ADVANCED ELECTROMAGNETICS, VOL. 6, NO. 1, MARCH 2017

A review on Computational Electromagnetics Methods

P. Sumithra® * and D. Thiripurasundari

2

12 School of Electronics Engineering, VIT University, Vellore, Tamil Nadu 632014, India
Corresponding author: Sumithra. P, E-mail: psumithra.me@gmail.com

Abstract

Computational electromagnetics (CEM) is applied to model
the interaction of electromagnetic fields with the objects
like antenna, waveguides, aircraft and their environment
using Maxwell equations. In this paper the strength and
weakness of various computational electromagnetic
techniques are deliberated in detail. Performance of various
techniques in terms accuracy, memory and computation
time for application specific tasks such as modeling RCS
(Radar Cross Section), space Applications, thin wires and
antenna arrays are presented in this paper. Commercial
software codes has certain limitations, Agilent ADS could
not model 3D structures, HFSS is accurate but execution
time is high, WIPL-D® does not support modeling
Inhomogeneous dielectrics embedded metal objects and
periodic structures. IE3D® is not suited for geometry with
finite details. However for regular shapes like rectangular
patch MOM based IE3D provides accurate results than
FEM based IE3D. The complicated structures are dealt with
accuracy by using CST Microwave Studio® and HFSS®.
Although CST and HFSS has similar interface in dealing
with geometry with fine details, CST had edge over HFSS
software as it starts in time domain and ends in frequency
domain. HFSS uses Finite Element Method (FEM) to arrive
at frequency domain solution. FEKO® has two main solvers
MOM based and GTD based. GTD based FEKO is good in
handling large structures like reflector antennas.

1. Introduction

The Widespread use of antennas has spurred considerable
attention to the computational analysis of electromagnetics
The CEM techniques came into limelight after the
introduction of three pillars of numerical analysis viz.
FDTD (Finite Difference Time Domain) , FEM (Finite
Element Method) and MOM (Method of moments). Most
EM problems ultimately involve solving only one or two
partial differential equations subject to boundary constraints
but a very few practical problems like modeling
homogeneous, inhomogeneous problems and boundary
value problem can be solved without the aid of a computer.
Computational Electromagnetics techniques are flexible.
CEM finds its application in fields like design and analysis
of RCS (Radar Cross Section), antenna geometry, bio
medical applications, space borne radar and satellite
applications, hand held devices, nano photonic devices and
other communication devices.

CEM is used in solving EM compatibility problems and
issues associated with them. Few issues like Multiscale
model, macro-models, time-domain and frequency-domain
models, the use of structured meshes, un-structured meshes
and stochastic models in EM compatibility are discussed in
[1]. CEM is broadly classified into numerical methods, high
frequency methods and other methods. The Numerical
methods includes integral equation based MOM method,
differential equation based FEM and FDTD. High
frequency methods include current based Physical optics
(PO) and field based Geometric optics (GO). Other methods
include  Generalized Multipole Technique (GTM),
Transmission line matrix method (TLM) and modal
methods (MM) to name a few. The computational hierarchy
of these methods is depicted in Figure.l.

CEM practitioners in the recent days are aiming to use
existing software packages to solve a particular problem as
early as possible. Present CEM researchers have limitation
in learning the CEM methods, due to the readily available
software packages. It is more important that experienced
CEM researchers impart the knowledge and share the
experience with young researchers. An attempt has been
made in this paper to report on the growth and

advancements in the field of computational
electromagnetics.
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Figure 1: Computational hierarchy

2. Survey of CEM

The growing field of CEM research has sprouted various
divisions of research. CEM research is carried out mainly in
three ways viz. (i) analytical techniques, (ii) numerical
analysis technique, (iii) expert systems. Analytical
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techniques make some assumptions (for example geometry
like ground plane is considered as infinite ground plane) to
get closed form solution (look up table). Analytical
techniques are used not only in simple computer programs
but also in eclaborate IEMCAP (Intra system
Electromagnetic Compatibility program) provided they
have anticipation of EM interactions [2]. Analysis of
numerical techniques plays a vital role in selecting suitable
method for various geometries. Expert systems estimate
values for the parameters of interest through their
knowledge on EM interactions that cause EMI sources to
radiate [3, 4]. Expert system is unsuitable for difficult EM
problems. Prominent methods used in this domain of
research are discussed to provide insight in to
computational electromagnetics.

2.1. FDTD (Finite Difference Time Domain)

Yee et al defined FDTD scheme in the year 1966. He
provided the solution to Maxwell’s curl equation involving
centred finite difference approximations to find partial space
and time derivatives. Consider one component of
Maxwell’s equation:
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Using the central difference scheme, the above equation is
discretized. FDTD algorithm comprises a grid of points
containing computational domain, a stencil to approximate
PDE, a boundary condition to approximate points on
boundary of computational domain, an excitation source and
solution method to solve PDE. Post processing is done to
find physical quantities from field equations [5]. In 1980,
Taflove created an acronym to refer to finite difference time
domain schemes (FDTD).

The computational domain of structure under analysis is
discretised using two techniques viz.(i) Bergner’'s PML
(Perfectly Matched Layer) and (ii) Modified PML. The PML
is illustrated as follows.

