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Abstract

The aim of this study is to develop a two-scale tool allowing
the detailed analysis of the behavior of fiber-reinforced
magneto-electro-elastic composite plates. The work is
divided into two major sections. The first one deals with the
homogenization of the properties of each layer based on the
Mori-Tanaka mean field approach where all needed
effective coefficients of each layer are determined. In the
second one and in order to perform the analysis of the
behavior of the obtained magneto-electro-elastic
multilayered plate, the Stroh formalism is used. It allows to
predict the effective behavior of such plates and the spatial
distribution of the local fields along the layers.

1. Introduction

The behavior of active materials often exhibits multi-
physical coupling effect. Moreover, the use of composite
materials is increasingly used to combine the different
advantages of each material.

Magneto-electro-elastic composites represent a new class
of materials with several potential applications in modern
nanoscience and nanotechnology. The interaction between
electric polarization and magnetization offers new
possibilities for functional materials such sensors and
actuators.

In addition to being a multiphysical material and in order
to analyze materials with magneto-electric coupling, it is
important to be able to determine the distribution of the
physical fields within these heterogeneous structures [1].

Many analytical and mathematical models are developed
to predict new heterogeneous magneto-electro-elastic
composite materials. Li [2] studied the average magneto-
electro-elastic field in a multi-inclusion or inhomogeneities
embedded in an infinite matrix. Feng, et al. [3] investigated
the effective properties of composite consisting of piezo-
magnetic inhomogeneities embedded in a non-piezo-
magnetic matrix by using a unified energy method and the
Mori-Tanaka and Dilute approaches. Zhang and Soh [4]
extended the micromechanical Self Consistent, Mori-Tanaka

and Dilute to study the coupled magneto-electro-elastic
composite materials. The effective properties of multiphase
and coated magneto-electro-elastic heterogeneous materials
have been investigated by Bakkali et al [5] based on various
micromechanical models. Some approaches have been
proposed to deal with fully coupled magneto-electro-elastic
laminates. Several explicit expressions have been found by
Kim [6] to calculate the magnetic, electric, elastic, piezo-
electric, magneto-elastic and magneto-electric effective
properties. On the other hand, similar results have been
obtained in [7, 8]. More recently, L.M. Sixto-Camacho et al
[9] use the asymptotic homogenization to derive the local
problems and the corresponding homogenized coefficients
of periodic thermo-magneto-electro-elastic heterogeneous
media. The theory is applied to obtain analytical expressions
for all effective properties of an important class of periodic
multilaminated composites.

The Mori Tanaka model presented in this paper is used
to predict the effective magneto-electro-elastic coefficients.
This models permit to take into account the effect of phase
number and concentrations, shape inclusions, as well as its
polling orientation. Results for a two-phase composite
material  (Piezo-electric/Piezo-magnetic) with  fibrous
microstructure are presented.

The macroscale equilibrium equations are solved
analytically using the Stroh formalism [10-11] associated
with the propagation matrix. It should be noted that a same
analysis has been proposed by [15] to deal with piezo-
electric fiber actuators. However, in this multiscale analysis
the behavior of each layer was obtained by periodic
homogenization, which needs a more inextricable numerical
procedure.

This formalism will provide solutions for multifunctional
multilayered plate, to predict the mechanical, electrical and
magnetic behaviors near or across the interface of material
layers.

The coupled multiscale analysis procedure is illustrated
through two model problems. The first model problem
presents the behavior of a sandwich plate made of three
heterogonous magneto-electro-elastic layers under a surface
mechanical load. The second problem describes the
evolution of some physical properties of graded material



under a surface mechanical load composed by six
heterogeneous magneto-electro-elastic layers.

These numerical results should be of interest to the
design of magnet-electro-elastic composite laminates.

2. Constitutive laws and equilibrium equations of
magneto-electro-elastic material

The constitutive equations for the magneto-electro-elastic
medium relating stress oj, electric displacement D; and
magnetic induction B; to strain ey, electric field Ex and
magnetic field Hj, exhibiting linear coupling between
magnetic, electric and elastic field can be written as:

Oy = Cijkl‘c"kl — €4 E - hlij H,

D, =esq + 5, E + o H, )
B =hy&y + oy + 4 H,

where the elastic strain &, , electric fields EI and the

magnetic fields H, are independent variables related to

stresses  Oy; , electric  displacements D, and magnetic

inductions B;. The tensors Cy, €, o, hy, & and g,

are the elastic, piezo-electric, piezo-magnetic, magneto-
electric, dielectric and magnetic permeability constants
respectively. The following gradient expressions are used:
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where Uy, p°and @" are the elastic displacements, electric

and magnetic potentials respectively. The notation
oa

d, means —.

