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Abstract

The propagation of monochromatic electromagnetic waves
in metal circular cylindrical dielectric waveguide with lon-
gitudinal magnetization filled with anisotropic inhomoge-
neous waveguide is considered. The physical problem is
reduced to solving a transmission eigenvalue problem for a
system of ordinary differential equations. Spectral parame-
ters of the problem are propagation constants of the waveg-
uide. Numerical results are obtained using a modification
of the projecting methods. The comparison with known ex-
act solutions (for particular values of parameters) are made.

1. Introduction
A large class of vector electromagnetic problem concerns
electromagnetic wave propagation. The constitutive param-
eters ε and µ of standard dielectric and magnetic media are
determined by their physical structure. However, the media
with unusual properties are often required which can be ob-
tained using either dielectrics that are uniform or partially
filled. The parameters of such media depend on the mutual
position of the particles and may be anisotropic [1]. It is
known also that the permittivity of a dielectric (or the per-
meability of a magnetic) may depend on the radial coordi-
nate [2]. The primary goal here is to construct a numerical
method to determine the spectrum of normal electromag-
netic waves that propagate in such structures.

Numerical methods for calculating the parameters of
various types of waveguide structures are described in the
monographs and review papers [3, 4, 5, 6]. However, it
should be said that most of the methods applied to homo-
geneous waveguides, are not common and are difficult to
implement and apply for specific inhomogeneous and/or
anisotropic structures.

In this work the wave propagation in inhomogeneous
metal-dielectric anisotropic cylindrical waveguides is stud-
ied numerically using the modification of the projection
methods [7].

2. Statement of the problem
Consider three-dimensional space R3 with a cylindrical co-
ordinate system Oρφz filled with isotropic medium having
constant permittivity ε = ε0 (ε0 > 0 is the permittivity
of free space), and constant permeability µ = µ0 ( where
µ0 > 0 is the permeability of free space).

A metal dielectric circular cylindrical waveguide Σ
filled with anisotropic inhomogeneous medium is placed
parallel to the axisOz. The waveguide Σ has a cross section

Σ := {(ρ, φ, z) : r0 ≤ ρ ≤ r, 0 6 φ < 2π}

and its generating line (the waveguide axis) is parallel to the
axis Oz (see. Fig. 1).

Figure 1: The cylindrical anisotropic waveguide Σ.

We will consider monochromatic waves

Ee−iωt = e−iωt (Eρ, Eφ, Ez)
T
,

He−iωt = e−iωt (Hρ, Hφ,Hz)
T
,

where ( · )T denotes the transpose operation. Each compo-
nent of the field E, H is a function of three spatial variables.

Complex amplitudes of the electromagnetic field E,H
satisfy the Maxwell equations{

rotH = −iωεE,

rotE = iωµH,
(1)

subject to the following boundary conditions. The tangen-
tial components of the electric field vanish on the metal sur-
face ρ = r0; tangential field components are continuous on
the media interface ρ = r; the complex amplitudes obey the
radiation condition at infinity: the electromagnetic field de-
cays as O(|ρ|−1) when ρ → ∞. The permittivity ε inside
the waveguide is constant; the permeability µ̂ is specified
by the expression

µ̂ =

 µρ −iµφ 0
iµφ µρ 0
0 0 µz

, (2)



where µρ(ρ), µφ(ρ) and µz(ρ) are sufficiently smooth
functions which depend on the radial coordinate ρ.

The surface waves propagating along the axis Oz of the
waveguide Σ have the form [8]

Eρ = Eρ(ρ)e
iγz, Hρ = Hρ(ρ)e

iγz

Eφ = Eφ(ρ)e
iγz, Hφ = Hφ(ρ)e

iγz,

Ez = Ez(ρ)e
iγz, Hz = Hz(ρ)e

iγz,

(3)

where γ is the real propagation constant (spectral param-
eter of the problem). In what follows we often omit the
arguments of functions when it does not lead to misunder-
standing.