2.1.1. Perfectly Matched Layer (PML)

Mesh termination remains as problem in modelling the
computational domain using FDTD. Reflection from
boundary that arises due to coarse meshing affects accuracy
of computation. Absorbing Boundary Conditions (ABC)
demands larger computational domain to be meshed.
Domain is large in ABC as they need adequate distance
between radiating body and boundary. The ABC can achieve
a return loss of -20 dB to -30 dB. However ABC need to
battle to achieve return loss less than -50 dB [6] because
ABC shows good performance in absorbing reflection only
for normal angles and performance is poor for angles other
than normal incidence [7]. This reflection is greatly reduced
by making computational domain finite through domain
truncation techniques. Truncation techniques experiences
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the truncation error in cases wherever they are not properly
implemented, therefore accuracy of computed results is
affected. Computational resource requirement such as time
and memory for high order ABC is high as computational
domain is larger. The computational effort can be reduced
and accuracy is enhanced by introducing an absorbing layer
called Perfectly Matched Layer (PML). Berenger [8]
introduced this method for 2D cases in 1994 by placing
boundary close to radiating body. The E or H field is split
into two and different E and H loss is assigned to each field
component [7]. FDTD update equations are used by PML to
accommodate these split fields. The layout of Perfectly
Matched Layer is depicted in Figure 2. X-PML is X —
oriented PML and Y- PML is Y oriented PML and X-Y
PML is X-Y oriented PML. o, , 0, are conductivities in X and
Y direction. Cormer regions are handled well by overlapping
X and Y PML resulting in X-Y PML. Absorption of
reflection with PML is good at all frequencies and angle of
incidence regardless of polarization of angle of incidence [7].
Perfect matching is achieved by PML using absorbing
materials with electric and magnetic losses at termination of
mesh. PML uses two approaches namely stretched approach
(mathematical in nature) and anisotropic media with
Uniaxial PML (popular method) [6]. PML Techniques
allows Electromagnetic waves to be absorbed with minimal
reflection and further this reflection magnitude is decreased
by fine tuning of parameters like thickness of layer [8]
thereby achieving return loss greater than -100 dB [6] better
than anechoic chamber (-70 dB). The PML requires more
computational domain and CPU time due to the splitting of
the fields which makes it unreliable.
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Figure 2: Layout of Perfectly Matched Layer

Further in FDTD discretization of computational domain
poses error due to truncation. Staircase approximation also
contributes error accumulation at each time step for surface
with sharp and fine edges [9]. Also reflection error increases
with increase in time step affecting accuracy of method.



The reflection error could be reduced by placing non-
resonant absorber adjacent resonating object (ie.)
Resonating Perfectly Matched Layer (RPML).

Periodic structures could be analysed using this technique
due to its capability, reduced computation domain of
repetitive structures up to 70% for 1D objects and 90% for
2D objects [10]. Also, this method has good convergence.
Courant, Friedrichs, Lewy discovered and named it as CFL
limit in order to ease the solution of second order wave
equation. Desired accuracy is obtained when time step is
within CFL limit making the system unconditionally stable
at the expense of computational time. The FDTD is solved
by Zheng Yu Huang in [11] by a new unconditionally stable
method using Associate Hermite (AH) function. In [11]
Orthonormal basis function is used to expand the E field and
time derivatives. Time variables associated with it is
removed by Galerkin testing procedure. Here in [11] the
CPU time is reduced by 0.59% than traditional FDTD
without any impact on the accuracy at the cost of memory
consumption. Spheroidal FDTD uses CFL limit and field
formulas to deal with singularity at the center and edges of
spherical cavities and patch antennas with additional
computational costthan conventional FDTD [12].

An efficient 3D FDTD gives solution to Maxwell’s equation
using two different time step increments. Applications like
space weather effects, satellite communications operating at
high altitudes, high collisional regimes are analysed by this
method. Easy implementation, less memory and time makes
this method more attractive than anisotropic approach.
However, stability is largely affected for strong electric field
as error increases with increase in time step [13].

Semi Implicit Schemes (SIS) depend on current step alone,
over ruling the dependence of CFL limit for applications
involving larger time step. This method computes E and H
field at each step, forcing the time step be within CFL limit.
For computational domain problems requiring larger time
step, this method is an ideal choice. This method is used
when time step (> 10 times) is larger than FDTD stability
limit at the cost of additional memory consumption.
Memory storage and computational cost is proportional to
the electrical size of geometry and grid resolution. Electrical
properties of the scatterers are varied at each step by varying
the values of 1, o, and € assigned to each field component.
SIS performs certain modification to CPML-FDTD enabling
implementation of CFS-PML to resolve synchronisation
issues in CPML-FDTD, RIPML that affects accuracy in
cases like dispersive media. Further this CFS-PML requires
less computation and memory in treating unbounded 2D
region and thin bounded PEC [14].

An algorithm called sub-cell algorithm is used to model flat
electrode using coarse grids of FDTD preserves 12%
computational memory and 3% of CPU time usage than
traditional FDTD without compromising efficiency [15].
Long and short apertures without depth or with finite depth
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could be modelled using uniform two step method in FDTD
analysis with good accuracy, high resolution in [16]. The
two step uniform method is processed in steps like: (i)
estimate aperture-field singularity using standard FDTD
simulation at the edge of the receiver to yield aperture
coefficients (ii) coefficients thus obtained are used in
contour path to define FDTD update equations for fields
near aperture. The challenges faced by this method are
computational memory and accuracy.

Finite Difference Time Domain — Alternating Direction
Implicit Method (FDTD-ADI) discussed in [17] is an
unconditionally stable method that operates in one step leap
frog fashion to solve open region (isotropic lossless)
problems using Sherman Morrison formula to solve
tridiagonal equations efficiently. Also this method is
efficient in terms of computation time, memory and similar
accuracy in comparison with two step schemes. The main
issues associated with this method are increase in error with
increase in time.

Locally One-Dimensional-Finite-Difference Time-Domain
Method (LOD-FDTD) is found to be faster than parallel
(FDTD-ADI) method, where parallelization is achieved
using message passing interface. Debye-dispersive media,
complex bio-electromagnetic problems like deep brain
stimulation could be handled with good scalability and
performance. LOD-FDTD achieves lower communications
between cores (up to 40 cores) than FDTD-A DI, however
suffers efficiency issues if number of cores goes beyond 40
cores [18]. This method uses less CPU time at the cost of
memory consumption.

In order to improve performance of conventional FDTD in
terms of CPU time and memory, Zhi-Hong proposed in [19]
a DD (Domain Decomposition)-Laguerre-FDTD method to
solve very large rough surface, PEC, lossy dielectric media,
large scatterers. The computational domain is discretised
into sub domains, radiated and scattered ficlds. DD-FDTD
can model vast rough region than conventional FDTD.
Characteristic basis functions (CBFs) are employed to
mitigate interpolation errors between the boundaries thereby
increasing accuracy of this method.

