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Abstract

Wave propagation for transverse electric (TE) mode in a
graded interface between left-handed and right-handed
material has been investigated by using asymptotic iteration
method. By using hyperbolic functions for negative
permittivity and negative permeability, we obtained the
graded graphs of permittivity and permeability as a function
of material thickness. Maxwell equation for the dielectric
with the hyperbolic function in permittivity and
permeability has been reduced to second orde differential
equation. The second orde differential equation has been
solved by using asymptotic iteration method with the eigen
functions for the fields equation in polynomial Hermite. The
eigen functions explained about the wave propagation in a
graded interface of material. The distribution of the electric
field and the wave vector were given in approximate
solution.

1. Introduction

The development of physics related to artificial composite
material has been brought into a new finding, namely a
negative refractive index material (NIM) or so-called left-
handed materials (LHM). NIM or LHM is better known as a
metamaterial. For more than ten years, the study of the
metamaterial has attracted the interest of many scientists.[1-
2] Various studies, either theoretically or experimentally has
been done by many scientists. The first time, in 1968,
Vaselago reviewing theoretically what if a material is based
on the negative electric permittivity and negative magnetic
permeability.[3] Meanwhile, in orde to bring the concept of
metamaterial into the experiment takes a long time, which is
preceded by Pendry et al. in 1996 related to research of wire
with a negative permittivity.[4] Then followed in 1999
regarding the material with negative permeability.[S] A year
later, Pendry conducts experiments on negative refraction
index material that could be used to manufacture the perfect
lens.[6] In the same year, Smith et al.[7] doing research for
verification if possible negative value electric permittivity
and magnetic permeability simultaneously to a material
under test. Some of these studies become the basis for the
development of metamaterial studies by many researchers
today.

The metamaterial is a unique artificial composite
material with a negative refraction index value, which is not

available in nature.[1] Characteristics of metamaterial itself
is a material that has a negative refractive index value in a
certain wavelength range. The value of refraction index of a
material is determined by the permittivity and permeability.
Both of these is the basic characteristics that affect how the
material's response to the presence of electromagnetic
waves. [3] Based on the value of permittivity £ and
permeability ¢ , material is classified into four categories :

right-handed materials (RHM) (6>0&u>0) » electric

plasma (e<0&u>0) > left-handed materials
(LHM) (6<0&u<0) and magnetic plasma (g >0& u< ()) .
(1]

Analysis of the propagation of electromagnetic waves to
a material mostly done through modeling. From modeling
obtained can be used to determine how the material's
response to the presence of electromagnetic waves. Wang et
al. in 2008 have done research related to modeling of
metamaterial wave propagation using finite difference time
domain (FDTD) method. FDTD is a numerical method for
computing the electromagnetic wave that has been widely
used for modeling the propagation of electromagnetic
waves. [8-9]

A theoretical approach is made to reduce the equation of
electromagnetic waves in metamaterial into the second orde
differential equation, like the Schrodinger equation or Dirac
equation and then obtain the solution for the fields
distribution (eigenfunctions) and energy (eigenvalue).
Analytical solution of NRM with graded refractive index
interface between LHM and RHM has been given by
Dalarsson and Tassin [10] for the case in which its index
profile is a hyperbolic tangent function. The function of
hyperbolic tangent is the most frequently used gradation
profile. [11-12]. Recently, Husein et al. give the
approximate solution of wave propagation in transverse
magnetic mode through a graded interface positive-negative
for the case the hyperbolic cosecant and cotangent functions
using AIM. [2-13] Various methods to solve of the second
orde differential equation has been used by many
researchers, such methods Nikiforov-Uvarov [14-15], the
method Supersymmetry Quantum Mechanics (SUSY QM)
[16], the method of polynomial Romanovski[17] and
Asymptotic Iteration Methods (AIM) [18-20].

In this paper, the wave propagation in transverse electric
mode in a graded interface between left-handed and right-



handed material will be investigated using AIM. The spatial
variation in permittivity and permeability are described by a
hyperbolic sinus plus hyperbolic tangent functions.The
paper is organized as follows. The basic theory is presented
in section 2. The results and discussion are presented in
section 3 and a conclusion in section 4.

