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Abstract 

Computational electromagnetics (CEM) is applied to model 
the interaction of electromagnetic fields with the objects 
like antenna, waveguides, aircraft and their environment  
using Maxwell equations.  In this paper the strength and 
weakness of various computational electromagnetic 
techniques are deliberated in detail. Performance of various 
techniques in terms accuracy, memory and computation 
time for application specific tasks such as modeling RCS 
(Radar Cross Section), space Applications, thin wires and 
antenna arrays are presented in this paper. Commercial 
software codes has certain limitations, Agilent ADS could  
not model  3D structures, HFSS is accurate but  execution  
time is h igh, WIPL-D® does not support modeling  
Inhomogeneous dielectrics embedded metal objects and 
periodic structures. IE3D® is not suited for geometry with  
fin ite details. However for regular shapes like rectangular 
patch MOM based IE3D provides accurate results than 
FEM based IE3D. The complicated structures are dealt with  
accuracy by using CST Microwave Studio® and HFSS®. 
Although CST and HFSS has similar interface in dealing  
with geometry with fine details, CST had edge over HFSS 
software as it starts in time domain and ends in frequency 
domain. HFSS uses Finite Element Method (FEM) to arrive 
at frequency domain solution. FEKO® has two main solvers 
MOM based and GTD based. GTD based FEKO is good in 
handling large structures like reflector antennas. 

1. Introduction 

The Widespread use of antennas has spurred considerable 
attention to the computational analysis of electromagnetics 
The CEM techniques came into limelight after the 
introduction of three pillars of numerical analysis viz. 
FDTD (Finite Difference Time Domain) , FEM (Finite 
Element Method) and MOM (Method of moments). Most 
EM problems ult imately  involve solving only one or two  
partial differential equations subject to boundary constraints 
but a very few practical problems like modeling  
homogeneous, inhomogeneous problems and boundary 
value problem can be solved without the aid of a computer. 
Computational Electromagnetics techniques are flexible. 
CEM finds its application in fields like design and analysis 
of RCS (Radar Cross Section), antenna geometry, bio  
medical applications, space borne radar and satellite  
applications, hand held devices, nano photonic devices and 
other communication devices.  

CEM is used in solving EM compatibility problems and 
issues associated with them. Few issues like Multiscale 
model, macro-models, time-domain and frequency-domain  
models, the use of structured meshes, un-structured meshes 
and stochastic models in EM compatib ility are discussed in 
[1]. CEM is broadly classified  into numerical methods, high 
frequency methods and other methods. The Numerical 
methods includes integral equation based MOM method, 
differential equation based FEM and FDTD. High  
frequency methods include current based Physical optics  
(PO) and fie ld based Geometric optics (GO). Other methods 
include Generalized Multipo le Technique (GTM), 
Transmission line matrix method (TLM) and modal 
methods (MM) to name a few. The computational h ierarchy  
of these methods is depicted in Figure.1.  
CEM practit ioners in the recent days are aiming to use 
existing software packages to solve a particular problem as 
early as possible. Present CEM researchers have limitation  
in learn ing the CEM methods, due to the readily available 
software packages. It is more important that experienced 
CEM researchers impart  the knowledge and share the 
experience with young researchers.  An attempt has been 
made in  this paper to report on the growth and  
advancements in the field  of computational 
electromagnetics. 
 
 

 
 
 
Figure 1: Computational hierarchy 
 

2. Survey of CEM 

The growing field  of CEM research has sprouted various 
divisions of research. CEM research is carried out mainly in  
three ways viz. (i) analytical techniques, (ii) numerical 
analysis technique, (iii) expert systems. Analytical 
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techniques make some assumptions  (for example geometry  
like ground plane is considered as infinite ground plane) to 
get closed form solution (look up table). Analytical 
techniques are used not only in simple computer progra ms  
but also in elaborate IEMCAP (Intra system 
Electromagnetic Compatibility program) provided they 
have anticipation of EM interactions [2].  Analysis of 
numerical techniques plays a vital ro le in select ing suitable 
method for various geometries.  Expert systems estimate 
values for the parameters of interest through their 
knowledge on EM interactions that cause EMI sources to 
radiate [3, 4]. Expert  system is unsuitable for difficult  EM 
problems. Prominent methods used in this domain of 
research are discussed to provide insight in to  
computational electromagnetics.  

