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Abstract 

Wave propagation for transverse electric (TE) mode in a 
graded interface between left-handed and right-handed 
material has been investigated by using asymptotic iteration 
method. By using hyperbolic functions for negative 
permittivity and negative permeability, we obtained the 
graded graphs of permittivity and permeability as a function 
of material thickness. Maxwell equation for the dielectric 
with the hyperbolic function in permittivity and 
permeability has been reduced to second orde differential 
equation. The second orde differential equation has been 
solved by using asymptotic iteration method with the eigen 
functions for the fields equation in polynomial Hermite. The 
eigen functions explained about the wave propagation in a 
graded interface of material. The distribution of the electric 
field and the wave vector were given in approximate 
solution. 

1. Introduction 
The development of physics related to artificial composite 
material has been brought into a new finding, namely a 
negative refractive index material (NIM) or so-called left-
handed materials (LHM). NIM or LHM is better known as a 
metamaterial. For more than ten years, the study of the 
metamaterial has attracted the interest of many scientists.[1-
2] Various studies, either theoretically or experimentally has 
been done by many scientists. The first time, in 1968, 
Vaselago reviewing theoretically what if a material is based 
on the negative electric permittivity and negative magnetic 
permeability.[3] Meanwhile, in orde to bring the concept of 
metamaterial into the experiment takes a long time, which is 
preceded by Pendry et al. in 1996 related to research of wire 
with a negative permittivity.[4] Then followed in 1999 
regarding the material with negative permeability.[5] A year 
later, Pendry conducts experiments on negative refraction 
index material that could be used to manufacture the perfect 
lens.[6] In the same year, Smith et al.[7] doing research for 
verification if possible negative value electric permittivity 
and magnetic permeability simultaneously to a material 
under test. Some of these studies become the basis for the 
development of metamaterial studies by many researchers 
today. 

The metamaterial is a unique artificial composite 
material with a negative refraction index value, which is not 

available in nature.[1] Characteristics of metamaterial itself 
is a material that has a negative refractive index value in a 
certain wavelength range. The value of refraction index of a 
material is determined by the permittivity and permeability. 
Both of these is the basic characteristics that affect how the 
material's response to the presence of electromagnetic 
waves. [3] Based on the value of permittivity ε and 
permeability µ , material is classified into four categories : 
right-handed materials (RHM) ( )0& 0ε µ> > , electric 

plasma ( )0& 0ε µ< > , left-handed materials 

(LHM) ( )0& 0ε µ< <  and magnetic plasma ( )0& 0ε µ> < . 
[1]	

 Analysis of the propagation of electromagnetic waves to 
a material mostly done through modeling. From modeling 
obtained can be used to determine how the material's 
response to the presence of electromagnetic waves. Wang et 
al. in 2008 have done research related to modeling of 
metamaterial wave propagation using finite difference time 
domain (FDTD) method. FDTD is a numerical method for 
computing the electromagnetic wave that has been widely 
used for modeling the propagation of electromagnetic 
waves. [8-9] 

A theoretical approach is made to reduce the equation of 
electromagnetic waves in metamaterial into the second orde 
differential equation, like the Schrodinger equation or Dirac 
equation and then obtain the solution for  the fields 
distribution (eigenfunctions) and energy (eigenvalue). 
Analytical solution of NRM with graded refractive index 
interface between LHM and RHM has been given by 
Dalarsson and Tassin [10] for the case in which its index 
profile is a hyperbolic tangent function. The function of 
hyperbolic tangent is the most frequently used gradation 
profile. [11-12]. Recently, Husein et al.  give the 
approximate solution of wave propagation in transverse 
magnetic mode through a graded interface positive-negative 
for the case the hyperbolic cosecant and cotangent functions 
using AIM. [2-13] Various methods to solve of the second 
orde differential equation has been used by many 
researchers, such methods Nikiforov-Uvarov [14-15], the 
method Supersymmetry Quantum Mechanics (SUSY QM) 
[16], the method of polynomial Romanovski[17] and 
Asymptotic Iteration Methods (AIM) [18-20]. 

In this paper, the wave propagation in transverse electric 
mode in a graded interface between left-handed and right-
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handed material will be investigated using AIM. The spatial 
variation in permittivity and permeability are described by a 
hyperbolic sinus plus hyperbolic tangent functions.The 
paper is organized as follows. The basic theory is presented 
in section 2. The results and discussion are presented in 
section 3 and a conclusion in section 4. 

