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Abstract 

The RLGC model, and its variations, is one of the most 
common techniques to simulate transmission lines. The 
RLGC model uses circuit network elements consisting of 
Resistance R, Inductance L, Conductance G and Capacitance 
C (per unit length) to represent a small segment of the 
transmission line, and then cascades multiple segments to 
simulate the transmission line of arbitrary length. Typically, 
the parameters in RLGC model are extracted from the 
propagation constant � and characteristic impedance ��	of the 
transmission line which are found using numerical simulation 
methods. These resulting RLGC parameters for multi-GHz 
signaling are usually frequency-dependent. This paper 
introduces an analytical approach to extract RLGC 
parameters to simulate a transmission line, which results in a 
different model, the RLGC(p) model. 
 

1. Introduction 

Maxwell’s Equations have been widely studied and used 
since their publication in 1861 by the Scottish physicist and 
mathematician James Clerk Maxwell. While Maxwell’s 
Equations may appear in different forms, a common key 
aspect is that these equations specify the relationship of 
electric field intensity (��⃑ ), magnetic field intensity (���⃑ ), 
electric charge density (ρ) and electric current density (J⃑) at a 
particular space-time[2], (�⃑�, �′). For example: 

 ( , ) ( , )E x t B x t t         
      

 ( , ) ( , ) ( , )B x t J x t E x t t            
       

 ( , ) ( , ) /E x t x t      
      

 ( , ) 0B x t   
     

Where ��⃑ (�⃑�, �′) = ����⃑ (�⃑�, �′)  is the magnetic flux density at 
point �⃑�, time �′, and � is the permeability of the medium. 
 

To analyze electromagnetic field propagation we need to find 
the causal relationship between different space-times for the 
source (�⃑�, �′)  and the observation point (�⃑, �) . Since 
electromagnetic fields propagate in the medium with a finite 
propagation speed, denoted as �, there is a time difference in 

the relationship of electromagnetic fields at the source and the 
observation point. This phenomenon is known as time 
retardation and the time difference can be described as � −
�′ = |�⃑� − �⃑|/�. 

 
Figure 1: Time Retardation of Electromagnetic Fields 

 
For Electrostatic fields where the source does not change over 
time: 	��⃑ (�⃑�, �) = ��⃑ (�⃑�, �′)  and ���⃑ (�⃑�, �) = ���⃑ (�⃑�, �′) ; therefore, the 
electromagnetic fields at the source and the observation point 
can have the same time component, � , which makes the 
propagation appear instantaneous and renders the time 
retardation irrelevant. However, for time-varying 
electromagnetic fields, the time component �′ and � must be 
treated differently, and the derivative on �′ will result in extra 
terms as �′  is correlated � , 	�⃑� , 	�⃑ . In other words, a 
comprehensive solution of electromagnetic fields that 
addresses time retardation must include these extra terms. We 
call such a solution the retarded solution of electromagnetic 
fields. It should be noted that the solution for Electrostatic 
fields is a special case of the retarded solution where the extra 
terms are zero due to �� = �. 
 
The retarded solution of electromagnetic fields can be derived 
from Maxwell’s Equations with a Green’s Function. The 
retarded solution for point source, which is also known as the 
Jefimenko’s Equations [3], can be found as:  
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With a Fourier transform, this can be converted to Frequency 
Domain: 
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The solution for other types of sources can be developed 
based on the solution for a point source. 
 

In the above equations, the term �
��

�
 is introduced due to 

consideration of the retardation, and the ratio 
��

�
 can be used 

as an indicator for the impact of retardation. When the 
frequency is low, the electrical distance between source and 

observation point is small,  
��

�
≪ 1, and the retarded solution 

of electromagnetic fields can be approximated by the static 
solution[1].   However, Feynman emphasized that the terms 
representing time retardation should not be omitted when they 
become significant[6]. Also, for discussion in future sections, 
it should be recalled that a phase shift in the frequency domain 
leads to a time retardation in the time domain[2]. 