’ oX,

In order to make easy the manipulation of these
equations, particular notations will be used. These notations
are identical to those using the conventional subscripts
except that the lower case subscripts assume the range of
1-3, while capital subscripts take the range of 1-5, and
repeated capital subscripts are summed over 1-5.

With these notations, the magneto-electro-elastic constant
can be represented as follows [5]:

Cym (3,M =1,2,3)

6 (I=123M =4)

hy (3=1,23M=5)
e _lem  (I=4M=123) o
Mo hL, (I=5M=1,2,3)

-k, (J=4M=4)

—a, (J=4M=50rJ=5M =4)

—ty (I =5M =5)

The generalized strain field denoted by Zwn can be
expressed as:
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em (M =1,23)
Zy,=1-E, (M =4) 4
-H, (M=5)
Similarly, the generalized stress field X is given by:
oy (I=123)
Z, =10 (‘J :4) (5)
B (J=5)

The equations of equilibrium, in the absence of body force
and free charge and current, can be written as:

0, =0
D;;=0 (6)
BJ.’j =0

In what follows we will study the response of a
multilayer subjected to uniaxial loading while considering
each layer as a magneto-electro-elastic material composed of
either a piezo-magnetic matrix with different volume
fraction of piezo-electric inclusion, or a piezo-electric matrix
with different volume fraction of inclusion piezo-magnetic.

3. Micromechanics modelling

In this section, the effective properties of two kinds of
magneto-electro-elastic composites are computed based on
the Mori-Tanaka micromechanical mean field approach.
The first one is constituted of a piezo-magnetic matrix
(CoFe;04) reinforced by aligned fibrous piezo-electric
inclusions (BaTiO3) and the second one is constituted of a
piezo-electric matrix (BaTiOs) reinforced by aligned fibrous
piezo-magnetic inclusions (CoFe;O4). The micromechanics
modeling is divided on two steps: The localization step
which relate the local fields with the global ones and the
homogenization step which is based on average techniques.

A representative volume element V of the composite is
considered. The Macroscopic fields are related to the local
ones by the mean operator:

ZE :\%\_!‘ZIJ (r)dV
o (7)
= =VJZU (r)dv

For an N-phase composite, the macroscopic fields are
reformulated as:

N .

Z|OJ :z fi ZIIJ
i=1

0 > i

Zu = z fi Zlu
i=1

where 'i' points to the i" phase and f is the associated

)

volume fraction. Z' and ¥' represent the local uniform
fields.

Moreover, the overall constitutive equations that
represent the effective behavior of the composite and each
of its constituent (phase p) are given respectively by:
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i = B
In order to make the transition scale between the local
uniform fields (phases) and the macroscopic fields

(composite), the localization tensors are introduced. One can
write the localization equations as follow [5].

Zi?l = AiEIMn Zlgln
b = Bl 2M
Based on averaging techniques (Eqs. 7 and 8) and using the

localization equations (Eq. 10), the expression of the
effective properties is obtained:

N
Eds, =, f.ER AR, (11)
p=l1

For the case of the magneto-electro-elastic composite
considered in this article, the expression of the effective
properties is given by:

©)

(10)

Ef =Eda + ' (EiIJMn —Eun ) Ak (12)
where E! ~and f' represent the properties of the
inclusions and its associated volume fraction and

EM,, represents the properties of the matrix. The localization

tensor is a function of the phases' properties as well as of
the shape of the inclusions. The localization tensor could be
estimated based on different micromechanical models. In
this paper the Mori-Tanaka model, known to be accurate
and of its ease in implementation, is considered. Its
expression is given by [5].

£ !
Avna = [ L + _-l-iJllLlAEiIJMnj

v (13)

in which, AE!

iJMn
electro-elastic interaction tensor that is function of the
properties of the matrix and the shape of the inclusion.
Details about the computation of the interaction tensor are
given in [5].

Some Numerical results are presented bellow for the
considered magneto-electro-elastic composites [5]. The
used properties are listed in table 1. The electro-magnetic
moduli are presented in figure 1. The evolution of these
coefficients versus the volume fraction of the piezo-electric
inclusions is shown.

