFGs wusing ultraviolet (UV) irradiation [7], ion
implantation [8], irradiation by femto second pulses in the
infrared [9], irradiation by CO2 lasers [10], diffusion of
dopants into the core [11], relaxation of mechanical stress
and electrical discharges [12, 13]. Also, many researchers
have reported their works on long period grating structure in
different types of optical fiber including photonic crystal
fibers [14], polymer optical fibers [15] and even
chalcogenide optical fibers [16] to study their spectral
characteristics at various physical conditions. Such gratings
implemented using a range of different approaches,
including micro-bend grating [17] and acoustic gratings
[18] that are completely reconfigurable.

Zhao and Palais investigated coherence spectrum
properties of long period fiber Bragg grating using mode
selection rule and coupling equations [19]. Navruz and
Altuncu proposed multiband rejection filter based on the
optimization of a periodically phase shifted long period
grating [20]. They reported that spectral position and
bandwidth of each reflection band can be controlled by
varying the grating length and the period. Jeong and Oh
analyzed theoretically transmission spectrum of long period
grating for an optical fiber whose material dispersion in the
cladding region was modified by doping a transition metal
Cr** [21]. The doping metal ion change the effective indices
of cladding modes and subsequently the phase matching
condition for coupling with the core modes in a long period
fiber grating. This technique is applicable in novel filters for
a wide band optical communication system. Bai and Chiang
analyzed the transmission spectra of a coupler consisting of
two parallel uniform or non-uniform long period waveguide
grating (LPWG) using coupled mode theory [22]. Patrick et
al. demonstrated the change in wavelength of a long period
fiber grating attenuation band with changes in external
index of refraction which can be enhanced by proper
selection of the grating period. The changes in the spectrum
over a wavelength range from 1100 to 1600 nm and 1< n
<1.72 index range are also presented [23]. Chiang et al.
reviewed on the development of long-period fiber grating



devices for application in optical communication. In this
study they highlighted the realization of long-period
gratings in optical planar waveguides [24]. Rastogi and
Chiang presented a theoretical analysis of light propagation
in a four-layer planar waveguide that consists of long period
grating having a period of the order of 100 um [25]. Using
the coupled-mode theory, they have shown such structure is
capable of coupling light from the fundamental guided
mode to the cladding modes at a specific wavelength
(resonance wavelength) and thus results in sharp rejection
bands in the transmission spectrum of the waveguide. Their
numerical results show that the resonance wavelengths as
well as the transmission spectrum can be significantly
changed with the waveguide and grating parameters.

Deparis et al. have fabricated band pass filters based on
n-shifted long-period gratings for application in actively
mode-locked erbium fiber lasers. The Introduce of m-phase
shift in the middle of the grating opens a band pass within
the core-cladding mode resonance peaks. These all-fiber
filters have the advantages of low insertion loss (<0.5 dB)
and a wide bandwidth (10 - 20 nm) [26]. Gu and Chiang
have explored the effects of average index variation on the
transmission characteristics of an index-apodized long-
period fiber grating (LPFG) by the transfer matrix method
and studied that how these effects depends up on the grating
length, grating profile, modal dispersion factor, and the duty
cycle of the index modulation [27]. M. Das and K.
Thyagarajan have proposed the use of uniform LPG
fabricated on relatively high refractive index difference
fibers as efficient dispersion compensator [28]. They have
shown that such compensators have high dispersion values
with reasonable pulse compression ratio with negligible
delay ripple. The proposed device has a very simple
structure, low insertion loss, negligible delay ripple and is
suitable for optical communication link.

