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Abstract 

 
The aim of this study is to develop a two-scale tool allowing 
the detailed analysis of the behavior of fiber-reinforced 
magneto-electro-elastic composite plates. The work is 
divided into two major sections. The first one deals with the 
homogenization of the properties of each layer based on the 
Mori-Tanaka mean field approach where all needed 
effective coefficients of each layer are determined. In the 
second one and in order to perform the analysis of the 
behavior of the obtained magneto-electro-elastic 
multilayered plate, the Stroh formalism is used. It allows to 
predict the effective behavior of such plates and the spatial 
distribution of the local fields along the layers. 

1. Introduction 

The behavior of active materials often exhibits multi-
physical coupling effect. Moreover, the use of composite 
materials is increasingly used to combine the different 
advantages of each material. 

Magneto-electro-elastic composites represent a new class 
of materials with several potential applications in modern 
nanoscience and nanotechnology. The interaction between 
electric polarization and magnetization offers new 
possibilities for functional materials such sensors and 
actuators. 

In addition to being a multiphysical material and in order 
to analyze materials with magneto-electric coupling, it is 
important to be able to determine the distribution of the 
physical fields within these heterogeneous structures [1]. 
 

Many analytical and mathematical models are developed 
to predict new heterogeneous magneto-electro-elastic 
composite materials. Li [2] studied the average magneto-
electro-elastic field in a multi-inclusion or inhomogeneities 
embedded in an infinite matrix. Feng, et al. [3] investigated 
the effective properties of composite consisting of piezo-
magnetic inhomogeneities embedded in a non-piezo-
magnetic matrix by using a unified energy method and the 
Mori-Tanaka and Dilute approaches. Zhang and Soh [4] 
extended the micromechanical Self Consistent, Mori-Tanaka 

and Dilute to study the coupled magneto-electro-elastic 
composite materials. The effective properties of multiphase 
and coated magneto-electro-elastic heterogeneous materials 
have been investigated by Bakkali et al [5] based on various 
micromechanical models.  Some approaches have been 
proposed to deal with fully coupled magneto-electro-elastic 
laminates. Several explicit expressions have been found by 
Kim [6] to calculate the magnetic, electric, elastic, piezo-
electric, magneto-elastic and magneto-electric effective 
properties. On the other hand, similar results have been 
obtained in [7, 8]. More recently, L.M. Sixto-Camacho et al 
[9] use the asymptotic homogenization to derive the local 
problems and the corresponding homogenized coefficients 
of periodic thermo-magneto-electro-elastic heterogeneous 
media. The theory is applied to obtain analytical expressions 
for all effective properties of an important class of periodic 
multilaminated composites. 

The Mori Tanaka model presented in this paper is used 
to predict the effective magneto-electro-elastic coefficients. 
This models permit to take into account the effect of phase 
number and concentrations, shape inclusions, as well as its 
polling orientation. Results for a two-phase composite 
material (Piezo-electric/Piezo-magnetic) with fibrous 
microstructure are presented. 

The macroscale equilibrium equations are solved 
analytically using the Stroh formalism [10-11] associated 
with the propagation matrix. It should be noted that a same 
analysis has been proposed by [15] to deal with piezo-
electric fiber actuators. However, in this multiscale analysis 
the behavior of each layer was obtained by periodic 
homogenization, which needs a more inextricable numerical 
procedure. 

This formalism will provide solutions for multifunctional 
multilayered plate, to predict the mechanical, electrical and 
magnetic behaviors near or across the interface of material 
layers. 

The coupled multiscale analysis procedure is illustrated 
through two model problems. The first model problem 
presents the behavior of a sandwich plate made of three 
heterogonous magneto-electro-elastic layers under a surface 
mechanical load. The second problem describes the 
evolution of some physical properties of graded material 
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under a surface mechanical load composed by six 
heterogeneous magneto-electro-elastic layers. 