3. Differential equations
Inside the waveguide µ = µ̂ and ε = ε. Substituting E and
H with components (3) into equations (1), we obtain

iγHφ = iωεEρ,

iγHρ −H ′
z = −iωεEφ,

1

ρ
(ρHφ)

′ = −iωεEz,

iγEφ = −iωµρHρ − ωµφHφ,

iγEρ − E′
z = −ωµφHρ + iωµρHφ,

1

ρ
(ρEφ)

′ = iωµzHz,

(4)

where the prime denotes differentiation w.r.a ρ. Expressing
the functions Eρ, Ez, Hρ and Hz through Eφ and Hφ

from the 1st, 3rd, 4th and 6th equation of system (4), we
find

Hρ =
−γEφ + ωµφiHφ

ωµρ
, Eρ =

γHφ

ωε
,

Hz = − (ρiEφ)
′

ωµzρ
, Ez =

(ρiHφ)
′

ωερ
.

(5)

Substituting the expressions for Eρ, Ez, Hρ and Hz into
the 2nd and 5th equations of system (5) and introducing the
notation ue := iρEφ(ρ), um := ρHφ(ρ), we obtain

Leue =u
′′
e − peu

′
e +

(
qe − heγ

2
)
ue = γfeum,

Lmum =u′′m − pmu
′
m +

(
qm − hmγ

2
)
um = γfmue

(6)
where

pe =
(ρµz)

′

ρµz
, pm =

1

ρ
,

qe = ω2εµz, qm = ω2ε
µ2
ρ − µ2

φ

µρ
,

he =
µz

µρ
, hm = 1,

fe = ω
µφµz

µρ
, fm = ω

εµφ

µρ
.

Outside the waveguide, where µ = µ0 = 1 and ε =
ε0 = 1, system (1) takes the form of Bessel’s equations

(
u′e
ρ

)′

− k21ue
ρ

= 0,(
u′m
ρ

)′

− k21um
ρ

= 0,

with general solutions

ue = C1ρI1(k1ρ) + C2ρK1(k1ρ), ρ > r

um = C3ρI1(k1ρ) + C4ρK1(k1ρ), ρ > r
(7)

where k21 = γ2 − ω2, I1 is the modified Bessel function
andK1 is the Macdonald function [9] andC1, ..., C4 denote
arbitrary constants.

The solutions (7) takes a form

ue = C1ρK1(k1ρ), ρ > r

um = C2ρK1(k1ρ), ρ > r
(8)

where the radiation condition at infinity is taken into ac-
count.

4. Transmission conditions and transmission
problem

Tangential components of the electromagnetic field are
known to be continuous at the interface. In this case the
tangential components are Eφ, Ez , Hφ and Hz . Thus we
obtain the following transmission conditions for ue and um

ue(r0) = 0, u′m(r0) = 0,

ue(r − 0) = ue(r + 0), um(r − 0) = um(r + 0),

u′e(r − 0)

µz(r − 0)
=
u′e(r + 0)

µ0
,
u′m(r − 0)

ε
=
u′m(r + 0)

ε0
,

(9)

where [v]|ρ=s = lim
ρ→s−0

v(ρ) − lim
ρ→s+0

v(ρ) is the jump of

the limit values of the function at the point s.

The main problem considered in this study is formu-
lated as follows: Problem P : to find γ̂ such that there exist
non-trivial functions ue(ρ; γ̂) and um(ρ; γ̂) satisfying sys-
tem (6), transmission conditions (9), and having the form
(8) outside the waveguide.
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5. Variation formulation
Let us give the variational formulation of the problem P .
Using the first Green’s formula, we obtain

r∫
r0

vLudρ =

=

r∫
r0

vu′′dρ−
r∫

r0

vpu′dρ+

r∫
r0

v
(
q − hγ2

)
udρ =

= u′v|rr0 −
r∫

r0

u′v′dρ−
r∫

r0

pu′vdρ+

r∫
r0

(
q − hγ2

)
uvdρ =

= −γ2
r∫

r0

huvdρ−
r∫

r0

u′v′dρ−

−
r∫

r0

pu′vdρ+

r∫
r0

quvdρ+ u′(r)v(r), (10)

where u = uj , h = hj , p = pj , q = qj , j = e or m.
Let us consider the smooth test functions ve and vm.
Note 1. We assume that the test functions ve and vm

satisfy the following conditions

ve(r0) = 0, ve(r) = 1,

v′m(r0) = 0, vm(r) = 1,

which coincide with conditions for functions ue and um at
the boundary r0.