2. Basic Theory 

2.1. The fields equation 

The fields equation from Maxwell equation for dielectric, 
are given as 

 ( ) ( ), ,     ,  E i y H H i y Eωµ ω ωε ω−∇× = ∇× =
r r r r

(1) 

where ( ), yµ ω and ( ), yε ω are frequency and spatial 
dependent magnetic permeability and dielectric permittivity, 
respectively. [2,13] To simplify the calculations, we set the 
yz plane as the plane of ray incident, so ( ) 0d dx = . In 

addition, the optical characteristics of ( )yε and ( )yµ are 
considered as functions of material thickness, y. Using 
Maxwell equation and considering the geometry of the 
material, we obtain a second orde differential equation of 
electromagnetic waves in inhomogeneous materials on mode 
transverse electric(TE). Actually, in two-dimensional study, 
there are two independent modes i.e. TE mode, the group of 
fields: { }, ,x y zH H E , { }, ,y z xH H E , { }, ,z x yH H E and 

transverse magnetic (TM) mode, the group of 

fields: { }, ,x y zE E H , { }, ,y z xE E H , { }, ,z x yE E H .In 

principle, these two modes (TE and TM) are similar to each 
other, so we only need to do one calculation, e.g. the TE 
mode. By using the plane wave solution which is harmonic 
in time, is given  

 ( ), i t
xE E y z e ω=  

(2) 

For the group fields in TE mode which we use 
i.e.{ }, ,y z xH H E . From equation (1) and equation (2) we 

obtain 

 

2 2
2

2 2

' 0 x x x
x

E E E E
y z y

µ
ω µε

µ
∂ ∂ ∂

+ − + =
∂ ∂ ∂  

(3) 

and by using ( , ) ( ) ( )xE E y z E y E z= = in equation (3), 
we obtain 

 
2

2
2

( ) ( ) 0   z
E z k E z
z

∂
+ =

∂
 (4) 

 
( )

2
2 2

2

( ) ' ( ) ( ) 0z
E y E y k E y
y y

µ
ω µε

µ
∂ ∂

− + − =
∂ ∂

 (5) 

where zk is the wave vector in z direction.Equation (4) is 
the simple differential equation which it has the solution,  
 ( ) zik zE z e±=  (6) 
while, for  equation (5) with the graded interface 
permittivity and permeability is solved using AIM 

2.2. Asymptotic Iteration Method 

Asymptotic Iteration Method (AIM) is used to solve second 
orde differential equation in terms: 

 ( ) ( ) ( ) ( ) ( )'' '
0 0n n o nf l l f l s l f lλ− − =  (7) 

where ( )0 0lλ ≠  and ( )os l  are coefficients of the 
differential equation and are well-definedfunctions as well 
as sufficiently differentiable. The solution of equation (7) 
can be obtained by using iteration of qλ  and qs : 

 
( )
( )

'
1 1 0 1

'
1 1 0

,

; 1, 2,3,...
q q q q

q q q

l s

s l s s q

λ λ λ λ

λ

− − −

− −

= + +

= + =
  (8) 

Eigenvalues can be obtained using equation (9) below, [18-
20] 

 ( ) 1 1( ) ( ) ( ) 0 ,q q q q ql s l l s lλ λ− −− = = Δ  
(9) 

For the eigenfunctions, following in [21] we use the Hermite 
differential equation. Hermite differential equation is given 
as, 

 ( ) ( ) ( )'' '2 2 0f l lf l jf l− + =  
(10) 

Equation (10) has the general solution in polynomial 
Hermite, 

 ( ) ( ) ( )2 2

1 ; 0,1,2,3...
j

j l l
j j

df l e e j
ds

−= − =  
(11) 

From equation (11) we can get some the first polynomial 
Hermite functions are given as 

 

( ) ( )
( ) ( )
( )
( )

0 1

2 3
2 3

4 2
4

5 3
5

1,     2

4 2,     8 12 ,

16 48 12,    

 32 160 120

f l f l l

f l l f l l l

f l l l

f l l l l

= =

= − = −

= − +

= − +  

(12) 

Equation (12) are polynomial Hermite for j=0,1,2,3,4 and 
for j=5. 