The objective of present work is to describe the
theoretical study of spectral characteristics and dispersion
compensation properties of LPFG. Though several methods
have been adopted by the researchers to study LPFG
characteristics, the coupled mode theory is most popular
and simplest among them [29-33]. In this paper the coupled
mode theory is used and according to this theory the field
amplitude for co-propagating core and cladding modes has
been derived considering the propagation of a steady state
quasi CW beam under linear regime. Analytical expression
of transmission coefficient, phase and delay response of the
grating have been obtained. Throughout this paper, our
notation follows most closely that of G. P Agrawal [34]

This work entirely covers the fundamental optical
properties of long period fiber grating and its applications in
optical communication system for high speed modern
photonic technology. The work in this paper is organised as
follows: Section II, describe the mathematical method to
solve coupled mode equation. This section provides a
complete analytical treatment to describe the quasi CW
light propagation in periodic structure. The filter
characteristics of LPFGs in transmission mode are
investigated in Section III. The estimation of LPFG
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bandwidth and its variation with various physical
parameters is described in Section IV. Section V gives a
brief description of optical phase response of grating for
different values of grating strength. In Section VI, the
grating induced dispersive properties are examined. Also
the group delay and group velocity dispersion are calculated
to examine the dispersion compensation capabilities of
LPFGs.

2. Mathematical Analysis

Long-period gratings can be considered as a special class of
fibre Bragg gratings in which the period of the index
modulation is such that it satisfies a phase matching
condition between the fundamental core mode and a forward
propagating cladding mode of an optical fibre. For an LPFG,
the periodic modulation of the index of refraction in the
fibre core has a period typically in the range of 100 pm to
1000 pm. The presence of modulation along the length of
LPFG causes the coupling between the co-propagating core
mode and specific cladding mode. This results in a series of
attenuation bands centered at discrete wavelengths in the
transmission  spectrum. Each attenuation band is
corresponding to the coupling of fundamental core mode to
a different cladding mode. The interaction of one mode of a
fiber with other modes is commonly described with the help
of coupled-mode theory in which only two modes are
supposed to be nearly phase-matched and capable of
resonant coupling. Based on this theory, the phase matching
condition is:
Brore = Pts == M

here, A is the grating period of LPFG. g . g» are the

Propagation constant of fundamental core mode and for the
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indices of refraction of the core and cladding modes.

We assume that the fiber is lossless and single mode in
the wavelength range of interest. Moreover, we assumed that
the fiber is weakly guiding, i.e. the difference between the
refractive indices in the core and the cladding is very small,
as well as the electric and magnetic fields are approximately
transverse to the fiber axis, thus we can ignore all
polarization effects due to the fiber structure and consider
solely the scalar wave equation.

According to the coupled mode theory, the total field at
any value of z can be written as a superposition of the two
interacting modes and the coupling process results in z-
dependent amplitude of the two coupled modes. It is



assumed that the long period grating within the single-mode
fiber has a forward propagating core mode and a co
propagating cladding mode. Thus, the total electric field
within the grating is given as

E(r ) =(E.,.(r @) + E..,(r @) 4)
hete, £ (r.w)=4,,.(z,0)F,,.(x.y)explif,,.2) (5)
and Elflud (r,w)= ‘2(:laddF;lad (z, w)exp(if,.2) - (6)

In the above equations 4, . F, (x,y)and 4, . F, (x,»)

represents the slowly varying amplitudes, the transverse
modal field distribution function for two co- propagating
core and cladding modes coupled by the grating,
respectively. In order to examine the characteristics of the
co- propagating core and cladding modes coupled by the
grating, following pair of linear coupled mode equations
(LCMESs) have been used. [34, 35]
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Here B11=1/ Vg1, B12=1/Vg and P21, P22 are first and second
order dispersion parameters related to the group velocity.
These parameters can be different for the two modes
because of their different mode indices. 8 and «k are detuning
parameter and linear coupling coefficient for the grating,
respectively, and are defined as

1 m 27 ), and _ e
TP
Where ng is induced modulation in the refractive index of
core arising while grating in the fiber is written. In the
steady state CW linear regime, dispersion parameters are
neglected. With these assumptions LCMEs take the
simplified forms as,

)
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Differentiation of equations (10) and (11) with respect to z
and further simplification provides