These numerical results should be of interest to the 
design of magnet-electro-elastic composite laminates. 

2. Constitutive laws and equilibrium equations of 

magneto-electro-elastic material 

The constitutive equations for the magneto-electro-elastic 
medium relating stress σij, electric displacement Di and 
magnetic induction Bi to strain εkl, electric field Ek and 
magnetic field Hl, exhibiting linear coupling between 
magnetic, electric and elastic field can be written as: 

ij ijkl kl kij k lij l

i ikl kl il l il l

i ikl kl il l il l

C e E h H

D e E H

B h E H

 

  

  

  

  

  

 (1) 

where the elastic strain kl , electric fields lE and the 

magnetic fields lH are independent variables related to 

stresses ij , electric displacements iD and magnetic 

inductions iB . The tensors , , , ,ijkl lij il il il ilC e h and    
are the elastic, piezo-electric, piezo-magnetic, magneto-
electric, dielectric and magnetic permeability constants 
respectively. The following gradient expressions are used: 

 , , , ,
1 ,
2

e m

kl k l l k l l l lu u E and H         (2) 

where me

k andu , are the elastic displacements, electric 
and magnetic potentials respectively. The notation 

la, means 
lx

a




. 

In order to make easy the manipulation of these 
equations, particular notations will be used. These notations 
are identical to those using the conventional subscripts 
except  that the lower case  subscripts assume the  range of 
1-3, while capital subscripts take the range of 1-5, and 
repeated capital subscripts are summed over 1-5. 
With these notations, the magneto-electro-elastic constant 
can be represented as follows [5]: 
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(3) 

The generalized strain field denoted by ZMn can be 
expressed as: 
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Similarly, the generalized stress field ΣiJ is given by: 
 
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The equations of equilibrium, in the absence of body force 
and free charge and current, can be written as: 

,
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 (6) 

In what follows we will study the response of a 
multilayer subjected to uniaxial loading while considering 
each layer as a magneto-electro-elastic material composed of 
either a piezo-magnetic matrix with different volume 
fraction of piezo-electric inclusion, or a piezo-electric matrix 
with different volume fraction of inclusion piezo-magnetic. 

3. Micromechanics modelling 

In this section, the effective properties of two kinds of 
magneto-electro-elastic composites are computed based on 
the Mori-Tanaka micromechanical mean field approach. 
The first one is constituted of a piezo-magnetic matrix 
(CoFe2O4) reinforced by aligned fibrous piezo-electric 
inclusions (BaTiO3) and the second one is constituted of a 
piezo-electric matrix (BaTiO3) reinforced by aligned fibrous 
piezo-magnetic inclusions (CoFe2O4).  The micromechanics 
modeling is divided on two steps: The localization step 
which relate the local fields with the global ones and the 
homogenization step which is based on average techniques. 
A representative volume element V of the composite is 
considered. The Macroscopic fields are related to the local 
ones by the mean operator: 
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(7) 

For an N-phase composite, the macroscopic fields are 
reformulated as: 

0
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(8) 

where 'i' points to the ith phase and 
if  is the associated 

volume fraction. iZ  and i  represent the local uniform 
fields.  

Moreover, the overall constitutive equations that 
represent the effective behavior of the composite and each 
of its constituent (phase p) are given respectively by: 
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In order to make the transition scale between the local 
uniform fields (phases) and the macroscopic fields 
(composite), the localization tensors are introduced. One can 
write the localization equations as follow [5]. 
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Based on averaging techniques (Eqs. 7 and 8) and using the 
localization equations (Eq. 10), the expression of the 
effective properties is obtained: 
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 (11) 

For the case of the magneto-electro-elastic composite 
considered in this article, the expression of the effective 
properties is given by: 

 eff M I I M

iJKl iJKl iJMn iJMn MnKlE E f E E A    (12) 
where I

iJMnE  and If  represent the properties of the 
inclusions and its associated volume fraction and 

