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Abstract

The RLGC model, and its variations, is one of the most
common techniques to simulate transmission lines. The
RLGC model uses circuit network elements consisting of
Resistance R, Inductance L, Conductance G and Capacitance
C (per unit length) to represent a small segment of the
transmission line, and then cascades multiple segments to
simulate the transmission line of arbitrary length. Typically,
the parameters in RLGC model are extracted from the
propagation constant y and characteristic impedance Z, of the
transmission line which are found using numerical simulation
methods. These resulting RLGC parameters for multi-GHz
signaling are usually frequency-dependent. This paper
introduces an analytical approach to extract RLGC
parameters to simulate a transmission line, which results in a
different model, the RLGC(p) model.

1. Introduction

Maxwell’s Equations have been widely studied and used
since their publication in 1861 by the Scottish physicist and
mathematician James Clerk Maxwell. While Maxwell’s
Equations may appear in different forms, a common key
aspect is that these equations specify the relationship of
electric field intensity (E), magnetic field intensity (H),
electric charge density (p) and electric current density (J) at a
particular space-time!?), (x',t"). For example:

VxE(x',t")=-0B(x',t") /o'

VxB(X,t") = uJ (Z',t") + ps OE(X',t") Jot’
V-E&,t)=p@E. 1)/ e

V-B(,1)=0

Where B(x',t") = uH(x',t") is the magnetic flux density at
point X', time t', and p is the permeability of the medium.

To analyze electromagnetic field propagation we need to find
the causal relationship between different space-times for the
source (x’,t') and the observation point (X,t) . Since
electromagnetic fields propagate in the medium with a finite
propagation speed, denoted as v, there is a time difference in

the relationship of electromagnetic fields at the source and the
observation point. This phenomenon is known as time
retardation and the time difference can be described as t —
t'=|x" —x|/v.
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Figure 1: Time Retardation of Electromagnetic Fields

For Electrostatic fields where the source does not change over
time: E(x',t) = E(@,t") and H(',¢) = H(x',t") ; therefore, the
electromagnetic fields at the source and the observation point
can have the same time component, t, which makes the
propagation appear instantaneous and renders the time
retardation  irrelevant. = However, for time-varying
electromagnetic fields, the time component ¢’ and ¢ must be
treated differently, and the derivative on ¢’ will result in extra
terms as t' is correlated t, x', ¥ . In other words, a
comprehensive solution of electromagnetic fields that
addresses time retardation must include these extra terms. We
call such a solution the retarded solution of electromagnetic
fields. It should be noted that the solution for Electrostatic
fields is a special case of the retarded solution where the extra
terms are zero due to t’ = ¢.

The retarded solution of electromagnetic fields can be derived
from Maxwell’s Equations with a Green’s Function. The
retarded solution for point source, which is also known as the
Jefimenko’s Equations ], can be found as:
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With a Fourier transform, this can be converted to Frequency
Domain:



E(x,0)=

4zeR

D= H C()R T —joR[v , —
B(X,w) = 1+ —)| J(X', w)e "’ xF
(F0) =~ (4 =) (F,0) ]
The solution for other types of sources can be developed
based on the solution for a point source.

In the above equations, the term j"’TR is introduced due to

consideration of the retardation, and the ratio wTR can be used

as an indicator for the impact of retardation. When the
frequency is low, the electrical distance between source and

observation point is small, wTR « 1, and the retarded solution

of electromagnetic fields can be approximated by the static
solution™. However, Feynman emphasized that the terms
representing time retardation should not be omitted when they
become significantl®l. Also, for discussion in future sections,
it should be recalled that a phase shift in the frequency domain
leads to a time retardation in the time domain!?!.

2. Theoretical Case Study

The retarded solution of electromagnetic fields provides an
analytical way to solve the electromagnetic fields. In this
section, we use it to solve the test case of a simplified
transmission line. For this test case, we use a lossless thin
straight line source along the z direction to represent the
transmission line and a flat PEC plane at distance h away
from the line source to represent the reference plane. We fill
the entire space with uniform, lossless medium with € =
4¢y and p = po in which the electromagnetic fields propagate
at velocity, v. As a simplification, the model is extended to
infinity to avoid the need of handling any boundary condition.