Multiplying the left and right sides of equations (10) by
the test functions ve and vm, respectively, and summing up
we obtain

r∫
r0

(veLeue + vmLmum)dρ =

= −γ2
r∫

r0

(heueve + hmumvm)dρ−

−
r∫

r0

(u′ev
′
e + u′mv

′
m)dρ−

r∫
r0

(peu
′
eve + u′mvm)dρ+

+

r∫
r0

(qeueve + qmumvm)dρ+

+ u′e(r)ve(r) + u′m(r)vm(r). (11)

Taking into account the right-hand sides of the equa-
tions of system (6), we have

r∫
r0

(veLeue + vmLmum)dρ =

= γ

r∫
r0

(feumve + fmuevm)dρ. (12)

From (9) we determine u′e and u′m at the point r

u′e(r) = −k1
µz(r)

µ0

K0(k1r)

K1(k1r)
ue(r), (13)

u′m(r) = −k1
ε

ε0

K0(k1r)

K1(k1r)
um(r). (14)

From (11) taking into account (12) and (13), we obtain
the variational equation

γ2
r∫

r0

(heueve + hmumvm)dρ+

+

r∫
r0

(u′ev
′
e + u′mv

′
m)dρ+

r∫
r0

(peu
′
eve + pmu

′
mvm)dρ−

−
r∫

r0

(qeueve + qmumvm)dρ+

+ k1
K0(k1r)

K1(k1r)

(
µz(r)

µ0
ue(r)ve(r) +

ε

ε0
um(r)vm(r)

)
+

+ γ

r∫
r0

(feumve + fmuevm)dρ, ∀ve, vm, (15)

which hold for any test functions ve and vm. The solution
of (15) is equivalent to the original problem P .

6. Projection method
Using the projection method [10] let us reduce the vari-
ational equation (15) to a system of algebraic equations.
Firstly, split an interval [r0, r] into n subintervals with the
length

l =
r0 − r

n
.

Let us define a set of n subintervals

Φi = [r0 + (i− 1)l, r0 + (i+ 1)l], i = 1, ..., n− 1

and
Φn = [r0 + (n− 1)l, h],

and set of n+ 1 subintervals

Ψ1 = [r0, r0 + l],

Ψj = [r0 + (i− 2)l, r0 + il], j = 2, ..., n

and
Ψn+1 = [r0 + (n− 1)l, h].

These subintervals we call base finite elements.
In accordance with the scheme of the projection

method, it is necessary to introduce basis functions ϕi and
ψj in order to approximate the solution. The basis func-
tions are defined on each subinterval Φi and Ψj (ϕi and ψj

vanishes outside the intervals Φi and Ψj , respectively).

132



The basis functions ϕi define on Φi, are

ϕi =


ρ− r0 − (i− 1)l

l
, ρ < r0 + il,

−ρ− r0 − (i+ 1)l

l
, ρ > r0 + il,

, i = 1, n− 1

and
ϕn =

ρ− h+ l

l
;

The basis functions ψi defined on Φi are

ψ1 = −ρ
2 − 2r0ρ+ r20 − l2

l2
,

ψ2 =


ρ2 − 2r0ρ+ r20

l2
, ρ < r0 + l,

−ρ− r0 − 2l

l
, ρ > r0 + l,

ψj =


ρ− r0 − (i− 2)l

l
, ρ < r0 + (i− 1)l,

−ρ− r0 − il

l
, ρ > r0 + (i− 1)l,

, j = 3, n

and
ψn+1 =

ρ− h+ l

l
.

Such defined basis functions takes into account the
physical nature of the problem under consideration.

We assume an approximate solution with real coeffi-
cients αi and βj such that

ue =
n∑

i=1

αiϕi, um =
n+1∑
j=1

βjψj . (16)

Substituting functions ue and um with representations (16)
into the variational equation (15), we obtain a system of
linear equations with respect to αi and βj (for fixed value
of γ)

A(γ)x = 0, (17)

where matrices A(γ) and x have the form

A =



A1,1
ee · · · A1,n

ee A1,1
em · · · A1,n+1

em
...