2. Basic Theory

2.1. The fields equation

The fields equation from Maxwell equation for dielectric,
are given as

1 1 1 1
-VxE =iou(w,y)H, VxH =iwe(w,y)E (1)
where M(a), y) and g(a), y) are frequency and spatial
dependent magnetic permeability and dielectric permittivity,
respectively. [2,13] To simplify the calculations, we set the
Yz plane as the plane of ray incident, so (d/dx)=0- In

addition, the optical characteristics of ¢ ( y) and U ( y) are

considered as functions of material thickness, y. Using
Maxwell equation and considering the geometry of the
material, we obtain a second orde differential equation of
electromagnetic waves in inhomogeneous materials on mode
transverse electric(TE). Actually, in two-dimensional study,
there are two independent modes i.e. TE mode, the group of

felds: {H,.H,.E.}, {H H,E}.{HH,E,} and
magnetic (TM) mode, the group of
telds: {E,.E,.H.} . {E.E.H}, {E.E.H} =
principle, these two modes (TE and TM) are similar to each
other, so we only need to do one calculation, e.g. the TE

mode. By using the plane wave solution which is harmonic
in time, is given

E =E(y,z)e" @)
For the group fields in TE mode which we use
ie. {HV,HZ,EX}. From equation (1) and equation (2) we

transverse

obtain
’E. O°E 'OE
L A W ueE =0 ()
ay 0z u oy

and by using £ = E(y,z) = E(y)E(z)in equation (3),
we obtain
0°E(z)
2

+k’E(z)=0 @)

O’E 'OE

(2)/) _HEQ) +(a)2y£ -k’ )E(y) =0

ay uody
where kz is the wave vector in z direction.Equation (4) is
the simple differential equation which it has the solution,
E(Z) — e:ikzz (6)

while, for  equation (5) with the graded interface
permittivity and permeability is solved using AIM
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2.2. Asymptotic Iteration Method

Asymptotic Iteration Method (AIM) is used to solve second
orde differential equation in terms:

1 (0)=%0)1,(1)=s5,(0)1£,(1)=0 ™
where ﬂo(l);to and §, (l) are coefficients of the

differential equation and are well-definedfunctions as well
as sufficiently differentiable. The solution of equation (7)

can be obtained by using iteration of /1q and s :

A=A+ A A+,

q
S, (l) = sqfl' +/1q71s0;q =1,2,3,...

Eigenvalues can be obtained using equation (9) below, [18-
20]

®)

2, (D), (D =A,Ds,(N=0=A,, ©)
For the eigenfunctions, following in [21] we use the Hermite

differential equation. Hermite differential equation is given
as,

F(n=2(1)+2jf(1)=0 (10)
Equation (10) has the general solution in polynomial
Hermite,

fj(l)=(—l)je]2j—/j(e‘lz);j=0,1,2,3... (11)
A

From equation (11) we can get some the first polynomial
Hermite functions are given as

AD=1 £()=2

f(1)y=4r -2, f(1)=8"°-12,
£ (1)=161" - 48* +12,

£ (1)=32° =1607° +1201

Equation (12) are polynomial Hermite for j=0,7,2,3,4 and
for j=5.

(12)

3. Discussion

In this research, we consider an inhomogeneous medium for
which the permittivity and permeability vary according to a
hyperbolic sinus function and a hyperbolic tangent
function.[10] The permittivity and permeability are
expressed as

u(@,y)=—tu, (sinh(py) + tanh(,oy))(13)
e(w,y)=-¢¢, (sinh(py) + tanh(,oy))(14)

with O is abruptness’s parameter describing the transition

of wave propagation from RHM to LHM.

In below are the graphs of permeability (Fig. 1.a) and
permittivity (Fig.1.b) vary according to the material
thickness ) where the interface between RHM and LHM is

located at y = 0.
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Figure 1: (a) permeability in hyperbolic function (b)
permittivity in hyperbolic function

By inserting equations (13-14) into equation (5) we obtain
the electromagnetic wave equation passing through the
LHM media as follows

vy bleio ooy
I

a’ ((smh py)+tanh(py

(a)z‘uourgo (smh py)+tanh(py) )2 k 2)E(y) =0
by using the definition that

- (e ) - (0fe)

where ¢ is light velocity in vacuum, 7 is the refraction

2.
Aurgr = nw’ kO

index and ko is wave vector in vacuum in equation (15), so
equation (15) can be rewritten,
PE(y) P(cosh(py)+sech®(py)) aE(y)
ay’ - (sinh(py)+ tanh(py)) ay

(koznfj (s1nh(,0y)+ tanh(py))2 -k )E(y) =0

T (16)

If we let u = py, equation (16) can be rewritten as
LE(y) ) (cosh(u)+ sech? (u)) dE(») .

du’ (sinh(u)+tanh(u)) du
1 . (sinh(u)+

0 “ tanh(u)

17)
2
2 ) —k’E(»)=0
0
Equation (17) was approached for ) is close to zero using

the Maclaurin series, so we obtained

cosh (u)+sech’ (u) =~ 2;
sinh(u)+tanh(u)z 2u

which cause the second rate in equation (17) become

(cosh(u)+ sech’ (u)) 1

(sinh(u)+ tanh(u))
However, equation (19) is not defined at # = 0, so it needs
to make an assumption. If & is the value of u that close to
zero then using equation (19) can be obtained intervals
—a <u =< . By using this interval, equation (19) is
considered to have the form of a linear function connecting
the points (—a,—l/a)and (a,l/a), ie