Figure 2: Case Study

For demonstration purposes, a source charge density,
p(z',t) = a;(z")Qos(k sz’ —wt — @) , is assumed to be a
sinusoidal wave where charge, Q, and attenuation, a,, are
unity and frequency is 100 GHz (refer to Section 3.2 of
reference [1]).

We observe the electromagnetic fields on the surface of the
PEC reference plane, for h= 10mils and h = 100 mils ,
respectively. We plot the magnitude of the fields in color
where positive peak is in red and negative peak is in blue.
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In addition to showing that the magnitude of field intensity at
X is inversely proportional to its distance from X', these
electric field intensity plots, Figure 3 to Figure 6, show the
time retardation due to finite propagation velocity of fields. It
is apparent that the peak of field intensity lags behind the peak
of the source, and the delay is proportional to the distance,
resulting in a “new moon” field pattern on the observation
plane. This is more obvious with larger h as the field has been
spread out further when it arrives at the reference plane such
as in Figures 3(b) and 4(b).

For the same study case, we can observe the field magnitude
on the cross section of the model, as indicated in Figure 7. In
this case, we set h = 100 mils and set source frequency to 100
GHz and 10 GHz, respectively in Figure 8 and Figure 9.

ykx_z

&~
OZ'\\— ,\“View Angle

Figure 7: Case Study
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In these field plots, the background color represents the
magnitude of the field where peak magnitude is red and
minimum magnitude is blue. The red arrows indicate the
direction of the Exy field (electrical field on the x-y
observation plane) and the blue arrows indicate the direction
of the §xy field (magnetic field on the x-y observation plane).

The direction of Exy (red arrows) and Exy (blue arrows) in
both figures shows that the energy is propagating in the same
direction for any point on the observation plane; however, the
direction of fields are not uniform for 100 GHz. This is due
to time retardation of the fields. The total field is a sum of the
original fields directly from the line source and the reflected
field from the PEC reference plane. The total field at a given
observation location is dominated by a certain section of the
line source due to time retardation and the dominating section
is related to the distance of the observation location to line
source. If the source is varying at a very high frequency, there
is more variation in the dominating sections on the line source
for the observation area, some of which segments may even
be on different parity. This creates an irregular field pattern
and opposite direction of the fields for 100 GHz source as
shown in Figure 8. Conversely shown in Figure 9, if the
source is varying slower there is minor variation in the
dominating sections on the line source for the observation
area; therefore, the total field is more uniform. Note that the
direction of electric field intensity at the bottom of both
Figure 8 and Figure 9 is perpendicular to the PEC as required.

Electromagnetic fields near the transmission line are the key
to understanding the performance of the transmission line. As
with field patterns in Figure 8 and Figure 9, there are unique



characteristics for transmission line at high frequency. This
can be studied analytically by using the retarded solution of
the fields introduced in the previous section of this paper and
by using the simulation program developed by the authors.

3. Simulation Case Study

In the previous section, it was demonstrated how to solve the
electromagnetic fields near a transmission line using the
retarded solution. In this section, these field solutions will be
used to study the RLGC model which is a common technique
for representing transmission line behavior. As in Section 2,
and illustrated in Figure 7, a simplified representation of a
transmission line is assumed where a lossless, thin, and
uniform line source along the z axis is placed above a flat,
PEC plane. The medium is again assumed to be uniform and
lossless with € = 4¢, and p = p, . Here, the height above the
reference plane, 4, is chosen to be 100 mils which is
significant enough to invalidate the Classical Model
(generally assumed to be one tenth of a wave length [1%),

To simulate a transmission line, the propagation constant y
and characteristic impedance Z, are needed. For a uniform
transmission line along the z direction, the voltage and
current at a given location z is V(z) = V,e " + V_e*"* and
I(z) =1,e™ " +1_e* | where V,e™¥” and I,e " are the
voltage and current propagating in the +z direction;
V_e*¥?and I_e*"* are the voltage and current propagating in
the —z direction. With this, the characteristic impedance
isZ,=V,/l, =-V_/I_, which is the ratio of voltage and
current propagating along one direction.