Min Zhu proposed in [20] a Novel RK-HO-FDTD (Runge
Kutta Higher Order FDTD) used in computation of EM
regions which is in terms of accuracy, speed, convergence
and has reduced dispersion. This method combines SSP-RK
and HO-FDTD. RK-HO-FDTD is pretty much attractive
than HO-FDTD, MRTD and RK-MRTD methods due to its
better scattering properties and quick convergence.

2.2. FEM (Finite Element Method)

FEM code meshes computational domain problem into small
portions and forms linear equations using weighted residual
method and solves the same by reducing the energy of
geometry viz. inhomogeneous material resonant cavities.
Thin wires, large radiation problem like Eigen value
problem and 3D problems are difficult to be modelled using



FEM due to its unstructured mesh. FEM for 3D EM
problems faces certain issues than 2D problems like need for
excessive computation and vector parasites that results in
false solutions. FEM is used in modelling Yagi-Uda
antennas, horn antennas, waveguides, vehicular and
conformal antennas [21].

Bangda Zhou proposed Direct FE solver [22] that uses the
following algorithm: (i) Dividing of unknown nested
dissection (ii) Constructing elimination tree, (iii) Symbolic
factorization (iv) H matrix creation for frontal matrix for
every node of elimination tree (v) H matrix based algorithm
to perform numerical factorization to arrive at the solution
and (vi) post processing. Although this method is far better
than the available commercial solvers for applications like
3D structures, Patch antennas, it is not ideal in terms of CPU
time and memory storage.

Dual Prime (FETI-DP) method in [23] incorporates
Hierarchical-Lower Upper (H-LU) and Nested Dissection
(ND) is a domain decomposition method. This solver with
sub-domain finite element systems has faster convergence
and numerical scalability without sacrificing efficiency. The
applications of this method include 3D structure problem,
periodic array problem, Jerusalem type array, Vivaldi array.
These applications use LU for maintaining computation
resources and accuracy while ND conforms less memory
and CPU time. Though this method facilitate parameter
choice based on applications, accuracy and computational
cost for unconditionally stable system has a trade-off [24].

Ivan Voznyuk [25] discussed Finite - Element Tearing and
interconnecting Full-Dual-Primal (FETI-FDP2) (FETI-
FDP2) method an extended version of FETI-DPEM2 is used
in analysis of 3D large-scale electromagnetic problems using
robin type boundary condition at corners and interface.
Electrically small problems are solved by using Krylov
solver and ASP/AM G(Auxiallary Space Preconditioners /
Algebraic Multigrid) preconditioners as they facilitate
convergence with lesser iterations. However the
implementation could be extended not only to geometry that
is tedious to solve but also to electrically large problems
using DDM [26]. The incapability of iterative solver to
converge due to presence of PML is over ruled by Dirichlet-
to-Neumann (DtN) approximation [25]. Further, algorithm’s
parallelization improves convergence. The use of Robin type
boundary condition at interface cause the Interface issue,
that is solved by an effective code based on mesh
partitioning without affecting accuracy. This method
requires performance enhancement in terms of memory and
CPU time and is not suitable for hierarchical elements that
are higher in order.

Zhi-Qing Lii [27] proposed Non-Conforming FETI (NC-
FETI). Few steps involves are (i) Computational domain is
discretised to subdomain (i) Data transfer between
subdomains is done by imposing Robin type boundary
condition (iii)) Lagrange multiplier scheme and Schur
complement approach are used to solve interface issue and

45

(iv) Iterative algorithm is to find unknown electric field.
NC-FETI is far better than DDM and is capable of modeling
3D large-scale slot array, complicated -electromagnetic
problems such as photonic band gap and antenna arrays with
efficiency and accuracy at the cost of memory. Memory
consumption can be greatly reduced for periodic structures
due to their repetitive nature [27].

Jian Guan proposed an accurate and efficient Finite
Element-Boundary Integral-Multilevel Fast Multipole
Algorithm method (FE-BI-MLFMA) [28]. The formulation
of FE-BI is first approximated by FEM with absorbing
boundary condition. Further it is solved using FETI with
numerical complexity and considerable scalability. The
efficiency of this method is increased by Graphics
Processing Unit (GPU) accelerated MLFMA. Testing
schemes involved in this method are enhancing accuracy

and ABC preconditioner improves speed by faster
convergence of iterative solution. However ABC
preconditioners like algebraic preconditioners demands

bulky factorization which is solved by DDM. In spite of
parallelization difficulty, this method is suitable in real
applications like biomedical application involving human
body, RCS, space applications involving missiles, antenna
arrays due to its accuracy and efficiency.

Ming Lin in [29] suggested that Domain Decomposition
based Preconditioner - Finite Element-Boundary Integral-
Multilevel Fast Multipole Algorithm (DDP-FE-BI-
MLFMA) is best for large lossy objects; it finds difficulty in
dealing with 3D objects that are lossless with high p, and ¢,.
CFL limit is having an important role in unconditional
stability. Also semi implicit schemes could be used to attain
memory and CPU time and cost reduction. GPU with
Compute Unified Device Architecture (CUDA) quickens
solution to mitigate parallelization blocks.

GPU (Graphics Processing Unit) accelerated parallelization
is done using ILU (Incomplete LU) preconditioner, SSOR
preconditioner, Pardiso, MKL solver provided DDA speeds
up large scale problem [30, 31]. This method holds good for
finite element structures and single array with large
structures due to the increased speed within less time, but
complicated antenna and microwave devices are having
difficulty in convergence.

2.3. MOM (Method of Moments)

Antenna structure is analyzed using MOM by splitting the
computational area into various segments viz. meshing and
evaluating each segment using basis functions. The
selection of basis functions plays a vital role in arriving at
the solution with accuracy, efficiency. Current distribution
is decomposed with this basis function. Green’s functions
help in studying current on each segment and strength of
each moment. Accuracy of calculating integral of Green’s
function is enhanced by employing singularity extraction. In
addition with accuracy in calculating self-interaction and
near interaction matrix, the problem converges to finite
solution with less number of iterations using singularity



extraction. MOM discretization leads to very large and
dense matrix, consumes more time making it not suited for
large problems, this could be solved by using
preconditioners and iterative methods [32]. MOM is
capable of modeling thin wire structures with speed,
accuracy, convergence and versatility using triangular basis
functions.