A numerical data of the effective coefficients for
different volume fractions of inclusions is also presented in
table 2 and table 3.

-E., —E", and T" is the magneto-

Table 1: Piezo-electric and piezo-magnetic material
properties (Cjj in GPa; «j in 10 C>/Nm?; ;j in 107
Ns?/C?, ejj in C/m? and hij in N/Am ).

Material BaTiOs CoFe20s

property
Cu 166 286
Cis 77 173
Ci2 78 170
C22 162 269
Cas 43 45
el6 11.5 0
€1 -4.4 0
(5] 18.6 0
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Ki1 11.2 0.08
K22 12.6 0.093
hie 0 550
h2 0 580.3
h2 0 699.7
Hil 5 -590
22 10 157
o 10° o 10" : :
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Figure 1: The effective magneto-electric moduli o et o33
presented for a fibrous magneto-electro-elastic composite
constituted of piezo-electric inclusions embedded in a piezo-
magnetic matrix versus the volume fraction of the piezo-
electric inclusions.
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4. Stroh formalism solution for the macroscopic
fields

In order to analyze and design materials and devices with
magneto-electric coupling, it is important to determine the
distribution of the physical fields within these heterogeneous
structures.

We use the Stroh formalism, described by Ting [11], to obtain
a general solution of Eq (6). The state variables satisfy the case of
simply supported boundary condition.
Solutions of extended displacement vector and traction
vector are respectively assumed to be as follow:

u, &, cos pxsinqy
u, a, sin pxcosqy
u=lu, |= o2 a, sin pxsinqy (14)
) a, sin pxcosqy
% | & sin pxcosqy
N [ b, cos pxsinqy |
Oy b, sin pxcosqy
t=| o, |=€%| b, sin pxsinqy (15)
D, b, sin pxcosqy
| B, | | bs sin pxcosqy |

where p = n/Ly , ¢ = mn/Ly; n and m are two positive
integers.



Based on the Stroh formalism [10-11], the vector
b=[b.b,,b,,b,,b;] is related to the  vector
a=[a,a,,a,,a,,a] by:
1
b=(—RT+sT)a=——(Q+sR)a (16)
S
where:
0 0 pCi; 0 0
0 0 qC,; 0 0
R=-pCss —dCyy 0 —dey, —ghyy
0 0 0eys 0 0
| 0 0 gh,; 0 0 |
[Css 0 0 0 0 |
Cy O €34 hyy
—K3z —033
L —H33 |
_pzcn_qzcﬁe _(CI2+C66)pq 0 _(e1ﬁ+ez|)pq _pq(h]6+h2|)
_qzceb_pzczz 0 _pzelﬁ_qzezz _pzhlﬁ_qzhzz
Q= - plcss _qzcu 0 0
Ky p2+)c12q2 aupz*’azzqz
/lnpz'*'/‘zzq2

Stresses should satisfy the equations of equilibrium, which
in terms of the vector a, yields the following eigenequation:

[Q+s(R+RT)+sZT]a=0 (18)
The linear eigensystem to be solved is then:
N 4 S a 19
b1~ 5 b (19)
where
_T -1 RT T -1
= 20
{—Q—k RT'R' —RTI} 20)

In order to obtain the extended displacement and traction
vectors at any depth, say Z, <Z<Z,, in layer k, we

propagate the solution from the bottom of the surface to the
z-level, i.e.,

!

where hj =2z;,, —2;is the thickness of layer j.
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0

The propagating relation can be used repeatedly so that one
can propagate the physical quantities from the bottom
surface z=0 to the top surface z=H of the layered plate, then:
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u u
| =R 0RO R0 | e
H 0
Various combinations of mechanical and electrical loads
may be considered at the top (z=H) and at the bottom (z=0)
of the plate.
The Eshelby-Stroh solution for the macroscale analysis
of laminated piezo-electric composite structures has been
used in earlier studies [12, 13, 14]

5. Two-scale method results

The multiscale framework is used to analyze two model
problems. In the first problem, we consider a simply
supported laminate consisting on sandwich multilayered
composed by three magneto-electro-elastic layers of equal
thickness h=0.1 with Piezo-electric fiber volume fraction
respectively of 0.1, 0.5 and 0.1 (figure 2). A z-direction
traction with amplitude 6,=1N/m? is applied on the top of
the surface z=0.3 m. Responses are calculated for fixed
horizontal coordinates (x,y)=(0.75Lx,0.25L,).