2
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Here parameter q is the dispersion parameter of long period
fiber grating given by the dispersion relation

q:‘\/52+K2. (14)

General solutions of the Equations (12) and (13) are
obtained as

Acore (Z) = Cleiqz + C2€_iqz (15)

and

Aua (Z) =D, e*+D,e'" (16)
The above equations show that, the z dependent parts of co-
propagating core and cladding modes in LPFG varies
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exponential with the propagation constant q. The constant
Ci, Cz, D1 and D2 in Equations (15) and (16) are
interdependent and satisfy following four relations:

(q_5)cl = xD; (q+5)C2 = —xD,
(g+S)D, = «Cy; (g—)D, =—rC,

(17
(18)
Using Equations (17), (18) in Equations (15), (16), the
general solutions for amplitudes of core and cladding modes

can be written in terms of an effective transmission
coefficient t(q) as

Acore (Z) = DleiqZZ(Q)+ C2e_iqz

(19)
Asaa (Z) = D' — Czeiiqzt(Q) (20)
here,
_ < _(a— 5]
"o [Q+5j [ ~ (21)

The q dependent transmission coefficient (Eq. 21) and the
dispersion relation (Eq.14) indicate that both the magnitude
and phase of the transmitted wave depends upon the
frequency o of propagating beam in the LPFG.

3. Filter Response of Long Period Fiber Grating

To study the filter response of LPFG, we have determined
transmission coefficient (tirg) of LPFG by applying
boundary condition that light is incident only at the front
end at z= 0 of LPFG i.e.,

Acore (Z = 0) = 1’ and Aclad (Z = 0) = 0 (22)
Using equation (22) in equation (20) we find
c, =D (23)

t(q)

The transmission coefficient of the long period fibre grating

is define as the ratio of amplitudes of the core mode at z=L

and at z=0.Thus the transmission coefficient,

A, (z=L) ¢ cos(gL)+iSsin(gL)
A, (z=0) q

The corresponding expression for the transmittance in the

linear regime is found as
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At resonance & =0, the transmission is minimum for core

mode and given as
_ 2
(TLPFG )min =cos” kL.

(25)

T, LPFG

(26)
Also, the maximum cross transmission 7 pc ie. the
fraction of energy transmitted to the cladding mode is found
to be

(TXLPFG )max =sin’ L. 27)
Using equation (25), the transmittance of the grating is
plotted in Fig. 1 as a function of wavelength for different
grating lengths such as (1) L = 0.25 cm, (2) L = 0.5 cm, (3)
L=10cm, (4 L=15cm (5) L =2.0cm and (6) 2.5 cm.
We have considered silica glass LPFG with physical



parameters, ncore = 1.458, cladding index ncad = 1.450, ng =
1x10%, A =197.5 um and Ar = 1550 nm.

To study the transmission response of grating first we
consider the grating coupling strength 7 <1 as shown in
Fig. 1. In this coupling strength long period fiber grating
shows “sinc” shaped dip in transmitted spectrum at
resonance wavelength, whose bandwidth is inversely
proportional to the grating length and depth of transmitted
dip depends upon the value of «, but the overall spectral
shape and bandwidth is determined only by the grating

length L.
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Figure 1: Calculated transmission response as a function of
wavelength for six different long period grating structures with
increasing lengths.

The grating design at x <1it does not make a suitable
band rejection filter, because it partially transmits the input
signal. However, there are number of cases where the “sinc”
shaped spectral response is desirable this type of designed
grating is very useful. In many binary communications
systems, the encoded signal has precisely at the same “sinc”-
shaped spectral response. If we consider the grating coupling
strength s > 1, the spectral response has one or two dips
with very narrow band, as shown in Fig. 1. At this coupling
strength, grating shows very low transmittance within a band
of frequencies can be called as the attenuation band. Outside
of the band, the spectrum shows a series of undesirable
ripples or side lobes. These side lobes originate at the two
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grating ends where the refractive index changes suddenly as
compared to its value outside the grating region. These lobes
decrease as we move away from the resonance wavelength
until the structure is effectively transparent. If the grating is
made longer without changing the value of «, the bandwidth
of attenuation band remains unchanged, but spectrum splits
into one or two dips and the side lobes get closer together.
The minimum transmittance (TLprc) minat the resonance
wavelength Ar is the most important parameter of interest to