(18)

19)

u

1
gu)=—u (20)
o
so equation (17) was reduced become
d’E(y) _u dE(y)
du o’ du @1

;2(4k02n3,u2 ~k)E(»)=0

By letting § =(4k0 n, / 0 ) u into equation (21), we

obtained

d’E(y) P dE() ,
ds? a? 2kyn, ds 22)
k2
2 E 0
(s 2o p] ») =

Equation (22) is AIM-type differential equation, like in
equation (7) with

2
S P S 23)
a” 2k.n, 2kyn,p

for s is close to zero, we can approach equation (23) using
Maclaurin series, given as

Ao(5) = 2y (0) + A, '(0)s + A "(0)%+

s p s p
=0+— +0+..=—
a’ 2kn a’ 2kn, @4
2

50(8) = 5,(0) + 5, '(0)s +5, "(O)% +..

w

S %

z

) 2kyn,p - 2kyn,p



in equation (22), so we obtained

d’E s dE k.’
gy)_i2 p_dE(y) k E()=0 @9
ds a 2kp, ds 2k,

By lettin - P in equation (25), we obtained
y gw=gs 5 q
4kyn o

2 2 2
CEQ) 5, dEW) 2K piy g 6)
dw aw 0
Equation (26) is AIM-type differential equation, and by
using AIM, from equation (9) we obtained,
n [ 2k a’
A = -—=
-1

according to this condition, the eigenvalues can be obtained
as follows
2 2
_ka
2

—2jl;m=1,2,3... @7)

= j—k =i [j1j=0123.. (28
a

so equation (26) can be rewritten as

LEG)
2
dw

which known as Hermite  differential equation. The
approximate solution of equation (29) is

j W2 dJ —W’Z
Hj(y)=(—1) e W(e )
where

P 1 1
W=s—7m=Yy, ——=sSWsS——, A=
o2’ TR

From equation (28), we can obtain the wave vector kz. .
J

(29)

wIED) Lo im(y) =0
dw

(30)

1 €2))

Wave vector is dependent on the abruptness’s parameter, the
material thickness and the level . In Fig. 2 is the 2-

dimension graphs between kzz_ versus p in any level j. The
J

amplitude of wave vector is increase with increasing of
abruptness’s parameter in the same level, and with the
higher level, the amplitude of wave vector also increase, is
like shown in Fig. 2.

138 wave vector ki

0

051

Figure 2: The graph of wave vector kzz‘ with variation j and p

Then for the fields distribution, we investigated from the
total eigenfunctions using equations (6,12,30-31) for j=1,2,3
and j=4, and we take the positive sign for £(z), we obtain:
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for j=1, Ex1 =E1(y,z) = o (32)

2

2,0 ik.z
S _2)6@ (33)

s, <0

- 40’ 120 .
forj=3, E = E,(y,2)=| ==y’ ——=y | %)
X3 3 Yy a2\/§ a\/E
40

R
forj~t g —E(n2)=| & | e B9
Py 412

according to equations (32-35), we obtained the electric
fields distribution which is shown in Fig. 3. Fig. 3 is the
graphs of electric fields distribution in various level. Fig. 3.a
is the first level j=/ from equation (32), Fig.3.b from
equation (33) for the second level j=2, Fig. 3.c is the third
level from equation (34), and Fig.3.d is the fourth level from
equation (35). The graphs show that in various the material
thickness y , the electric field has the different distribution.
The amplitude of electric fields are increase with higher
level. Wave propagation of electric field E(y,z) which is
expressed in Fig. 3 give explanation that in a graded
interface between left-handed and right-handed material
using hyperbolic sinus plus tangent function has the
symmetry propagation with y=0 is the interface point.

x 10"

0™




(d)
Figure 3: Distribution of the electric fields (a)j=1, (b) j=2
(c)j=3 and (d) j=4

4. Conclusions

Asymptotic iteration method was used to investigated the
wave propagation for transverse electric (TE) mode in a
graded interface between left-handed and right-handed
material. By wusing hyperbolic sinus function  plus
hyperbolictangent function for negative permittivity and
negative permeability, we obtained the graded graphs of
permittivity and permeability as a function of material
thickness. The wave vector was obtained using AIM, while
the eigenfunctions were expressed using polynomial
Hermite. The distribution of the electric field was shown in
2-dimension graphs, which has the symmetry propagation
with y=0 is the interface point. The amplitude of wave
vector is increase with the higher level. The results of this
research used the approximation solution.
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