 

2. Theoretical Case Study 

The retarded solution of electromagnetic fields provides an 
analytical way to solve the electromagnetic fields. In this 
section, we use it to solve the test case of a simplified 
transmission line. For this test case, we use a lossless thin 
straight line source along the �  direction to represent the 
transmission line and a flat PEC plane at distance ℎ  away 
from the line source to represent the reference plane. We fill 
the entire space with uniform, lossless medium with ε =

4�� 	and	μ = �� 	 in which the electromagnetic fields propagate 
at velocity,	�. As a simplification, the model is extended to 
infinity to avoid the need of handling any boundary condition.   

 
Figure 2: Case Study  

 
For demonstration purposes, a source charge density, 
�(��, �) = ��(�

�)����(� ��
� − �� − � ) , is assumed to be a 

sinusoidal wave where charge, � , and attenuation, 	� � , are 
unity and frequency is 100 GHz (refer to Section 3.2 of 
reference [1]). 
We observe the electromagnetic fields on the surface of the 
PEC reference plane, for ℎ = 10	����  and ℎ = 100	���� , 
respectively. We plot the magnitude of the fields in color 
where positive peak is in red and negative peak is in blue.  

  
      (b) 100h mils  

Figure 3: ���⃑ � � magnitude plot, oblique view 

 
      (b) 100h mils  

Figure 4: ���⃑ � � magnitude plot, top view 

 
   (b) 100h mils  

Figure 5: ���⃑ � � magnitude plot, side view 

  
      (b) 100h mils  

Figure 6: ���⃑ � � magnitude plot, front view 

(a) 10h mils

(a) 10h mils

(a) 10h mils

(a) 10h mils
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In addition to showing that the magnitude of field intensity at 
�⃑  is inversely proportional to its distance from �⃑� , these 
electric field intensity plots, Figure 3 to Figure 6, show the 
time retardation due to finite propagation velocity of fields. It 
is apparent that the peak of field intensity lags behind the peak 
of the source, and the delay is proportional to the distance, 
resulting in a “new moon” field pattern on the observation 
plane. This is more obvious with larger ℎ  as the field has been 
spread out further when it arrives at the reference plane such 
as in Figures 3(b) and 4(b).  
 
For the same study case, we can observe the field magnitude 
on the cross section of the model, as indicated in Figure 7. In 
this case, we set ℎ = 100	����  and set source frequency to 100 
GHz and 10 GHz, respectively in Figure 8 and Figure 9. 
 

 
Figure 7: Case Study  

 

 
Figure 8: Field plot for 100 GHz 

 

 
Figure 9: Field plot for 10 GHz 

 
In these field plots, the background color represents the 
magnitude of the field where peak magnitude is red and 
minimum magnitude is blue. The red arrows indicate the 
direction of the ��⃑ �� field (electrical field on the x-y 
observation plane) and the blue arrows indicate the direction 
of the ��⃑ ��  field (magnetic field on the x-y observation plane).  
 
The direction of ��⃑ ��  (red arrows) and ��⃑ ��  (blue arrows) in 
both figures shows that the energy is propagating in the same 
direction for any point on the observation plane; however, the 
direction of fields are not uniform for 100 GHz. This is due 
to time retardation of the fields. The total field is a sum of the 
original fields directly from the line source and the reflected 
field from the PEC reference plane. The total field at a given 
observation location is dominated by a certain section of the 
line source due to time retardation and the dominating section 
is related to the distance of the observation location to line 
source. If the source is varying at a very high frequency, there 
is more variation in the dominating sections on the line source 
for the observation area, some of which segments may even 
be on different parity. This creates an irregular field pattern 
and opposite direction of the fields for 100 GHz source as 
shown in Figure 8. Conversely shown in Figure 9, if the 
source is varying slower there is minor variation in the 
dominating sections on the line source for the observation 
area; therefore, the total field is more uniform. Note that the 
direction of electric field intensity at the bottom of both 
Figure 8 and Figure 9 is perpendicular to the PEC as required. 
 
Electromagnetic fields near the transmission line are the key 
to understanding the performance of the transmission line. As 
with field patterns in Figure 8 and Figure 9, there are unique 



59 
 

characteristics for transmission line at high frequency. This 
can be studied analytically by using the retarded solution of 
the fields introduced in the previous section of this paper and 
by using the simulation program developed by the authors.  
 