iz) 7 1(z +A2)
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Figure 10: Impedance and Admittance network

As shown in Figure 10, the Transmission Line is divided
into multiple equal segments of Az in length, where y and Z,,
are found with the impedance Z and admittance Y of each
segment:

ov.e” . Z
——=-7-1e" |Vi=—L 77
oz RN o )= Z~YOF{Z=7-ZO
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Figure 11: RLGC transmission line model segment

In a classical RLGC model, as shown in Figure 11, the
impedance Z and admittance Y of each segment are
represented by the Resistance R, Inductance L, Conductance
G and Capacitance C, where Z = R + jwL, Y = G + jwC with
the underlining assumption that R, L, G, C parameters are
positive, real values. One key assumption to establish the
cascaded segments as a good representation of the
transmission line is to keep each segment small enough
compared to the wavelength of the frequency of interest
which is application dependent. To resolve this, the classical
RLGC modeling technique introduces the per unit length R,
L, G, C parameters, Rpy;, Lyyi> Gpur» Cpur» and multiplies the
length of segment Az respectively to them to obtain R, L, G,
C values for an application, thatis R = Az - Rpy;, L = Az * Ly,
G = Az Gpy, C = Az - Cpy;. In summary, for classical RLGC
model:

R parameter=real(Z)=Az-R,, Z=R+ joL
L parameter=imag(Z)/w=Az-L,, and Y=G+joC
G parameter=real(Y)=Az-G Y= NG

C parameter=imag(Y)/w=Az-C,, Z,=+\ZJY

With the electromagnetic fields near a transmission line
solved by the retarded solution, applying their physical
meaning to Ry, Lyui, Gpur» Cpyy leads to a different result.
From a physical point of view, R, is often referred to as the
electrical resistance due to the transmission line material’s
conductivity, and G, is referred to as the electrical loss due
to surrounding material. In a simplified model with
assumptions of lossless transmission line as well as lossless
surrounding material, resistance and conductance can be
assigned as Rp,; =0 and G,,; =0 . According to their
definitions!”), L, is the ratio of the total magnetic flux
surrounding a unit segment (perpendicular to the segment and
extending to o) to the current on such segment, and C,,; is
the ratio of the charge on a unit segment over the voltage of
such segment. Since the total magnetic flux and the voltage
are integral products of the fields transmission line and such
fields are solved by the retarded solution as demonstrated in
Section 2, the L,,; and C,,; for the simplified transmission
line model setup in Section 2 are:

Hdz’dx
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where a is the radius of the transmission line, L, and L, are
the starting and ending location of the transmission line, and
k = w/v. Additionally, we define R (not to be confused with the
resistance parameter, R) as the distance from the observation
point to an integral segment, and R;,y as the distance from
the observation point to the mirror image of the same segment
with respect to the reference plane. This image line source is
used to assure that fields on the PEC are orthogonal to that
reference plane.

For Ly, and C,,, there is a common term in the solution:
— kR — jkR —JkR;g
=l e e e ,
L Ll (x—x")e I , + jk = B dz'dx

img
It has been shown [!3] that this term becomes more important
as a function of wR /v according to the table below:

—jkR
e J!

R3

Table 1: Values of wR/v in typical PCB environment

wR /v with wR /v with

FHY b 20mils  R=5 mils
DC 0 0.000 0.000
10MHz | 1.0x 10° 0.002 0.001
I GHz | 1.0x10° 0.021 0.005
J0GHz | 1.0x10° | 0213 0.053
20GHz | 2.0x100 | 0426 0.106
100 GHz | 1.0x 10" 2.129 0.532

Thus, for low frequencies and small values of R (e.g. 5 mils),
we may use the approximation k = w/v = 0 (the static case)
and resort to the classic RLGC model. However, at high
frequencies (i.e. large values of wR /v) the authors define this
common term as |P|e/?(®, where |P| is the magnitude and
¢ (w) is the phase shift that accounts for retardation in the time
domain. Furthermore, we can see from the four equations
below that the classic RLGC model must be modified to
account for time retardation effects as ¢(w) becomes
significantly greater than zero.