. . .
...

...
. . .

...
An,1

ee · · · An,n
ee An,1

em · · · An,n+1
em

A1,1
me · · · A1,n

me A1,1
mm · · · A1,n+1

mm
...

. . .
...

...
. . .

...
An+1,1

me · · · An+1,n
me An+1,1

mm · · · An+1,n+1
mm


,

x =



α1

...
αn

β1
...

βn+1


,

where

Ai,j
ee = γ2

∫
Φi

heϕiϕjdρ+

+

∫
Φi

ϕ′iϕ
′
jdρ+

∫
Φi

peϕ
′
iϕjdρ−

∫
Φi

qeϕiϕjdρ+

+ k1
µz(r)

µ0

K0(k1r)

K1(k1r)
ϕi(r)ϕj(r), i, j = 1, n;

Ai,j
em = γ

∫
Φi

fmϕiψjdρ, i = 1, n, j = 1, n+ 1,

Ai,j
me = γ

∫
Ψi

feψiϕjdρ, i = 1, n+ 1, j = 1, n,

Ai,j
mm = γ2

∫
Ψi

hmψiψjdρ+

+

∫
Ψi

ψ′
iψ

′
jdρ+

∫
Ψi

pmψ
′
iψjdρ−

∫
Ψi

qmψiψjdρ+

+ k1
ε

ε0

K0(k1r)

K1(k1r)
ψi(r)ψj(r), i, j = 1, n+ 1.

ThusA(γ) is a (2n+1)×(2n+1) matrix. Let us denote
by ∆(γ) the determinant of A(γ)

∆(γ) = detA(γ). (18)

Note 2. If there exists γ = γ̃ such that ∆(γ̃) = 0,
then γ̃ is an approximate spectral parameter of Problem P .
In other words, if an interval [γ, γ] is such that ∆(γ) ×
∆(γ) < 0, then this means that there exists γ = γ̃ ∈ [γ, γ]
which is an spectral parameter of Problem P . This value
can be calculated with any prescribed accuracy.

7. Numerical results
The results of the numerical solution of the problem of
propagating electromagnetic waves of an anisotropic mag-
netic waveguide structure are presented. Numerical results
are obtained with the help of the shooting method. Radii
of the waveguide (internal and external) r0 = 2 cm, r =
4 cm, permittivity ε = 4. The values of the tensor compo-
nents µ̂, are shown in the figure captions.

Numerical analysis of the behavior of dispersion curves
(graphs of the dependence of the propagation constant γ
on the circular frequency ω) is performed for the different
components of tensor µ̂. In the case of µφ → 0, the number
of hybrid modes coincides with the sum of the “polarized”
modes (TE and TM), the dispersion curves for µφ = 0 (Fig.
2) coincide with the known dispersion curves for problems
on propagating TE–and TM–polarized waves of an metal-
dielectric waveguide [11].

Figure 3 and Figure 4 shows the dispersion curves for
the case when components of tensor µ̂ are functions.
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Figure 2: Dispersion curves for the values of the components of the tensor µ̂: µρ = 1, µz = 1; µφ = 0. The red curves
correspond to TM-polarized waves, the green curves to TE-polarized waves.

Figure 3: Dispersion curves for the values of the components of the tensor µ̂: µρ = 1 + ρ, µz = 1; µφ = 1. The blue curves
correspond to hybrid waves.

Figure 4: Dispersion curves for the values of the components of the tensor µ̂: µρ = 1, µz = 1 + ρ; µφ = 0.125. The blue
curves correspond to hybrid waves.

8. Conclusion

This work continues the investigation of the spectrum of
metal dielectric waveguides with inhomogeneous filling.
The paper[7] presents a numerical method for solving the

problem of propagating waves of a dielectric waveguide.
This method was used to numerically study the spectrum
of a waveguide filled with an inhomogeneous anisotropic
magnetic medium (ferrite). The method allows us to de-
termine approximate eigenvalues with any prescribed accu-
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racy. The approach described in this paper can be applied
to other problems, e.g., to multilayered opened waveguides.
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