2.1. FDTD (Finite Difference Time Domain) 

Yee et al defined FDTD scheme in the year 1966. He 
provided the solution to Maxwell’s curl equation involving  
centred finite difference approximations to find part ial space 
and time derivatives.  Consider one component of 
Maxwell’s equation: 
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Using the central difference scheme, the above equation is 
discretized. FDTD algorithm comprises a grid o f points 
containing computational domain, a stencil to approximate 
PDE, a boundary condition to approximate points on 
boundary of computational domain, an excitation source and 
solution method to solve PDE. Post processing is done to 
find physical quantities from field equations [5].  In 1980, 
Taflove created an acronym to refer to fin ite difference time 
domain schemes (FDTD).  
 
The computational domain of structure under analysis is 
discretised using two techniques viz.(i) Bergner’s PML 
(Perfectly Matched Layer) and (ii) Modified PML. The PML 
is illustrated as follows. 
 

2.1.1. Perfectly Matched Layer (PML) 

Mesh termination remains as problem in modelling the 
computational domain using FDTD. Reflection from 
boundary that arises due to coarse meshing affects accuracy 
of computation. Absorbing Boundary Conditions (ABC) 
demands larger computational domain to be meshed.  
Domain  is large in ABC as they need adequate distance 
between radiating body and boundary. The ABC can achieve 
a return loss of -20 dB to -30 dB. However ABC need to 
battle to achieve return loss less than -50 dB [6] because 
ABC shows good performance in  absorbing reflection only  
for normal angles and performance is poor for angles other 
than normal incidence [7]. This reflection is greatly reduced 
by making computational domain  finite through domain  
truncation techniques. Truncation techniques experiences  

the truncation error in cases wherever they are not properly  
implemented, therefore accuracy of computed results is 
affected.  Computational resource requirement such as time 
and memory for high order ABC is high as computational 
domain is larger. The computational effort can be reduced 
and accuracy is enhanced by introducing an absorbing layer 
called Perfectly Matched Layer (PML). Berenger [8] 
introduced this method for 2D cases in 1994 by p lacing  
boundary close to radiating body.  The E or H field is split  
into two and different E and H loss is assigned to each field  
component [7].  FDTD update equations are used by PML to  
accommodate these split fields. The layout of Perfectly  
Matched Layer is depicted in Figure 2. X-PML is X –
oriented PML and Y- PML is Y oriented PML and X-Y 
PML is X-Y oriented PML. σx , σy  are conductivities in X and 
Y direction.  Corner reg ions are handled well by overlapping  
X and Y PML resulting in X-Y PML. Absorption of 
reflection with PML is good at all frequencies and angle of 
incidence regardless of polarization of angle of incidence [7]. 
Perfect matching is achieved by PML using absorbing 
materials with electric and magnetic losses at termination of 
mesh. PML uses two approaches namely stretched approach 
(mathemat ical in nature) and anisotropic media with  
Uniaxial PML (popular method) [6].  PML Techniques 
allows Electromagnetic waves to be absorbed with min imal 
reflection and further this reflection magnitude is decreased 
by fine tuning of parameters like thickness of layer [8] 
thereby achieving return loss greater than -100 dB [6] better 
than anechoic chamber (-70 dB). The PML requires more 
computational domain and CPU t ime due to the splitting of 
the fields which makes it unreliable.   
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Figure 2: Layout of Perfectly Matched Layer 
 
Further in FDTD d iscretization of computational domain  
poses error due to truncation. Staircase approximat ion also 
contributes error accumulat ion at each time step for surface 
with sharp and fine edges [9]. Also reflection error increases 
with increase in  time step affecting accuracy  of method.  