MOM, a projection based process that solves linear
equations to find unknown current distribution requires the
solution to be well conditioned and error controllable. To
attain these targets we emphasis on an equation to have
single solution conforming to discretization and well-
conditioned MOM matrix. However various issues
associated with MOM like singularity, low-frequency
breakdown and charge cancellation, non-smooth surfaces
and  physical resonances, composite  structures,
inhomogeneous and anisotropic medium, multi-scale
problems poses great difficulty in realizing these targets.
Low-frequency breakdown and charge cancellation related
problems are rectified by splitting the problem potentially
and by the use of preconditioners [33].

Charge cancellation is restricted by derivative recovery of
charges based on RWG basis functions proposed by Willem
J. Strydom [34] uses Galerkin testing procedure to maintain
current continuity between subdomains and nodal ZZ
(Zhimin Zhang) patch to calculate charge density on various
non-overlapping RWG basis functions.

The performance of MOM in computational
electromagnetics is based on its speed, accuracy and
memory occupancy. Accurate error controllable MOM
could be achieved by suppressing error measures from
current, boundary conditions and scattering amplitudes.
Testing and basis functions contribute to error. Also MOM
is a projection based method where projection error acts as
reference error [35]. The Pocklington integral equation
(PIE) using pulse basis and weight functions fail to address
singularity. However error controllable and good
conditioned MOM elliptic formulation finds unknown
current with less number of basis functions. Low-Frequency
Fast Multipole Method Based on Multiple-Precision
Arithmetic method (FMM-MPA) discussed in [36]
produces consistent field values compared to the MOM
with lesser relative error.

Multiresolution approach enhances spectrum of MOM
matrix. This enhancement is achieved by using regularizing
diagonal basis functions obtained by using near field part of
MOM in standard basis functions that has low
computational cost and memory occupation [37].
Electrically large structures like Vivaldi array [4, 8 element
array] are analyzed and numerical results shows that
MLFMA, acceleration of MOM is better than other methods
(FDTD, FEM, conventional MOM) when electrical size of
structure increases [38]. For Electrically small problems in
which preconditioning could not be achieved, near field and
self-interactions matrix must be focused. Multisolver DDM
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method is used in air platform modeling where touching sub
regions is inevitable. MS-DDM method uses different
techniques for different subregions to achieve antenna
isolation in the air platform. An example discussed in [39]
shows EMC interaction effects on air platform using MS-
DDM at 10 GHz uses DD-FEM-BEM for region 1
(overview) and FEM-DDM for region 2 (mid plane). MS-
DDM solves ill-conditioned MOM matrix with non-smooth
edges, tips and multiscale structures.

Geometrical continuity and current continuity in PEC
scatterers is maintained by using Non-Uniform Rational B-
Spline (NURBS) and approximate functions respectively
developed by modified GMM. Contrasting DDM, GMM
unites different basis and geometry descriptions to form
MOM and solves it after breaking it in to sub problem [40].
Preconditioners discussed in [33] remove ill conditioning
effects and fasten convergence to a finite solution with less
number of iterations. This operates in two phases (i)
generation of Z by filtering the NFI matrix and (ii)
approximating the inverse of Z. Former operation is widely
used due to its capability to handle non uniform meshing
[41]. Many preconditioners like block preconditioners,
Calderon preconditioner, Algebraic preconditioners, MR
Preconditioners, Block diagonal preconditioners, incomplete
LU, Sparse Approximate Inverse (SAI) preconditioners
mitigate ill conditioning in various scenarios [40].

Block diagonal preconditioners finds its use in
preconditioning MLFMA accelerated form of MOM using
new basis function that arises by linear combination of
subdomain and entire domain basis functions. Calderon
preconditioners are used in both open and closed structures.
This preconditioner promotes convergences without
affecting discretization density [42]. Calderon
preconditioner utilized in antenna array treat ill condition in
open problems employing testing basis function for faster
convergence of solution. MR preconditioners along with
diagonal preconditioner handles ill conditioning in low
frequency MOM employing incremental multilevel filling
and sparsification thereby enhancing memory requirements,
CPU time and accuracy than standard MOM, MLFMM,
ACA [43].

Preconditioning with overlapping triangular basis functions,
PMCHWT (Poggio, Miller, Chang, Harrington, Wu, Tsai)
formulation can address scattering that occurs from
penetrable bodies like Yagi — Uda nano antennas [44]. The
MOM technique is used in modeling conformal antenna
structures. Besides this conformal microstrip patch antenna,
windscreen antennas are also modeled using MOM method
[21].

2.4. FDFD (Finite Difference Frequency Domain)

FDFD is similar to FDTD and related to FEM in the method
of arriving at solutions. FDFD is obtained from finite
difference approximation of time harmonic Maxwell’s curl
equations to find partial space and time derivatives. This



method is not a time stepping procedure, so the FDFD
meshes are similar to FEM meshes. Moreover FDFD creates
linear equations that produce sparse matrix like MOM and
FEM to compensate time stepping procedure. Although
FDFD is on par with FEM, it has not drawn considerable
attention like the later owing to fast growth of FEM in
mechanics. FDFD finds its application in 2D Eigen
formulation and scattering problems at optical frequencies

2.5. TLM (Transmission Line Matrix Method)

Although TLM method has similarities to the FDTD, it is
unique. Modeling nonlinear materials and absorbing
boundary conditions is simple in TLM. In this method E-
field and H-field grids are interleaved as single grid and the
nodes of this grid are connected by virtual transmission
lines. At each time step excitations at source nodes are
transmitted to adjacent nodes through these transmission
lines. Requirement of excessive computation time for large
problem and increased memory per node than FDTD makes
this method less appealing. As they are similar to FDTD,
designer can chose between the two, based on their
applications. The applications of TLM method include
inhomogeneous media, lossy media, and nonlinear device.

2.6. GMT (Generalized Multipole Techniques)

GMT is based on method of weighted residuals similar to
MOM. Field based GMT is advantageous over current based
MOM due to the fact that it is not necessary to do further
computation to obtain fields. However MOM yields field
only after integrating the charge over the surface. GMT
finds its applications in waveguides and thin-wire modeling.