CoFe204 Matrix + 0.1 WVF BaTiOz

CoFez204 Matrix + 0.5 VF BaTiOz

CoFez04 Matrix + 0.1 VF BaTiOz

Figure 2: Sandwich multilayer made by piezo-magnetic
matrix with Piezo-electric fiber volume fraction (VF)
respectively of 0.1, 0.5 and 0.1

This case will be compared to the one where the matrix is
made by a piezo-electric material and the inclusion made by
a piezo-magnetic material (figure 3).

BaTlO= Matrix + 0.1 VF CoFez204

BaTlO= Matrix + 0.5 VF CoFez Oz

BaTlOz Matrix + 0.1 VF CoFe20a

Figure 3: Sandwich multilayer made by piezo-electric matrix
with Piezo-electric fiber volume fraction (VF) respectively
0of 0.1, 0.5 and 0.1



Table 2: Effective properties of fibrous
Magneto-electro-elastic composites constituted of a piezo-
magnetic (CoFe204) matrix reinforced by piezo-electric
(BaTiOs) inclusions (Cjj in GPa; «jj in 10° C¥Nm?; w; in
Ns?/C?, ¢; in C/m?; h;j in N/Am and aij in 10° Ns/VC).

Material VF=0.1 VF=0.15 VF=0.3 VF=0.5

property
Cu 268.29 260.12 238.01 213.02
Cx 254.72 247.82 228.81 206.63
Cas 46.108 46.524 47.811 49.592
Css 55.145 54.482 52.548 50.093
Ci3 158 151.1 132.91 112.84
Ci2 156.06 149.68 132.48 113.29
el -0.6659 -0.9712 -1.79316 -2.7108
e 1.66569 2.52231 5.17274 8.8598
e16 0.01645 0.02624 0.06451 0.1525
ha 492.395 452.108 343.657 222.61
h2 604.279 559.692 436.501 292.31
his 449.222 405.509 294.832 182.131
K11 0.09753 0.1078 0.14731 0.2358
K22 1.3519 1.9803 3.8621 6.3646
pi -0.000481 -0.000434 -0.00031 -0.00019
p22 0.00014 0.000135 0.000113 8.386e-5
ol 1.41e-3 2.0319e-3 3.6321e-3 5.306e-3
022 1.22 1.6749 2.5466 2.7499

Table 3: Effective properties of fibrous magneto-electro-

elastic composites constituted of a piezo-electric (BaTiOs)

matrix reinforced by piezo-magnetic (CoFe204) inclusions

(Cjj in GPa; «j in 10 C¥/Nm?; pjj in Ns%/C?, g in C/m?; hyj
in N/Am and aij in 10° Ns/VC).

Material  VF=0.1  VF=0.15 _ VF=0.3 VF=0.5

property
Cn 173.85 178 191.48 212.27
Co 169.86 173.94 186.89 206.13
Cu 43.841 44.183 44.942 45.429
Css 45.54 46.072 47.715 50.027
Cis 82.772 85.86 96.046 112.22
Ci 83.802 86.886 96.964 112.71
el 412249 -3.97501 -3.493045 -2.73999
en 16.6015 15.6097  12.6681 8.83996
el 9.83339 9.05335 6.892 43814
hoi 36.5939 56.0411 119.6 218.912
ho» 51.7065 78.5398  163.485 289.158
his 091335 -1.47788  -3.7768 -9.32543
K11 9.1895 8.3138 6.0869 3.8041
K2 11.356 10.734 8.8647 6.3685
Hu 6.13¢-06 6.8¢-06  9.391e-06 1.535¢-05
H22 2.48¢-05  3.221e-05 5.439¢-05 8.388¢-05
an 0.034183  -0.04446 -0.055479 -0.041491
a2 0.87296 1.2626 2.2191 2.9012

95

Figures 4 and 5 present the evolution of the electric and
magnetic potential along the thickness direction of these
different sandwich multilayers. It is obvious that the
potential variations for the two cases are completely
different.

Figure 4 shows that the two composites behave in a
different manner except at the intermediate layer where the
volume fraction of the both inclusions is the same.