design long period fiber grating.
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Figure 2: Minimum transmittance as a function of grating length
(L), calculated for different values of grating index (1) 0.5 x 10
(dotted curve), (2) 1.0 x 10* (dashed curve) and (3) 1.5 x 10+
(solid curve).

Fig. 2 shows the dependence of minimum transmittance
(TrprG) min on the grating length (L) and refractive index
change (ng). It is clear, that the minimum transmittance at
resonance wavelength vary as a cosine function with length.
Also it is observed that the same minimum transmittance
can be achieved with shorter gratings using high ng values.
Hence proper selection of physical parameter of long period
fiber grating enable us to utilize this device as a
single/double band rejection filter at a particular
wavelength/band in optical communication system.

4. Estimation of bandwidth of LPFG

Many applications of long-period fiber gratings are based
on the narrow band rejection filtering, for which the
transmission bandwidth is a critical parameter. A useful
measure of this bandwidth is the separation between the
first two zeros of grating spectrum. For a uniform long
period grating in which at most one complete exchange of
power between the two modes occurs, the transmission
bandwidth AA is defined as [29]
2 2
AL — 2% fgj .
7T

_ 1 _[
An, L
Whereas, kL < m and for a given value of minimum
transmittance (TrprG) min. The transmission bandwidth is
calculated from equation (26). For strong gratings,
undesirable side lobes become significantly more
pronounced and hence, a better measure of the bandwidth is

(28)



the FWHM of the envelope traced by the peaks of the side
lobe. The calculated values for bandwidth of attenuation
band of LPFGs are shown in Table 1.In equation (28) value
of Anetr depends upon effective indices of core and cladding
modes .These effective indices are determined using two-
layer fiber geometry of step index fiber proposed by
vengsarkar et.al [1]. The values of remaining physical
parameter are same as considered in previous section.

Table 1: Calculated bandwidth of a long period fiber grating at
different values of kL.

LPFG Minimum .
S.No. Length KL Transmittance Bandwidth

1 0.25 0.5 76 1.30
2 0.5 1.0 28 0.60
3 1.0 1.5 19 0.20
4 1.5 2.0 98 0.05
5 2.0 2.5 37 0.30
6 2.5 3.0 12 0.16

Table 1 reveals that we can obtained a desired bandwidth of
long period grating by choosing appropriate values of
grating length. It is important to note that for a given value
of minimum transmittance (TrrG) min of long period grating
and band widthAA, grating length can be determined using
Equation (26) and (28). And we can design a fiber grating as
per the need of specific optical communication system.

5. Phase Response of Long Period Grating

In previous sections we have estimated the amplitude and
bandwidth of long period grating. For complete
characterization of the LPFG, it is also essential to know the
phase response of the grating.
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Figure 3: Variation in (a) The real part (Xr) (b) the imaginary part
(Yvp) and (c) the phase factor (¢r) of transmission coefficient (tLpg)
plotted as a function of wavelength for different grating strength kL
=1 (dotted curve) and kL = 2 (solid curve).
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From equation (24), it is observed that the transmission
coefficient of LPFG can be written in phasor form as [36]

) =t,p6] < explig, ()] (29)
Where|tLPG| and ¢L(a)) are amplitude and phase of LPFG.
On arranging the equation (24) in the form of 7 — X, +iY,
we get

|tLPG|2 =T, pc =cosqL+i§sinqL' (30)

Here x, =cosqL and Y, = 5 singl 3¢ representing the real

and imaginary part of the complex transmission coefficient.
This gives phase factor of the transmitted wave at a distance
L of LPFG as

¢, (@)= tan™ [Y’J = tan’l[é tan(qL)J' (1)
X q

L

The variation of real part, imaginary part and phase of
transmission coefficient as a function of the wavelength for
two different grating strength xZ =1 and I =2is shown in
Figure 3. This Figure revels that at outside of the attenuation
band, the variation in the phase of the transmitted wave is
just like unperturbed fiber core and inside the attenuation
band, the phase decreases slowly with increasing strength of
the grating.