3. Simulation Case Study 

In the previous section, it was demonstrated how to solve the 
electromagnetic fields near a transmission line using the 
retarded solution. In this section, these field solutions will be 
used to study the RLGC model which is a common technique 
for representing transmission line behavior. As in Section 2, 
and illustrated in Figure 7, a simplified representation of a 
transmission line is assumed where a lossless, thin, and 
uniform line source along the � axis is placed above a flat, 
PEC plane. The medium is again assumed to be uniform and 
lossless with ε = 4�� 	and	μ = �� 	. Here, the height above the 
reference plane, h, is chosen to be 100 mils which is 
significant enough to invalidate the Classical Model 
(generally assumed to be one tenth of a wave length [10]). 
 
To simulate a transmission line, the propagation constant � 
and characteristic impedance ��	are needed. For a uniform 
transmission line along the �  direction, the voltage and 
current at a given location �  is � (�) = �� �

� �� + �� �
� ��  and 

�(�) = �� �
� �� + �� �

� �� , where �� �
� ��  and �� �

� ��  are the 
voltage and current propagating in the + � direction; 
�� �

� �� and �� �
� ��  are the voltage and current propagating in 

the −�  direction. With this, the characteristic impedance 
is	�� = � + /�+ = −�−/�− , which is the ratio of voltage and 
current propagating along one direction.  
 

 
Figure 10: Impedance and Admittance network 

 

As shown in Figure 10, the Transmission Line is divided 
into multiple equal segments of ∆� in length, where � and �� 
are found with the impedance � and admittance	� of each 
segment: 
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Figure 11: RLGC transmission line model segment 

In a classical RLGC model, as shown in Figure 11, the 
impedance 	�  and admittance 	�  of each segment are 
represented by the Resistance R, Inductance L, Conductance 
G and Capacitance C, where � = � + ���, � = � + ��� with 
the underlining assumption that R, L, G, C parameters are 
positive, real values. One key assumption to establish the 
cascaded segments as a good representation of the 
transmission line is to keep each segment small enough 
compared to the wavelength of the frequency of interest 
which is application dependent. To resolve this, the classical 
RLGC modeling technique introduces the per unit length R, 
L, G, C parameters,	���� , ���� , ���� , ����, and multiplies the 
length of segment ∆� respectively to them to obtain  R, L, G, 
C values for an application, that is � = ∆� ∙����, � = ∆� ∙����, 

� = ∆� ∙����, � = ∆� ∙����. In summary, for classical RLGC 
model:  
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With the electromagnetic fields near a transmission line 
solved by the retarded solution, applying their physical 
meaning to ���� , ���� , ���� , ����  leads to a different result. 
From a physical point of view, ����	is often referred to as the 
electrical resistance due to the transmission line material’s 
conductivity, and ����  is referred to as the electrical loss due 
to surrounding material. In a simplified model with 
assumptions of lossless transmission line as well as lossless 
surrounding material, resistance and conductance can be 
assigned as ���� = 0  and ���� = 0 . According to their 
definitions[7], ����  is the ratio of the total magnetic flux 
surrounding a unit segment (perpendicular to the segment and 
extending to ∞) to the current on such segment, and ���� is 
the ratio of the charge on a unit segment over the voltage of 
such segment. Since the total magnetic flux and the voltage 
are integral products of the fields transmission line and such 
fields are solved by the retarded solution as demonstrated in 
Section 2, the ����  and ����  for the simplified transmission 
line model setup in Section 2 are: 
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where � is the radius of the transmission line, ��  and �� 	are 
the starting and ending location of the transmission line, and 
� = �/�. Additionally, we define	�	(not to be confused with the 

resistance parameter, R) as the distance from the observation 
point to an integral segment, and ����  as the distance from 
the observation point to the mirror image of the same segment 
with respect to the reference plane. This image line source is 
used to assure that fields on the PEC are orthogonal to that 
reference plane. 
 