It can also be shown that ¢(w) increases as k = w/v increases.
With this common term, we can see that L,,,; and Cp,,; are also
complex if the source is not static and we can write: Ly, =
|Lpul|ej¢(“’) and Cpy,; = |Cpul|e'j¢(“’), where: |Lpul| = ﬁ |P| and
|Cout| = ‘TT“T With Z = R + joL,Y = G + joC and R = Az - Ry,
L=Az"Lyy, G =4z Gpy, C = Az - Cpy,, we have:

R parameter = real(Z) = Az * Ry — w|Az * Lpul|sin¢(a))
L parameter = imag(Z)/w = |AZ * Lpul|cos¢(w)

G parameter = real(Y) = Az * Gy, + w|Az * Cpul|sin¢(w)
C parameter = imag(Z)/w = |AZ * Cpul|cos¢(w)

The authors denote the model using these RLGC parameters
as the RLGC(p) model so to distinguish from the classical
RLGC model as described in the beginning of this section.
For a more detailed discussion, the authors refer the reader to
section 4.2 of reference [1].

A key characteristic of the RLGC(p) model is that it carries
extra terms in R and G parameters from the imaginary part of

60

inductance and capacitance. The extra terms —w|Az-
Lyui|sing(w) and w|Az - Cpy|sing(w) are in opposite polarity
so one appears as an energy source and the other appears as
an energy consumer. The energy “produced” by one is exactly
the same as the energy “consumed” by the other so that the
unit is still energy neutral, and thus energy is conserved. Due
to time retardation and according to the definition of
inductance and capacitance, part of the energy generated by
preceding segments is accounted for in the present segment
which appears as an energy “producer” for the present
segment. Additionally, part of the energy generated by the
present segment is accounted for by the next segment which
appears as an energy “consumer” for the present segment.
Through addressing the time retardation, the RLGC(p) model
is able to describe this energy “produced-consumed”
phenomenon. On the other hand, the classical RLGC model
neglects this phenomenon.

The difference between the RLGC(p) model and the classical
RLGC model may be negligible if the energy involved in
“produced-consumed” phenomenon is small compared to the
energy loss in the transmission line. For example in a high
loss transmission line at low frequency, Ry, and Gy, are
expected to be large and dominate the R parameter and G
parameter as defined in the RLGC(p) model, thus the classical
RLGC model may differ by only a small percentage. On the
contrary for a low loss transmission line at high frequency,
the two models diverge as the R parameter and G parameter
in RLGC(p) can be non-zero and dominated by the extra
terms introduced as the imaginary part of L, and C,,,. For
one such transmission line as used in Section 2, the R
parameter actually becomes negative. The classical RLGC
model cannot handle negative parameters and this causes
errors compared to a FEM solution produced by a commercial
3D FEM field solver. The RLGC(p) model is well aligned
with the FEM solution as shown in Figures 12 - 19.

To further demonstrate the difference between the RLGC(p)
model and the classical RLGC model, we take the simplified
transmission line as described in Section 2. In this
comparison, we plot the S parameter of a 500 mil
transmission line section between the frequencies 88 GHz and
95 GHz obtained by the following methods:

Case <0>: the S parameter solution from a commercial 3D
FEM field solver (ANSYS HFSS). We consider this the
reference for other cases.

Case <1>: the S parameter generated by the RLGC(p)
model extracted from field data of the authors’
MATLAB implementation of the Retarded Solution.

Case <2>: the S parameters generated by the classical
RLGC model extracted from a 2D field solver’s (ANSYS
Q2D) field solution (Time Retardation ignored).

Case <3>: the S parameters generated by the classical
RLGC model extracted from field solution of Case <0>.

Case <4>: the S parameters generated by the RLGC(p)
model extracted from field solution of Case <0>.