6. Delay and Dispersion Properties of LPFG

Figure 4: Dispersion curves showing variation of dispersion
parameter q with detuning parameterd.

As reported earlier [37] long period fiber grating exhibits an
important property known as the dispersion property, which
can be seen in Figure 4. In this figure detuning parameter &
given by equation (14) is plotted as a function of dispersion
parameter q for both uniform medium (dashed line) and a
periodic medium (solid line). Since the slope is constant in
case of uniform medium thus the dispersion is negligible.
This dispersion is modified on introducing a grating in the
fiber. If the dispersion parameter lies in the range of
0 < q /x<1 the core and cladding modes are coupled by the
grating and hence these modes are attenuated. To understand
the dispersive effect of long period fiber grating, we expand
effective propagation constant of grating (fe) in a Taylor
series around the carrier frequency (wo) of the pulse as [34]
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here,
(1Y ara
v, ds™

order (with m =1, 2, 3....) dispersion

d"q (33)
daw™
h

B =

Is referred as m'
parameter. And V, is the group velocity of pulse in the

absence of grating (x =0). In the present work we have
analyzed first, second and third order dispersion parameters.

Using equation (33) and dispersion relation equation (14)
the group velocity of the wave inside the grating is
calculated as

1 1 K2 (34)
= = =v 1[1 + —
B [ 1 ] dg “ o

VG
v, Jds
Where, g¢is the first order dispersion parameter .From

equation (34), it is clear that for 8 — «, Vg = \2 Vg with the
group velocity of pulse inside the grating become V2 times
of the group velocity of pulse outside the grating. The
second order dispersion parameter ¥ represents dispersion

Ve

of group velocity and hence also called group velocity
dispersion (GVD) parameter. This parameter is calculated as

oy sen()
£ == (_j = 3
Ve (52 + 2 )5

The grating induced group velocity dispersion is shown in
Figure 5, where GVD parameter 7 is plotted as a function
of wavelength (A). The GVD exhibits two regimes, first for
wavelength A <Ar and S£> 0, here the long period grating

d’qg (35)

a5

is said to exhibit normal dispersion and second for
wavelength A > Ar and 5 <0, where the long period

grating exhibit anomalous dispersion. In the normal
dispersion regime, high-frequency (blue-shifted)
components of an optical pulse travel slower than low-
frequency (red-shifted) components of the same pulse. The
opposite occurs in the anomalous dispersion regime where,
low-frequency (red-shifted) components of an optical pulse
travel slower than high-frequency (blue-shifted) components
of the same pulse. It may be noticed from the figure that
under the normal dispersion regime, GVD is higher for
smaller coupling coefficient. While under anomalous
dispersion regime behavior is opposite.

The third order dispersion in an LPFG given by g¢.

Though it’s contribution is very small as compared to f3¥.

But For ultra-short pulse propagation, it is necessary to
include the B3 term even when B2#0. Using equation (33),
this parameter is obtained as
2
_3ls]
d3q ‘ ‘ ) (36)

_ =
da™

1Y dPq
Ve a5’ ; (52 +K'2)g

The long period grating induced third-order dispersion ( g£)

VZ

as a function of wavelength (1) is plotted in Figure 6. From
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this Figure it is observed that the parameter g2 remains

negative on both branches of the dispersion curve. We find
that the behavior of second and third order dispersion is
quite different than those of the uniform fiber. B¢ changes

two sides of resonance band centered at the resonance
wavelength, whose location can be easily controlled,
whereas B2 for the fiber changes sign at zero dispersion
wavelengths and that can be varied only in the range
1.3 pm-1.6 ym.
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Figure 5: Grating induced group velocity dispersion (GVD) plotted
as a function of wavelength (A) for three values of the coupling
coefficient k = 2 cm™! (dotted curve), ¥ = 3cm™ (dashed curve) and
k = 4em’! (solid curve).
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Figure 6: Grating induced third order dispersion plotted as a
function of wavelength (A) for three values of the coupling

coefficient k = 2 cm™! (dotted curve), k = 3 cm™! (dashed curve) and
k=4 cm' (solid curve).