2.7. CGM (Conjugate Gradient Method)

CGM is a frequency domain method that differs from MOM
in two aspects viz. the way the weighted residual functions
are employed and by the method of solving linear equations.
Hilbert inner product is used for inner product of weighing
functions instead of symmetric products used in MOM.
Sparse matrix is solved by iterative solution procedure
instead of Gaussian Jacobian method used in case of MOM.

2.8. AEM (Asymptotic - Expansion Methods)

AEM method includes High frequency CEM [45] and Low
Frequency CEM (Quasistatic approximation) reviewed in
[46]. The various high frequency techniques like GO, UTD
and PO are discussed in [45].

2.8.1 UTD (Uniform Theory of Diffraction (UTD)

UTD falls under the category of High frequency methods.
This is an extension of GTD. This method produces more
accurate results relative to the field wavelength. Fields at the
point of excitation where wavelength is zero can be
evaluated using geometric optics. The effects of diffraction
are included in UTD and GTD [46]. Small and complex
geometries that require accurate surface and wire currents
could not be modeled using GMT and UTD codes. The UTD
is used in the applications involving modern naval vessel.
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2.8.2 PO (Physical Optics)

Physical optics is a current based method used to find
current density induced on a surface. This finds application
in large scatterers. This method could be used for smooth
and curved surface since they ignore edge diffractions.
However, integration with reflector is complicated and time
consuming. In ray launchers contribution of rays in finding
fields is done by using PO integration [47]. In some cases
that demand efficiency and accuracy PO could not be used.
High frequency (HF) methods like GO-PO combination are
extensively used in electrically large objects for spline
approximations prediction and coarse oceanic surface [48].
NSDP (Numerical Steepest Descent Path) method is a used
widely to find solution for PO scattered field [49]. High-
resolution RCS matrices, generated using Physical Optics
(PO) were used in an investigation of RCS matrix
resolution. In [50] accuracy dependent problems use RCS
interpolation that is obtained from spline approximations.
Computational cost dependent PO Problems use bilinear
interpolation with compromise in accuracy. Multilevel
method based on PO in [51] is used in analysis of near field
single bounce back scattering. Computational time is
minimized by data from far fields and areas around near
field. Further Near field (NF) scattering analysis makes it
viable for realistic applications with less CPU timers.

2.8.3 GO (Geometric Optics):

This is a field based method in which equivalent currents on
geometric plane is set up using ray tracing. Integration of
GO with Aperture Integration (Al) is performed with ease.
This method is advantageous as it ignores edge diffractions.
The applications like ray-launching uses Multi-core CPUs or
cluster computers to solve ray launching problems using
geometric optics. The entire process of RL-GO is controlled
by angular spacing or transverse spacing. GO meshes the
region in same way as MOM and PO. However, GO
triangles are larger than for MOM as mesh is implemented
in surface geometry thereby reducing mesh storage
efficiently. Finite dielectric materials, dielectric coatings of
metallic surfaces, anisotropic materials are modeled using
GO.

2.9. EEM (Eigen Expansion Method)

A challenge is posed on CEM to provide efficient solutions
to Generalized Eigenvalue Problems (GEP) in order to aid
CM analysis. The computational time and memory
requirement for matrix-vector product is greatly reduced
with the use of Multilevel Fast Multipole Algorithm
(MLFMA). MLFMA could be combined into the implicit
restarted Amoldi (IRA) method for the estimation of
Characteristic modes. MLFMA is combined with the sparse
approximate inverse (SAI) to accelerate the creation of
Armoldi vectors.

Large-scale and complicated 3D objects with restricted
computational resources can be modeled by this method for
CM analysis [52]. Developing MLFMA based CM analysis



is a challenge to conventional MOM approach. MLFMA can
be implemented in parallel processing using iterative Eigen
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Figure : 3. Applications of computational Electromagnetics

solvers, yield desired performance in CM analysis. The
applications of various computational electromagnetic
techniques are depicted in Figure: 3.

The commercial codes like HFSS®, CST®, FEKO®,
XFDTD®, Empire®, SEMCAD® uses differential methods
like finite difference method and finite element method.
FEKO, WIPL-D® (IE3D, Sonnet, Designer etc. — 2D) are
using integral methods like method of moments.

The Survey of CEM method is compared in Table 1: Survey
of these methods based on issues associated with each
method like MOM, FEM, FDTD and Hybridization of
Techniques is discussed. Correspondingly solutions to these
issues are also addressed in this Table.

3. Meshless and Meshfree methods

Mesh less method are used in arriving at numerical solution
for problems where meshes are not necessary however they
use mesh only once in final stage to solve linear equations.
In order to remove meshes, we require designing of fitting
policies for scattered data in multi-dimensional spaces that
results in definition of mesh less shape functions [53]. Point
interpolation method, radial point interpolation method and
Shepard approximation are few natural neighboring methods
used to define shape function. The Shepard approximation
help in achieving good accuracy and considerable
computing time [54]. These problems are solved by
expanding unknown field variable over such shape function
and also reduce number of unknowns. This method has few
drawbacks in terms of accuracy and computational time.
Sharp discontinuity and difficult simulation are dealt in
mesh less method. The various advantages of mesh less
method are increased support domain, change in basis
functions, adopting nodal densities. The meshless methods

like Meshless Local Petrov- Galerkin (MLPG) , Local
Boundary Integral Equation (LBIE) and Meshless Local
Boundary Equation (MLBE) are used in the analysis of

microstrip antennas [53].
Table 1: Survey on CEM methods

Categories Issues Solution
MOM Based Singularity, Singulz.lrity
Techniques Low frequency extraction,
break down, MOM elliptic
Charge formulation,
cancellation Preconditioners,
Charge recovery
Internal HLU, DDA-
interface issue, | ABC
Spurious preconditioners.
FEM based solution DDA - parallelization.
Techniques Difficult in
solving
electrically
large problem
Truncation CFL limit- step
error at each size small,
EDTD based step, o Semi implicit
Techniques gynchromzahon sghemes- step
issues, size large,
interpolation RK-HO-FDTD.
error
Il conditioning | DDA-ABC
Hybridization effects preconditioner
of Multiscale MLFMA with
Techniques problems some
FFT-based algorithm

48

All these methods decrease computational time by changing
domain integrals to boundary integrals. Amongst these three
methods it is expected that MLBE is fastest. The comparison
of all these methods for thin microstrip with coax fed and
line fed shows same convergence rate. LBIE has least
condition number and MLBE needs low CPU time.