M

iJMnE represents the properties of the matrix. The localization 
tensor is a function of the phases' properties as well as of 
the shape of the inclusions. The localization tensor could be 
estimated based on different micromechanical models. In 
this paper the Mori-Tanaka model, known to be accurate 
and of its ease in implementation, is considered. Its 
expression is given by [5]. 
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in which, I I m

iJMn iJMn iJMnE E E    and IIT  is the magneto-
electro-elastic interaction tensor that is function of the 
properties of the matrix and the shape of the inclusion. 
Details about the computation of the interaction tensor are 
given in [5]. 

Some Numerical results are presented bellow for the 
considered magneto-electro-elastic composites [5]. The 
used properties are listed in table 1. The electro-magnetic 
moduli are presented in figure 1. The evolution of these 
coefficients versus the volume fraction of the piezo-electric 
inclusions is shown. 

A numerical data of the effective coefficients for 
different volume fractions of inclusions is also presented in 
table 2 and table 3.  
 

Table 1: Piezo-electric and piezo-magnetic material 
properties (Cij in GPa;  κij in 10-9 C2/Nm2; μij in 10-6 

Ns2/C2, eij in C/m2 and hij in  N/Am ). 
Material 
property 

BaTiO3 CoFe2O4 

C11 166 286 
C13 77 173 
C12 78 170 
C22 
C44 
e16 
e21 
e22 

162 
43 

11.5 
-4.4 
18.6 

269 
45 
0 
0 
0 

κ11 
κ22 
h16 
h21 
h22 
μ11 
μ22 

11.2 
12.6 

0 
0 
0 
5 

10 

0.08 
0.093 
550 

580.3 
699.7 
-590 
157 

 
     

 

Figure 1: The effective magneto-electric moduli α11 et α33 
presented for a fibrous magneto-electro-elastic composite 
constituted of piezo-electric inclusions embedded in a piezo-
magnetic matrix versus the volume fraction of the piezo-
electric inclusions. 

4. Stroh formalism solution for the macroscopic 

fields 

In order to analyze and design materials and devices with 
magneto-electric coupling, it is important to determine the 
distribution of the physical fields within these heterogeneous 
structures. 

We use the Stroh formalism, described by Ting [11], to obtain 
a general solution of Eq (6). The state variables satisfy the case of 
simply supported boundary condition. 
Solutions of extended displacement vector and traction 
vector are respectively assumed to be as follow: 
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(15) 

where p = n/Lx , q = m/Ly; n and m are two positive 
integers. 
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Based on the Stroh formalism [10-11], the vector 
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Stresses should satisfy the equations of equilibrium, which 
in terms of the vector a, yields the following eigenequation: 
 

  2 0TQ s R R s T a    
 

 (18) 

 
The linear eigensystem to be solved is then: 
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In order to obtain the extended displacement and traction 
vectors at any depth, say 1 kk zzz  in layer k, we 
propagate the solution from the bottom of the surface to the 
z-level, i.e., 
 

       1 1 1 2 2 1 1
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where jjj zzh  1 is the thickness of layer j. 
The propagating relation can be used repeatedly so that one 
can propagate the physical quantities from the bottom 
surface z=0 to the top surface z=H of the layered plate, then: 

       1 1 2 2 1 1
0

......N N N N

H

u u
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t t
 

   
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   
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Various combinations of mechanical and electrical loads 
may be considered at the top (z=H) and at the bottom (z=0) 
of the plate.  

The Eshelby-Stroh solution for the macroscale analysis 
of laminated piezo-electric composite structures has been 
used in earlier studies [12, 13, 14] 

5. Two-scale method results 

The multiscale framework is used to analyze two model 
problems. In the first problem, we consider a simply 
supported laminate consisting on sandwich multilayered 
composed by three magneto-electro-elastic layers of equal 
thickness h=0.1 with Piezo-electric fiber volume fraction 
respectively of 0.1, 0.5 and 0.1 (figure 2). A z-direction 
traction with amplitude σ0=1N/m2 is applied on the top of 
the surface z=0.3 m. Responses are calculated for fixed 
horizontal coordinates (x,y)=(0.75Lx,0.25Ly). 
 