The third-order dispersion B3 is always positive and distorts
the optical pulse in optical fiber such that it becomes
asymmetric with an oscillatory structure near one of its
edges [34]. Thus the second-order dispersion 2 and third-
order dispersion B3 induced pulse broadening in optical fiber
can be compensated by the grating induced GVD parameter
B¢ and third order dispersion g#. In section V the phase

response of the grating is obtained in Equation (32). Using
this Equation the group delay experienced by the frequency
component © is calculated as [28]



_do, o A do, )

dco 2mc dA
Differentiating Eq.(37) with respect to wavelength (L), we
obtained the expression for delay in the form

o > de d (o
A (qjs“(q“ (cﬁj”a“("“cm[q] (38)
1+[5J tan(gL)’
q

Vel
Equation (38) shows the delay response of the grating. It is
observed that we can easily vary the delay experienced by
the frequency components by proper selection of the grating
length and magnitude of induced index change.

-, (37)
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Figure 7: Delay Response of the LPFG as a function of grating
coupling strength for different values of incident wavelength (a)
A =1550 nm (b) A =1550.25 nm and (c) A = 1550.50 nm.

Figure 7, illustrate the delay response of the LPFG as a
function of coupling strength kL for three different values of
incident wavelength (1) A = 1550 nm (2) A = 1550.25 nm
and (3) A = 1550.50 nm. The figure (7.a) plotted at incident
wavelength 1550 nm, in this sketch we obtain three negative
values of delay as (1) -240.6ps at value xL =1.60 (2) -
248.55ps at value kL =4.76 and 3) -257ps at value kL =7.90.
It is observed that, at other values of kL the value of delay
swing between negative to positive values. Figures (7.b) and
(7.c) are plotted for incident wavelength at 1550.25 nm and
1550.50 nm, respectively. These figures revels that the delay
increases in a positive manner as a sinusoidal form or as a
stepwise fashion. Thus for the application of dispersion
compensation in optical communication system the LPFG
can be as a dispersion compensator with physical parameter
as: design wavelength Ap= 1550 nm and the coupling
strength as kL = 1.60, 4.76 and 7.90. The rate of change of
group delay with frequency determines the dispersion
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experienced by the frequency component. Thus the group
velocity dispersion can be calculated as

— dTP

> =

A d¢, A d’¢,
da e dA  2mc dA
This equation shows the dependency of group velocity
dispersion on the wavelength of incident wave inside the
grating. The grating induced dispersion coefficient D,
determines the temporal broadening of the pulse, if D, < 0
then grating shows the normal (positive) GVD and if D, >
0 grating shows the anomalous (negative) GVD.

(39)

7. Conclusions

The objective of this work is to provide a complete
analytical study of long period fiber grating and to
highlights its applications in optical communication system,
as an optical filter and a dispersion compensator, we show
that, how a long period grating is capable of coupling light
from the fundamental guided mode to the cladding modes at
specific wavelengths (resonance wavelengths) leading to
the formation of so called rejection bands in the
transmission. The role of physical parameters such as
grating length and induced refractive index change of
grating on filter characteristics, dispersion properties and
group delay spectra are also analysed. It is envisaged that
the waveguide based LPFG should provide a useful
approach to the design of a wide range of integrated-optical
devices, including wavelength-tunable filters, dispersion
compensator, switches, and environmental sensors without
compromising much with the numerical accuracy.
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