Mesh free method usually bypasses mesh generation. Mesh
free methods are used in solving computationally difficult
problems at the cost of computational time and
programming effort. The mesh free method has several
benefits over FEM and FDM such as Overlapping domain
gives much supportand gives good approximation.

4. GPU acceleration

In spite of development in GPGPU computing and speeding
of parts of programs or using easy problems many factors
that make problem robust are considered before
implementing this technique to commercial software. The
expected solution needs increased computational power and
therefore time required for solution is reduced. Successful
GPU implementation needs code implementation and
optimization depending on problem time regardless of



whether it is my memory bound or compound bound.
GPGPU has both hardware capability like c/ct+ and
software programming. This method is used in FEKO and
choice of solution depends on electrical size of problem and
intricacy of materials that are simulated. The Challenges in
GPU acceleration are versatility, reliability and
reproducibility, variety of CEM methods and software and
design decisions. Multi GPU and heterogeneous system
increase computational performance are discussed in [55].

Challenges faced by GPU acceleration are discussed in [56].
1. Hexibility, consistency and reproducibility

Commercial software settings demands accurate results
without exceeding allocated memory for GPU
acceleration. They require additional computational
resources when they run out of GPU memory, in such
cases the switching algorithms transfer control to CPU.
2. Wide variety of computational electromagnetics

methods

GPU faces several challenges in parallelization
techniques like MPI, Open MP and GPU computation.
GPU acceleration has similar approaches for MOM and
FEM, In spite of their differences (Linear system is
dense matrix for MOM and sparse for FEM). However
realized speed will differ for dense and sparse GPU
computation.
3. Software used and design decisions

GPU acceleration on commercial CEM software are
based on decisions such as language for software
implementation and low-level program flow such that it
maps well to GPU architecture

Open CL, Open MP and CUDA are few programming
languages preferred and partially used in commercial soft
wares like FEKO. GPU programming is C/C++ based and
acceleration of this is FORTRAN based. Any modification
of codes may result in bugs; further introduce need for
testing, tuning and software verification

GPU processing for MOM matrix experiences run time that
is quadratic and solution that is cubic. In case of larger
problem matrix solution will dominate the run time. Speed
up for MOM code needs resources to be invested due to
complex nature of code.

In case of FEM GPU acceleration must be overlooked. The
total simulation time of FEM include construction of
preconditioner and solution to sparse matrix. Use of right
preconditioner decreases the solution time in comparison to
direct sparse solvers. Single GPU is used for small problems
and GPU cluster is used for large problem. Iterative solvers
show performance improvement in cases where GPU
memory is a limitation and they provide a speed up of 50%.

FDTD based GPU acceleration is no hybridization is
involved so computational resources are reduced.
Optimization of GPU based FDTD is done by exploiting
shared memory, achieves global memory coalesced
accesses, employing texture caches, use of build in arrays,
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properly arrange computation in third domain. GPU
provides speed up of ten times compared to CPU.
Parallelization of 75% is achieved by overlapping
computation and communication. Ray Launching-
Geometric optics used UTD, PO, RL-GO collectively
resulting in Shooting and Bouncing Ray (SBR) for dealing
with large objects and is well suited for GPU acceleration.
CUDA code is run through GPU compiler to obtain
accelerated GPU implementation. Stack size must be
addressed well to deal with GPU limitation in terms of
difficulty and recursive code.

Further acceleration of these methods is done by using
numerical algorithms through hybridization for all methods
except FDTD.

5. Hybridization

MOM faces difficulty in modeling inhomogeneous, interior
of conducting enclosures and dielectrics with non-linearity.
FEM is not suited for efficient modeling of thin wires, large
radiation problems and Eigen value problem due to its
unstructured mesh. FDTD is difficult in modeling structure
with sharp edges. GTM and UTD techniques are not suitable
for problems that need accurate measurement of surface
currents. It is obvious fromthe above discussion that none of
the numerical techniques can solve all EM problems. All
these techniques fail to cater the needs of printed radiation
models that have all these structures. The most appropriate
solution found by the researchers is to club two or three
techniques and produce one code ie. Hybridization code.
Hybridization techniques involve combing two or more
techniques into a single code. Various hybridization
techniques are discussed in the forthcoming section.

5.1. Hybrid MOM - FDTD

FDTD method accomplishes propagation simulations
excellently but not suited for modeling complex metallic
structures like antennas. On the other hand the Method of
Moments (MOM) is ideal for modeling complex metallic
structures and is not very well suited for penetrating into
such structures, hybrid MOM /FDTD method is used in
application that require penetration into these structures eg.
human tissue [57]. Antenna and scattering problems could
be resolved using hybrid MOM and FDTD based on IMR
(Iterative Multi-Region) technique [58]. IMR divides the
domain problem into separate sub regions. In a problem with
thin wire and scatterer MOM is used to solve thin wire
antenna while the other region can be solved using FDTD
solutions. Iterative algorithm helps in achieving the solution
for combined sub regions. Radiated fields arising from
MOM region due to current distribution on the antenna helps
in interaction of two sub regions. Since the FDTD is a time
domain solver, fields emanating from the MOM region that
excite the FDTD region needs to be changed into time
domain waveforms. This method helps in achieving
reduction in the memory storage requirements and
computation time.



Hybrid MOM-FDTD method employing the Asymptotic
Waveform Evaluation (AWE) technique [59] involves
swapping back and forth information between the MOM
(DFT) and FDTD (IDFT). The AWE technique in the MOM
domain is implemented to reduce the computational time
needed for wide-band analysis. Frequency hopping
technique is suggested for choice of expansion points in
AWE technique. The computational time is reduced from 3
hours 18 min to 1 hour 4 min by using AWE technique.