3. Discussion 
In this research, we consider an inhomogeneous medium for 
which the permittivity and permeability vary according to a 
hyperbolic sinus function and a hyperbolic tangent 
function.[10] The permittivity and permeability are 
expressed as 

 ( ) ( ) ( )( )0, sinh tanhry y yµ ω µ µ ρ ρ= − + (13) 

 ( ) ( ) ( )( )0, sinh tanhry y yε ω ε ε ρ ρ= − + (14) 

with ρ  is abruptness’s parameter describing the transition 
of wave propagation from RHM to LHM. 

In below are the graphs of permeability (Fig. 1.a) and 
permittivity (Fig.1.b) vary according to the material 
thickness y where the interface between RHM and LHM is 
located at 0y = . 
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(a) 

 
(b) 

Figure 1: (a) permeability in hyperbolic function (b) 
permittivity in hyperbolic function 

 
By inserting equations (13-14) into equation (5) we obtain 
the electromagnetic wave equation passing through the 
LHM media as follows 

 

( ) ( )( )( )
( ) ( )( )( )
( ) ( )( )( )

22

2

22 2
0 0

cosh sech( ) ( )
sinh tanh

sinh tanh ( ) 0r r z

y yE y E y
y yy y

y y k E y

ρ ρ ρ

ρ ρ

ω µ µ ε ε ρ ρ

+∂ ∂
− +

∂ ∂+

+ − =

(15) 

by using the definition that 

( ) ( )2
0 0 01 ;    ;    r rc n k cωε µ µ ε ω= = =  ,  

where c is light velocity in vacuum, nω is the refraction 

index and 0 k is wave vector in vacuum in equation (15), so 
equation (15) can be rewritten, 

 

( ) ( )( )
( ) ( )( )

( ) ( )( )( )

22

2

22 2 2
0

cosh sech( ) ( )
sinh tanh

sinh tanh ( ) 0z

y yE y E y
y yy y

k n y y k E yω

ρ ρ ρ

ρ ρ

ρ ρ

+∂ ∂
− +

∂ ∂+

+ − =

 (16) 

If we let u yρ= , equation (16) can be rewritten as	

	 		

( ) ( )( )
( ) ( )( )
( )
( )

22

2

2

2 2 2
02

cosh sech( ) ( )
sinh tanh

sinh1 ( ) 0
tanh z

u ud E y dE y
du duu u

u
k n k E y

uωρ

+
− +

+

⎛ ⎞⎛ ⎞+
⎜ ⎟− =⎜ ⎟⎜ ⎟⎜ ⎟⎝ ⎠⎝ ⎠

	
(17)

	

Equation (17) was approached for y is close to zero using 
the Maclaurin series, so we obtained 

 
( ) ( )
( ) ( )

2cosh sech 2;   

sinh tanh 2

u u

u u u

+ ≈

+ ≈
 (18) 

which cause the second rate in equation (17) become 

	

( ) ( )( )
( ) ( )( )

2cosh sech 1
sinh tanh

u u
uu u

+
≈

+ 	
(19) 

However, equation (19) is not defined at 0u = , so it needs 
to make an assumption. If α is the value of u that close to 
zero then using equation (19) can be obtained intervals 

uα α− ≤ ≤ . By using this interval, equation (19) is 
considered to have the form of a linear function connecting 
the points ( ), 1α α− − and ( ),1α α ,	ie 

	
2

1( )g u u
α

=
	

(20) 

so equation (17) was reduced become 

	 ( )

2

2 2

2 2 2 2
02

( ) ( )

1 4 ( ) 0z

d E y u dE y
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k n u k E yω

α

ρ

− +

− = 	
(21) 

By letting ( )1 42 2 2
04s k n uω ρ=  into equation (21), we 

obtained 

	

2
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0
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Equation (22) is AIM-type differential equation, like in 
equation (7) with 

 
2

2
0 02

0 0

;
2 2

zks s s
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λ
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= = −

	
(23) 

for s is close to zero, we can approach equation (23) using 
Maclaurin series, given as 

	

2

0 0 0 0
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2
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in equation (22), so we obtained 

	

22

2 2
0 0

( ) ( ) ( ) 0
2 2

zkd E y s dE y E y
ds k n ds k nω ω

ρ
α ρ

− − = 	 (25) 