For ���� and ���� there is a common term in the solution:  
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It has been shown [1,3] that this term becomes more important 
as a function of ��/� according to the table below: 
 

Table 1: Values of 	��/� in typical PCB environment 
 

f (Hz) 
 with 

R = 20 mils 
 with 

R = 5 mils 
DC 0 0.000 0.000 

10 MHz 1.0 x 108 0.002 0.001 
1 GHz 1.0 x 109 0.021 0.005 

10 GHz 1.0 x 1010 0.213 0.053 
20 GHz 2.0 x 1010 0.426 0.106 

100 GHz 1.0 x 1011 2.129 0.532 
 

Thus, for low frequencies and small values of R (e.g. 5 mils), 
we may use the approximation � = �/� = 0 (the static case) 
and resort to the classic RLGC model.  However, at high 
frequencies (i.e. large values of ��/�) the authors define this 
common term as |� |��� (w) , where |� | is the magnitude and 

�(w) is the phase shift that accounts for retardation in the time 
domain. Furthermore, we can see from the four equations 
below that the classic RLGC model must be modified to 
account for time retardation effects as �(w)  becomes 
significantly greater than zero. 
 
It can also be shown that �(�)  increases as � = �/�  increases. 
With this common term, we can see that ����  and ����  are also 

complex if the source is not static and we can write: ���� =

�������
�� (�) and ���� = �������

� �� (�), where: ������ =
�

��
|� | and 

������ =
���

|� |
. With � = � + ���, � = � + ��� and  � = ∆� ∙����, 

� = ∆� ∙����, � = ∆� ∙����, � = ∆� ∙����, we have: 
 

�	��������� = ����(�) = 	 ∆� ∗ ���� − ��∆� ∗ ���������(�) 

�	��������� = ����(�)/� = 	 �∆� ∗ ���������(�) 

�	��������� = ����(�) = 	∆� ∗ ���� + ��∆� ∗ ���������(�) 

�	��������� = ����(�)/� = 	 �∆� ∗ ���������(�) 

 
The authors denote the model using these RLGC parameters 
as the RLGC(p) model so to distinguish from the classical 
RLGC model as described in the beginning of this section. 
For a more detailed discussion, the authors refer the reader to 
section 4.2 of reference [1].  
 
A key characteristic of the RLGC(p) model is that it carries 
extra terms in R and G parameters from the imaginary part of 

inductance and capacitance. The extra terms −��∆z ∙

���������(�) and ��∆z ∙���������(�) are in opposite polarity 
so one appears as an energy source and the other appears as 
an energy consumer. The energy “produced” by one is exactly 
the same as the energy “consumed” by the other so that the 
unit is still energy neutral, and thus energy is conserved. Due 
to time retardation and according to the definition of 
inductance and capacitance, part of the energy generated by 
preceding segments is accounted for in the present segment 
which appears as an energy “producer” for the present 
segment. Additionally, part of the energy generated by the 
present segment is accounted for by the next segment which 
appears as an energy “consumer” for the present segment. 
Through addressing the time retardation, the RLGC(p) model 
is able to describe this energy “produced-consumed” 
phenomenon. On the other hand, the classical RLGC model 
neglects this phenomenon. 
 
The difference between the RLGC(p) model and the classical 
RLGC model may be negligible if the energy involved in 
“produced-consumed” phenomenon is small compared to the 
energy loss in the transmission line. For example in a high 
loss transmission line at low frequency, ����  and ����  are 
expected to be large and dominate the R parameter and G 
parameter as defined in the RLGC(p) model, thus the classical 
RLGC model may differ by only a small percentage. On the 
contrary for a low loss transmission line at high frequency, 
the two models diverge as the R parameter and G parameter 
in RLGC(p) can be non-zero and dominated by the extra 
terms introduced as the imaginary part of ���� and ����. For 
one such transmission line as used in Section 2, the R 
parameter actually becomes negative. The classical RLGC 
model cannot handle negative parameters and this causes 
errors compared to a FEM solution produced by a commercial 
3D FEM field solver. The RLGC(p) model is well aligned 
with the FEM solution as shown in Figures 12 - 19. 
 
To further demonstrate the difference between the RLGC(p) 
model and the classical RLGC model, we take the simplified 
transmission line as described in Section 2. In this 
comparison, we plot the S parameter of a 500 mil 
transmission line section between the frequencies 88 GHz and 
95 GHz obtained by the following methods: 

Case <0>: the S parameter solution from a commercial 3D 
FEM field solver (ANSYS HFSS). We consider this the 
reference for other cases. 