5.2. Hybrid FDTD - PO

Radiating planar antennas in the existence of large
conductive structures are analyzed using Hybrid FDTD and
PO [60]. Surface equivalence theorem is used to combine
FDTD and PO and spatial interpolation technique is used to
enhance computational efficiency of the proposed approach.
The idea of using this technique is to calculate samples of
the electric and magnetic fields on a comparatively coarse
spatial grid over the Huygens surface and then to use
interpolation for obtaining field values on the required fine
grid. FDTD regions enclose the antennas and
inhomogeneous dielectric objects surrounded by Huygens
Surface. Conducting bodies in frequency domain are
analyzed using PO. Memory storage and CPU time are
saved by using this technique.

5.3. Hybrid FEM - FDTD

Hybrid FEM - FDTD is aids to present modified equivalent
surface current [61] by means of equivalent principle
theorem to extend the field transformation. FDTD gained
popularity due to its simplicity and efficiency. However
compromise is made in terms of accuracy. FEM permits
good estimates of complicated boundaries and with edge
elements it performs well for Maxwell’s equations but needs
further memory hybrid that applies FDTD in large volumes.
FEM is difficult to be applied for problems with large
dimensions but FDTD can handle this even for penetrable
structures. 70% of the required memory locations of the
field points between the two domains are saved along with
increase in speed for updating boundary equations inside the
FDTD method [62].

5.4. Hybrid MOM - PO

MOM could be hybridized with FEM, FDTD, TLM, AEM,
and PO. In case of MOM - PO hybrid MOM method is used
in small, resonating structures near edge while PO is used
for large and smooth regions. MOM /PO hybrid is preferred
for modeling large reflector antenna instead of MLFMM.
Reflector is modeled using PO and feed of the reflector is
accurately modeled using MOM.

5.5. Hybrid FEM - MOM

In spite of the advantage of FEM like mesh adaption and
mesh refinement that improves accuracy, there is
disadvantage in this technique in case of mesh termination.
Mesh termination issue arises when radiation condition are
enforced in open region. Various methodologies have been
used for mesh termination but FEM-M OM hybrid is the best
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method. FEM uses curl and field based Whitney element
while MOM uses divergence and current based RWG
element.

5.6. Hybrid FDTD with two lewvel atomic systems

Hybrid of atomic systems emerged from coupling rate
equations and FDTD. EM fields and atoms population
density are updated and leads to the significant reduction of
computational effort for the analysis of absorbing materials
[63]. Short FDTD simulations allow updating the population
density of the system at a much longer time scale than a
single cycle of the wave

5.7. Hybrid FDTD with DGF formulation

Hybridization of FDTD method with formulation of DGF
(Discrete Green Function) [64, 65] has limited utility due to
computation overhead. It anticipates new fast methods for
DGF generation. However this hybrid fornulation finds its
application in antenna and disjoints domains. The antenna is
modeled by DGF formulation of FDTD, while scatterer is
modeled with FDTD. Implementation of this method in
paralle]l processing using iterative Eigen solvers yield
desired performance in CM analysis.

5.8. Advanced Hybridization Schemes

FE-BI-MLFMA which is derived from FE-BI uses
absorbing boundary condition to do first approximation by
FEM. The solution based on FETI faces issues in terms of
numerical scalability and computational difficulty.
Although, preconditioners are utilized to reduce
computational time enabling fast convergence towards
desired solution with less number of iterations, algebraic
preconditioners need complex factorization making them
unsuitable in  this regard. However DDA-ABC
preconditioner employing iterative solver using DDM
satisfies the need. This method finds its application in
antenna arrays and large lossless objects. Computational
time can be reduced by incorporating ID algorithm and the
solution is obtained by combining direct solvers with
iterative solvers. The proposed method with ID exhibits
more accurate, efficient and robust result. Further it
decreases the peak memory requirement while it maintains
the number of the final skeleton directions the same as or
less is applicable in 3-D composite objects [66].

Multiscale problems are analyzed using various hybrid
techniques like MLFMA, LFFIPW A effective in solving sub
wavelength breakdown with high accuracy and low
efficiency compromising the speed. MLIPFFT-MLFMA
(Multilevel Interpolatory Fast Fourier Transform —-MLFMA)
is a broadband method with higher efficiency. ID-MLFMA,
MLFMA-ACA and MLFMA with some Fast Fourier
Transform based method solves multiscale problem in large
structures. On the other hand in terms of memory storage
and computing resources ID-MLFMA and MLFMA-ACA
techniques are capable of treating multiscale problem [67].

MLFMA-PO is a hybrid technique used in scenarios where
geometry with fine details needs to be modeled with



accuracy and efficiency. MLFMA is an acceleration of
MOM that is responsible for modeling finite parts with
accuracy. PO can model large structures with efficiency.
Hybrid MLFMA-PO can be used in applications involving
large scattering and large radiation problems like certain
critical parts of antenna [68].

Parallelization improve the speed and efficiency of a
process, also this is implemented in hybrid parallel open MP
-VALU (Vector Arithmetic Logic Unit) MLFMA to achieve
the same. In contrast to GPU acceleration the above cited
technique does not demand extra device due to the presence
of essential VALU inside CPU. The hybrid SPMD-SIMD
parallel scheme is not supported by hybrid parallel Open
MP-VALU MLFMA method [69]. Hybrid MPI and Open
MP parallel programming technique is one such technique
where in BOR-MOD-CFIE code is subjected to
parallelization to enhance performance of MOD method in
terms of memory, accuracy and CPU time [70].

MLFMA with PO to form hybrid finds its application in
analyzing scattering and radiation problems for electrically
large structures. The proposed hybrid uses MLFMA,
accelerated version of MOM  for analyzing certain
structures where complex linear equation are solved by
iterative solvers explicitly and PO, on the other hand to
enhance the accuracy dealing with scattered fields. The
application involving fast RCS prediction of electrically
large target are accomplished using hybridization of
GO/PO accelerated by open graphics library enabling
accuracy in capturing creeping effect and wave diffraction
effects [71].