By letting 
2

04
w s

k nω

ρ
α

= 	in equation (25), we obtained 

	
2 22

2 2

2( ) ( )2 ( ) 0zkd E y dE yw E y
dw dw

α
ρ

− − =
	

(26) 

Equation (26) is AIM-type differential equation, and by 
using AIM, from equation (9) we obtained, 

	

2 2

20

2 2 ; 1,2,3...
m

z
j

j

k j mα
ρ=

⎡ ⎤
Δ = ∏ − − =⎢ ⎥

⎣ ⎦ 	
(27) 

according to this condition, the eigenvalues can be obtained 
as follows 

	

2 2

2 ; 0,1,2,3,...z
z

k j k i j jα ρ
ρ α

− = → = =
	

(28) 

so equation (26) can be rewritten as 

	
2

2

( ) ( )2 2 ( ) 0d E y dE yw jE y
dw dw

− + =
	

(29) 

which known as Hermite  differential equation. The 
approximate solution of equation (29) is 

	
( ) ( )2 2

( ) 1
j

j w w
j j

dH y e e
dw

−= −
	

(30) 

where 

	

1 1,  ,  1
2 2 2

w y wρ
α

α
= − ≤ ≤ =

	
(31) 

From equation (28), we can obtain the wave vector 
jz

k . 

Wave vector is dependent on the abruptness’s parameter, the 
material thickness and the level  j. In Fig. 2 is the 2-
dimension graphs between 2

jz
k versus p in any level j.  The 

amplitude of wave vector is increase with increasing  of 
abruptness’s parameter in the same level, and with the 
higher level, the amplitude of wave vector also increase, is 
like shown in Fig. 2. 

 
Figure 2: The graph of wave vector 2

jz
k  with variation j and p 

Then for the fields distribution, we investigated from the 
total eigenfunctions using equations (6,12,30-31) for j=1,2,3 
and j=4, and we take the positive sign for E(z), we obtain: 

for j=1, 
1 1( , ) zik z
xE E y z e= =   (32) 

for j=2, 
2

2
2

2 2

2( , ) 2 zik z
xE E y z y eρ

α
⎛ ⎞

= = −⎜ ⎟
⎝ ⎠

  (33) 

for j=3, 
3

3
3

3 2

4 12( , )
2 2

zik z
xE E y z y y eρ ρ

α α

⎛ ⎞
= = −⎜ ⎟

⎝ ⎠ 	

(34) 

for j=4,
4

4
4

4

4 2
2

2

4

( , )
24 12

zik z
x

y
E E y z e

y

ρ
α
ρ

α

⎛ ⎞
−⎜ ⎟

⎜ ⎟= =
⎜ ⎟

+⎜ ⎟
⎝ ⎠

  (35) 

according to equations (32-35), we obtained the electric 
fields distribution which is shown in Fig. 3. Fig. 3 is the 
graphs of electric fields distribution in various level. Fig. 3.a 
is the first level j=1 from equation (32), Fig.3.b from 
equation (33) for the second level j=2, Fig. 3.c is the third 
level from equation (34), and Fig.3.d is the fourth level from 
equation (35). The graphs show that in various the material 
thickness y , the electric field has the different distribution. 
The amplitude of electric fields are increase with higher 
level. Wave propagation of electric field E(y,z) which is 
expressed in Fig. 3 give explanation that  in a graded 
interface between left-handed and right-handed material 
using hyperbolic sinus plus tangent function has the 
symmetry propagation with y=0 is the interface point. 
 

 
(a) 

 
(b) 



 
 

84 

 
(c) 

 
(d) 

Figure 3:  Distribution of the electric fields  (a) j=1, (b) j=2 
(c) j=3 and (d) j=4 

4. Conclusions 
Asymptotic iteration method was used to investigated the 
wave propagation for transverse electric (TE) mode in a 
graded interface between left-handed and right-handed 
material. By using hyperbolic sinus function  plus 
hyperbolictangent function for negative permittivity and 
negative permeability, we obtained the graded graphs of 
permittivity and permeability as a function of material 
thickness. The wave vector was obtained using AIM, while 
the eigenfunctions were expressed using polynomial 
Hermite. The distribution of the electric field was shown in 
2-dimension graphs, which has the symmetry propagation 
with y=0 is the interface point. The amplitude of wave 
vector is increase with the higher level. The results of this 
research used the approximation solution. 
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