Case <1>: the S parameter generated by the RLGC(p) 
model extracted from field data of the authors’ 
MATLAB implementation of the Retarded Solution.  

Case <2>: the S parameters generated by the classical 
RLGC model extracted from a 2D field solver’s (ANSYS 
Q2D) field solution (Time Retardation ignored).  

Case <3>: the S parameters generated by the classical 
RLGC model extracted from field solution of Case <0>. 

Case <4>: the S parameters generated by the RLGC(p) 
model extracted from field solution of Case <0>. 

Although a numerical method is often more computationally 
intensive than an analytical method, the numerical method 
has other advantages such as solving complex geometries; 

vR /w vR /w
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we focus mainly on comparing the accuracy of the results 
produced by several methods with each method configured 
to serve that purpose. It is beyond the scope of this paper to 
compare other aspects of each method such as computational 
efficiency and resources.   
 

 
Figure 12: Magnitude of S11 from 94 GHz to 95 GHz 

 

 
Figure 13: Phase of S11 from 94 GHz to 95 GHz 

 

 
Figure 14: Magnitude of S21 from 94 GHz to 95 GHz 

 

 
Figure 15: Phase of S21 from 94 GHz to 95 GHz 

 

 
Figure 16: Magnitude of S11 from 88 GHz to 89 GHz 

 

 
Figure 17: Phase of S11 from 88 GHz to 89 GHz 

 

 
Figure 18: Magnitude of S12 from 88 GHz to 89 GHz 
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Figure 19: Phase of S12 from 88 GHz to 89 GHz 

 

4. Discussion 

From Figure 12 to Figure 19, it is shown that an RLGC(p) 
model is effective in representing the transmission line, its 
performance is in good agreement to the S parameters of a 
commercial 3D FEM field solver (Case <0>, Case <1> and 
Case <4>). Comparing Case <3> and Case <4> shows the 
differences between a classical RLGC model and a RLGC(p) 
model; in that, the classical RLGC model trends well but is 
not as accurate when compared to the RLGC(p) model. It 
should be emphasized that Case <1> and Case <3> are 
generated from the same field data of the 3D FEM field solver 
used in Case <0>. In Case <2>, the classical RLGC model 
from 2D field solver is incorrect for the propagation constant 
and characteristic impedance because time retardation was 
not taken into account. This tells us that ignoring time 
retardation at high frequency results in error.  
 
Regarding the magnitude of S12 in Figure 14 and Figure 18, 
the insertion loss of the transmission line, Case <3> is 
drastically different from Case <0> because the 3D solver 
“corrects” the negative parameters, in this case the R 
parameter, for the classical RLGC model with the intention 
of preserving passivity. However, this “correction” disturbs 
the energy state as it eliminates the energy source, a negative 
R parameter, but preserves the energy consumer in G 
parameter. We cannot preserve the energy state by 
eliminating both the energy source and consumer in R and G 
parameter because it is effectively ignoring time retardation. 
As shown in Case <2>, this creates an incorrect propagation 
constant and characteristic impedance. The best approach is 
to make no “correction” as done in RLGC(p) model. As 
explained in Section 3, time retardation will create a 
complementary energy source and energy consumer, the 
passivity enforcement should avoid correcting such an energy 
source.   
 

5. Conclusions 

As demonstrated, the time retardation of electric and 
magnetic field propagation results in complex capacitance 
and inductance. The imaginary part of capacitance and 
inductance affect the RLGC parameters and cause the 

classical RLGC parameters at high frequencies to be 
inconsistent with their DC counterparts. A new RLGC(p) 
model is proposed to handle this inconsistency. It is necessary 
to use RLGC(p) model instead of the classical RLGC model 
to simulate a transmission line where retardation is 
significant. In this paper’s transmission line example, the 
Field Retardation is considered significant, and the RLGC(p) 
model is shown to be in better agreement than the classical 
RLGC model to an FEM solution. Future work is ongoing to 
extend this model to multiple conductors; as well as, explore 
the limitations for extremely high frequencies. 
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