 
Figure 2: Sandwich multilayer made by piezo-magnetic 
matrix with Piezo-electric fiber volume fraction (VF) 

respectively of 0.1, 0.5 and 0.1 
 
This case will be compared to the one where the matrix is 
made by a piezo-electric material and the inclusion made by 
a piezo-magnetic material (figure 3). 

 
 

Figure 3: Sandwich multilayer made by piezo-electric matrix 
with Piezo-electric fiber volume fraction (VF) respectively 

of 0.1, 0.5 and 0.1 
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Table 2: Effective properties of fibrous 
Magneto-electro-elastic composites constituted of a piezo-
magnetic (CoFe2O4)  matrix reinforced by piezo-electric 
(BaTiO3) inclusions (Cij in GPa;  κij in 10-9 C2/Nm2; μij in 
Ns2/C2, eij in C/m2; hij in  N/Am and αij in 10-9 Ns/VC). 

Material  
property 

VF= 0.1 VF=0.15 VF=0.3 VF=0.5 

C11  268.29 260.12 238.01 213.02 
C22 254.72 247.82 228.81 206.63 
C44 46.108 46.524 47.811 49.592 
C55 55.145 54.482 52.548 50.093 
C13 158 151.1 132.91 112.84 
C12 156.06 149.68 132.48 113.29 
e21 -0.6659 -0.9712 -1.79316 -2.7108 
e22 1.66569 2.52231 5.17274 8.8598 
e16 0.01645 0.02624 0.06451 0.1525 
h21  492.395 452.108 343.657 222.61 
h22 604.279 559.692 436.501 292.31 
h16 449.222 405.509 294.832 182.131 
ĸ11  0.09753 0.1078 0.14731 0.2358 
ĸ22 1.3519 1.9803 3.8621 6.3646 
μ11  -0.000481 -0.000434 -0.00031 -0.00019 
μ22  0.00014 0.000135 0.000113 8.386e-5 
α11  1.41e-3 2.0319e-3 3.6321e-3 5.306e-3 
α22 1.22 1.6749 2.5466 2.7499 

 
 

Table 3: Effective properties of  fibrous magneto-electro-
elastic composites constituted of a piezo-electric (BaTiO3) 
matrix reinforced by piezo-magnetic (CoFe2O4) inclusions 
(Cij in GPa;  κij in 10-9 C2/Nm2; μij in Ns2/C2, eij in C/m2; hij 

in  N/Am and αij in 10-9 Ns/VC). 
Material 
property 

VF=0.1 VF=0.15 VF=0.3 VF=0.5 

C11  173.85 178 191.48 212.27 
C22 169.86 173.94 186.89 206.13 
C44 43.841 44.183 44.942 45.429 
C55 45.54 46.072 47.715 50.027 
C13 82.772 85.86 96.046 112.22 
C12 83.802 86.886 96.964 112.71 
e21 -4.12249 -3.97501 -3.493045 -2.73999 
e22 16.6015 15.6097 12.6681 8.83996 
e16 9.83339 9.05335 6.892 4.3814 
h21  36.5939 56.0411 119.6 218.912 
h22 51.7065 78.5398 163.485 289.158 
h16 -0.91335 -1.47788 -3.7768 -9.32543 
ĸ11  9.1895 8.3138 6.0869 3.8041 
ĸ22 11.356 10.734 8.8647 6.3685 
μ11 6.13e-06 6.8e-06 9.391e-06 1.535e-05 
μ22  2.48e-05 3.221e-05 5.439e-05 8.388e-05 
α11  -0.034183 -0.04446 -0.055479 -0.041491 
α22  0.87296 1.2626 2.2191 2.9012 

 
Figures 4 and 5 present the evolution of the electric and 

magnetic potential along the thickness direction of these 
different sandwich multilayers. It is obvious that the 
potential variations for the two cases are completely 
different.  