‘R\‘ / CoFe20s4  matrix
with respectively,—
*\,\ 0.1, 0.5, 0.1 VF
BaTiOs inclusions
);%Xx //
| BaTiOs matrix Y/
with  respectively, N
1 0.1, 0.5, 0.1 VF
CoFe204 inclusions \’\\X
| |

Figure 4 : Variation of the electric potential along the
thickness direction in the sandwich plate caused by a surface
load on the top surface

;

|

CoFe204 matrix |
with  respectively,
0.1, 0.5, 0.1 VF-
BaTiOs inclusions

~

\

/
BaTiOs matrix withw&

respectively, 0.1, 0.5,
0.1 VF CoFe04

|"inclusions \
| |
| |
| |

Figure 5: Variation of the magnetic potential along the
thickness direction in the sandwich plate caused by a surface
load on the top surface

The second model concerns the graded material shown in
figure 6.

In this example, we consider a simply supported
laminate consisting on a graded material composed by six
magneto-electro-elastic layers of equal thickness h=0.05 m.
The first three layers are made by piezo-magnetic
(CoFe204) matrix and piezo-electric (BaTiOs) inclusions
with volume fraction ranging from 0.15 to 0.5. The last three
layers are each made by a piezo-electric (BaTiOs) matrix
and piezo-magnetic (CoFe204) inclusions with volume
fraction varying from 0.5 to 0.15 (figure 6). A z-direction



traction with amplitude 6,=1N/m?” is applied on the top of
the surface z=0.3 m. Responses are calculated for fixed
horizontal coordinates (x,y)=(0.75Ly,0.25Ly).

ﬁv

z/\
y
BaTiOz2 Matrix + 0.15 VF CoFe204 ﬁL -
BaTiOz Matrix +0.3 VF CoFe20s
BaTiOz matrix + 0.5 VF CoFez04 z
CoFe204 Matrix + 0.5 VF BaTiO3z
-
CoFez04 Matrix +0.3 VF BaTiOz - Y
- ( 2
CoFez0as Matrix +0.15 VF BaTiOz ﬂf _

Figure 6: Graded material

The behavior of this multilayer is compared with that of

a composite consisting of layers made by piezo-magnetic
(CoFe204) matrix with a 0.5 volume fraction of piezo-
electric (BaTiOs) inclusion and to that of a composite of
layers made by piezo-electric matrix with 0.5 volume
fraction of piezo-magnetic inclusion.
Figures 7 and 8 show the evolution of the electric and
magnetic potential for these different multilayers. We
observe that the evolution of the electrical potential of the
three first layers of the graded material varies in the same
direction as in the case of composite made by a piezo-
magnetic matrix with 0.5 volume fraction of piezo-electric
inclusion.

However, for the last three layers the electric potential
varies in the same direction as the case of composite made
by piezo-electric matrix with 0.5 volume fraction piezo-
magnetic inclusion.

CoFe204 matrix with 0.5
/VF BaTiOz inclusions | }
| |

bV

g 9

§ Graded material

/

BaTiOs
matrix with

0.5 VF f\
CoFe:Ox \ é
|
| ‘
|
I

Figure 7 : Variation of the electric potential along the
thickness direction in the graded material caused by a
surface load on the top surface

96

CoFe204 matrix with 0.5
VF BaTiOs inclusions

b |

i % Graded

material
Va

|BaTiO3 matrix

with 0.5 VF

| CoFe204 /
inclusions % (

|
Figure 8 : Variation of the magnetic potential along the
thickness direction in the graded material caused by a
surface load on the top surface
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Conclusion

In this paper, the micro-macro problem to obtain the
homogenized effective coefficients of magneto-electro-
elastic heterogeneous media was derived based on the Mori
Tanaka method. This homogenization model is used to
obtain the effective elastic, piezo-electric, piezo-magnetic,
dielectric, magnetic and magneto-electric coefficients. Stroh
Formalism is devoted to predict macroscopic fields in a
multilayered plate.

This multiscale framework is used to analyze two

problems, a sandwich multilayered plates and a graded
material. This allowed us to predict the behavior of these
multilayered rectangular plates under surface loads with
defined inclusion direction.
Apart from extending the multiscale method proposed by
[15] to taking into account the magnetic effect, the present
method is based on a more simple procedure (Mori-Tanaka)
to describe the behavior of each layer.

A genetic algorithm can be developed to optimize the
best distribution of volume fraction of inclusion fiber for
some defined physical constraints.
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