High frequency approximation method called shooting and
bouncing ray is used in applications involving PEC and
dielectric using CUDA. This method wuses physical
approximation, current based method in SBR owing to its
capability to penetrating into objects for applications like
RADAR and ISAR [72]

Juan Chen [73] proposed a hybridization method based on
WCS-PSTD (Weakly Conditionally Stable — Pseudo Spectral
Time Domain).This method is formulated to deal with
electrically large object with continuity between subdomains
implies less memory and less computational time. For
photonic crystal this method is better than FDTD. However,
accuracy of the proposed method that largely depends on
step size and is notapplicable to surfaces with discontinuity.

Time domain application of Hybridization like DGTD and
TDBI incorporates calculation of truncated boundary while
truncation is brought about by ABC or EAC, PML. Flux
produced by truncated boundary is responsible for
communication between the domains and determines shape
of scatterer by imposing physical radiation. DGTD truncated
by EAC makes radiation condition elastic than all DGTD
systems to address EM scattering problems [74].

TABLE 2: Techniques for performance up gradation of
CEM methods

Category Techniques for performance upgradation of CEM
MOM® FEM® FDTD® Hybridization
®
Accuracy | Singularity | 1.H-LU CFL Hybrid
extraction, - limit- step | techniques
MOM computat | sizesmall | accelerated by
elliptic ion cost | Semi open graphics
formulation | and imp licit library enabling
accuracy | schemes- accuracy
step  size [ DDP-FE-BI-
large MLEMA
RK-HO-
FDTD.
Memory | Incremental | Nested Sub cell | ID-MLEMA
multilevel Dissectio | algorithm, | and
filling and | n- DDM. | RK-HO- MLFMA-ACA,
sparsi- Semi FDTD. OpenMP
fication Implicit parallel
Schemes programming
CPU Singularity | DDA- ADI- Hybrid MPI
time extraction, paralleliz | FDTD, and Open MP
Paralleli- ation- LOD- parallel
zation increases | FDTD — | programming
speed paralleli- technique,
zation, WCS-PSTD,
Sub  cell | Preconditioner,
algorithm, | ID algorithm.
RK-HO- AWE technique
FDTD. in MOM-FDTD
hybrid reduce
resource
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The strengths and weakness of different CEM techniques
were discussed. In summary, the following were observed:
FDTD is a time stepping phenomena used in the analysis of
domains like Debye dispersive media. Discretization of this
media imposes error due to truncation, thereby increasing
dependency of accuracy to Courant, Friedrichs, Lewy (CFL)
limit [8, 10].

This dependency is mitigated by using Semi implicit
schemes (SIS) [12]. Novel Runge-Kutta algorithm makes
FDTD stable, dispersive and convergent [18]. FEM schemes
faced problems in modeling 3D objects, Eigen value
problem and thin wires. Domain decomposition method
(DDM) based FETI-DPEM solves FE system and makes
good in terms of convergence and scalability with aid of
direct FEM solvers. Nested Dissection assures less memory
and CPU time, while H-LU provides accuracy and fewer
resources when used along with FEM. Table 2 depicts
techniques for performance upgradation of CEM methods.




Iterative solvers face difficulty in convergence due to
existence of PML. However DtN approximation,
preconditioners promotes convergence [25]. DDM makes it
applicable to large domain problems. MLFMA acceleration
incorporates accuracy as depicted DDP-FE-BI-MLFMA
technique, is suitable for all domains [29]. MOM needs the
domain to be well conditioned and error controllable. Ill
conditioning effects could be reduced by potentially splitting
the domain or by the use of preconditioners. Error could be
controlled by using semi implicit schemes and formulation
like MOM elliptic approach [36]. Various hybrid
combinations and advanced hybridization like FE-BI-
MLFMA with limited scalability and computational
complications [28,29], ID-MLFMA [67], MLFMA-ACA
that treat multiscale problems [67], Open MP VALU[69],
MLFMA, W CS-PSTD[73], DGTD-TDBI with truncated by
EAC shows better performance in terms of accuracy,
convergence and CPU time [74]. Most widely used
softwares are CST®[75] based on Finite Integration
Technique, HFSS® [76] based on FEM and FEKO ® [77]
based on MOM and FEM.

6. Future of CEM

CEM Research has wide scope of evolution in next few
decades. A few techniques have been incorporated to
improve the performance of this stream of research. The
hybrid GPU-CPU parallelization may acquire considerable
attention in few years. The computational time is expected
to be reduced by implementing fast convergence methods
and implementing efficient preconditioners. Multi scaling
methods that are fast and accurate use efficient DDM
methods like discontinuous Galerkin methods and
generalized transition matrix. Methods with higher order
modeling capabilities with high order basis function,
characteristic basis functions are expected to have
considerable growth. Novel integral and differential methods
can be used for several realistic applications and these
applications may also require choice of different material in
cases like nonlinear sensing, Spectroscopy, frequency
generation. The collaboration of CEM with other field of
research like Multiphysics aids in dealing with realistic
applications and has potential to grow tremendously.

7. Conclusion

A review on different computational electromagnetics shows
that these methods are application specific. Selecting a
correct method that will afford fast and accurate solutions
may be a difficult task. Comparing the performance of
FDTD, FEM, MLFMA accelerated MOM will give better
insight on CEM. Although FDTD uses SIS for enhancing
accuracy, parallelization for reducing CPU time and Novel
RK-HO FDTD to enhance both, is time consuming. On the
other hand FEM is producing spurious solution that makes it
not ideal for Eigen value problem. However MOM
accelerated MLFMA is found to be suitable for well-
conditioned and error controllable solver. Preconditioners
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speed the convergence, parallelization makes CPU time
usage less, incremental multilevel filling and sparsification
reduces memory and MOM elliptic formulation promotes
the accuracy, thereby proving efficiency of MOM.

To cater the needs of emerging technology CEM
incorporates the technique called hybridisation. Introduction
of this technique helps in achieving the efficiency in terms
of computational time, memory storage and accuracy. ID
algorithm reduces computational issues, ID-MLFMA and
MLFMA-ACA reduces multiscale problem, open MP-
VALU MLFMA method enhances the CPU time, in turn
making MOM hybrid more reliable. On analysing pros and
cons of CEM techniques, it could be noticed that in
application specific tasks, hybridisation of techniques
involving MOM accelerated MLFMA are exhibiting better
results in terms of memory, accuracy and computational
time.
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