Although a numerical method is often more computationally
intensive than an analytical method, the numerical method
has other advantages such as solving complex geometries;



we focus mainly on comparing the accuracy of the results
produced by several methods with each method configured
to serve that purpose. It is beyond the scope of this paper to
compare other aspects of each method such as computational

efficiency and resources.
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Figure 12: Magnitude of S11 from 94 GHz to 95 GHz
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4. Discussion

From Figure 12 to Figure 19, it is shown that an RLGC(p)
model is effective in representing the transmission line, its
performance is in good agreement to the S parameters of a
commercial 3D FEM field solver (Case <0>, Case <1> and
Case <4>). Comparing Case <3> and Case <4> shows the
differences between a classical RLGC model and a RLGC(p)
model; in that, the classical RLGC model trends well but is
not as accurate when compared to the RLGC(p) model. It
should be emphasized that Case <I1> and Case <3> are
generated from the same field data of the 3D FEM field solver
used in Case <0>. In Case <2>, the classical RLGC model
from 2D field solver is incorrect for the propagation constant
and characteristic impedance because time retardation was
not taken into account. This tells us that ignoring time
retardation at high frequency results in error.

Regarding the magnitude of S12 in Figure 14 and Figure 18,
the insertion loss of the transmission line, Case <3> is
drastically different from Case <0> because the 3D solver
“corrects” the negative parameters, in this case the R
parameter, for the classical RLGC model with the intention
of preserving passivity. However, this “correction” disturbs
the energy state as it eliminates the energy source, a negative
R parameter, but preserves the energy consumer in G
parameter. We cannot preserve the energy state by
eliminating both the energy source and consumer in R and G
parameter because it is effectively ignoring time retardation.
As shown in Case <2>, this creates an incorrect propagation
constant and characteristic impedance. The best approach is
to make no “correction” as done in RLGC(p) model. As
explained in Section 3, time retardation will create a
complementary energy source and energy consumer, the
passivity enforcement should avoid correcting such an energy
source.

5. Conclusions

As demonstrated, the time retardation of electric and
magnetic field propagation results in complex capacitance
and inductance. The imaginary part of capacitance and
inductance affect the RLGC parameters and cause the
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classical RLGC parameters at high frequencies to be
inconsistent with their DC counterparts. A new RLGC(p)
model is proposed to handle this inconsistency. It is necessary
to use RLGC(p) model instead of the classical RLGC model
to simulate a transmission line where retardation is
significant. In this paper’s transmission line example, the
Field Retardation is considered significant, and the RLGC(p)
model is shown to be in better agreement than the classical
RLGC model to an FEM solution. Future work is ongoing to
extend this model to multiple conductors; as well as, explore
the limitations for extremely high frequencies.

References

[1] Peng Ye, Paul G. Huray, “Applying the Retarded
Solution of Electromagnetic Fields to PCB Transmission
Line RLGC Modeling”, Ph.D. Dissertation, University of

South Carolina, 2015

John David Jackson, “Classical Electrodynamics”,
Section 7.11, Wiley, 3 edition, 1998.

Oleg D. Jefimenko, “Causality Electromagnetic
Induction and Gravitation”, Electret Scientific Co; 2™
edition, 2000.

Paul G. Huray, “The Foundations of Signal Integrity”,
pg. 33, Wiley-IEEE Press, 1% edition, 2010.

Paul G. Huray, “Maxwell’s Equations”, Wiley-IEEE
Press, 1% edition, 2010.

Richard P. Feynman, Robert B. Leighton, Matthew
Sands, “The Feynman Lectures on Physics, Volume 2,
Section 217, Addison-Wesley, 1977.

Rosa, E.B. “The Self and Mutual Inductances of Linear
Conductors”, Bulletin of the Bureau of Standards 4 (2):
301-344.

Albert Ruehli, “Partial Element Equivalent Circuit
(PEEC) Method and Its Application in the Frequency
and Time Domain”, in Proc. Electromagn. Compat.
Symp., Aug. 19-23, 1996, pp. 128-133.

Madhusudanan K. Sampath, “On Addressing the
Practical Issues in the Extraction of RLGC Parameters
for Lossy Multi Conductor Transmission Lines using S-
parameter Models”, Proceedings of the 16th Topical
Meeting on the Electrical Performance of Electronic
Packaging, pp. 259-262 (Oct. 2008).

[10]Sofiane Chabane, Philippe Besnier, Marco Klingler, “4
Modified Enhanced Transmission Line Theory Applied
to Multi Conductor Transmission Lines”, 1EEE
Transactions on Electromagnetic Compatibility, Early
access, 2016

(2]

(3]

(4]
(3]

(6]

(7]

(8]

(9]