Figure 4 shows that the two composites behave in a 
different manner except at the intermediate layer where the 
volume fraction of the both inclusions is the same. 
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Figure 4 : Variation of the electric potential along the 

thickness direction in the sandwich plate caused by a surface 
load on the top surface 
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Figure 5: Variation of the magnetic potential along the 

thickness direction in the sandwich plate caused by a surface 
load on the top surface 

 
The second model concerns the graded material shown in 
figure 6. 

In this example, we consider a simply supported 
laminate consisting on a graded material composed by six 
magneto-electro-elastic layers of equal thickness h=0.05 m. 
The first three layers are made by piezo-magnetic 
(CoFe2O4) matrix and piezo-electric (BaTiO3) inclusions 
with volume fraction ranging from 0.15 to 0.5. The last three 
layers are each made by a piezo-electric (BaTiO3) matrix 
and piezo-magnetic (CoFe2O4) inclusions with volume 
fraction varying from 0.5 to 0.15 (figure 6). A z-direction 

BaTiO3 matrix 
with respectively, 
0.1, 0.5, 0.1 VF 
CoFe2O4 inclusions 

CoFe2O4 matrix 
with respectively, 
0.1, 0.5, 0.1 VF  
BaTiO3 inclusions 

CoFe2O4 matrix 
with respectively, 
0.1, 0.5, 0.1 VF 
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traction with amplitude σ0=1N/m2 is applied on the top of 
the surface z=0.3 m. Responses are calculated for fixed 
horizontal coordinates (x,y)=(0.75Lx,0.25Ly). 
 

 
Figure 6: Graded material 

 
The behavior of this multilayer is compared with that of 

a composite consisting of layers made by piezo-magnetic 
(CoFe2O4) matrix with a 0.5 volume fraction of piezo-
electric (BaTiO3) inclusion and to that of a composite of 
layers made by piezo-electric matrix with 0.5 volume 
fraction of piezo-magnetic inclusion. 
Figures 7 and 8 show the evolution of the electric and 
magnetic potential for these different multilayers. We 
observe that the evolution of the electrical potential of the 
three first layers of the graded material varies in the same 
direction as in the case of composite made by a piezo-
magnetic matrix with 0.5 volume fraction of piezo-electric 
inclusion. 

However, for the last three layers the electric potential 
varies in the same direction as the case of composite made 
by piezo-electric matrix with 0.5 volume fraction piezo-
magnetic inclusion. 
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Figure 7 : Variation of the electric potential along the 
thickness direction in the graded material caused by a 

surface load on the top surface 
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Figure 8 : Variation of the magnetic potential along the 
thickness direction in the graded material caused by a 

surface load on the top surface 
 

Conclusion 

In this paper, the micro-macro problem to obtain the 
homogenized effective coefficients of magneto-electro-
elastic heterogeneous media was derived based on the Mori 
Tanaka method. This homogenization model is used to 
obtain the effective elastic, piezo-electric, piezo-magnetic, 
dielectric, magnetic and magneto-electric coefficients. Stroh 
Formalism is devoted to predict macroscopic fields in a 
multilayered plate. 

This multiscale framework is used to analyze two 
problems, a sandwich multilayered plates and a graded 
material. This allowed us to predict the behavior of these 
multilayered rectangular plates under surface loads with 
defined inclusion direction. 
Apart from extending the multiscale method proposed by 
[15] to taking into account the magnetic effect, the present 
method is based on a more simple procedure (Mori-Tanaka) 
to describe the behavior of each layer.  

A genetic algorithm can be developed to optimize the 
best distribution of volume fraction of inclusion fiber for 
some defined physical constraints. 
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