Perfect 
Conductor 
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The reflection error could be reduced by placing non-
resonant absorber adjacent resonating object (i.e.) 
Resonating Perfectly Matched Layer (RPML). 
 
Period ic structures could be analysed using this technique 
due to its capability, reduced computation domain  of 
repetitive structures up to 70% for 1D objects and 90% for 
2D objects [10]. Also, this method has good convergence. 
Courant, Friedrichs, Lewy discovered  and named it as CFL 
limit  in  order to ease the solution of second order wave 
equation. Desired accuracy is obtained when time step is 
within  CFL limit making the system unconditionally  stable 
at the expense of computational t ime. The FDTD is solved 
by Zheng Yu Huang in [11] by a new unconditionally  stable 
method using Associate Hermite (AH) function. In [11] 
Orthonormal basis function is used to expand the E field and  
time derivatives. Time variables associated with it is 
removed by Galerkin testing procedure. Here  in [11] the 
CPU time is reduced by 0.59% than traditional FDTD 
without any impact on the accuracy at the cost of memory  
consumption. Spheroidal FDTD uses CFL limit  and field  
formulas to deal with singularity at the center and edges of 
spherical cavit ies and patch antennas with addit ional 
computational cost than conventional FDTD [12]. 
 
An efficient 3D FDTD gives solution to Maxwell’s equation 
using two different time step increments. Applications like 
space weather effects, satellite communicat ions operating at 
high altitudes, high collisional regimes are analysed by this 
method. Easy implementation, less memory and time makes 
this method more attractive than anisotropic approach.  
However, stability is largely  affected for strong electric field  
as error increases with increase in time step [13].  
 
Semi Implicit Schemes (SIS) depend on current step alone, 
over ruling the dependence of CFL limit for applications 
involving larger time step. This method computes E and H 
field at each step, forcing the time step be within CFL limit. 
For computational domain problems requiring larger time 
step, this method is an ideal choice. This method is used 
when time step (> 10 t imes) is larger than FDTD stability  
limit at the cost of additional memory consumption. 
Memory  storage and computational cost is proportional to 
the electrical size  of geometry and grid resolution. Electrical 
properties of the scatterers are varied at each step by varying 
the values of µ, , and є assigned to each field component. 
SIS performs certain  modification to  CPML-FDTD enabling  
implementation of CFS-PML to resolve synchronisation 
issues in CPML-FDTD, RIPML that affects accuracy in 
cases like dispersive media. Further this CFS-PML requires 
less computation and memory in treating unbounded 2D 
region and thin bounded PEC [14].  
 
An algorithm called sub-cell algorithm is used to model flat  
electrode using coarse grids of FDTD preserves 12% 
computational memory and 3% of CPU t ime usage than 
traditional FDTD without compromising efficiency [15]. 
Long and short apertures without depth or with finite depth 

could be modelled using uniform two step method in FDTD 
analysis with good accuracy, high resolution in [16]. The 
two step uniform method is processed in steps like: (i) 
estimate aperture-field singularity using standard FDTD 
simulation at the edge of the receiver to yield aperture 
coefficients (ii) coefficients thus obtained are used in 
contour path to define FDTD update equations for fields 
near aperture. The challenges faced by this method are 
computational memory and accuracy. 
 
Fin ite Difference Time Domain – Alternating Direction  
Implicit Method (FDTD-ADI) d iscussed in [17] is an 
unconditionally stable method that operates in one step leap 
frog fashion to solve open region (isotropic lossless) 
problems using Sherman  Morrison formula to solve 
tridiagonal equations efficiently. Also this method is 
efficient in terms of computation time, memory and similar 
accuracy in comparison with two  step schemes. The main  
issues associated with this method are increase in error with  
increase in time. 
 
Locally One-Dimensional-Finite-Difference Time-Domain  
Method (LOD-FDTD) is found to be faster than parallel 
(FDTD-ADI) method, where parallelization is achieved 
using message passing interface. Debye-dispersive media, 
complex bio -electromagnetic problems like deep brain  
stimulat ion could be handled with good scalability and 
performance. LOD-FDTD ach ieves lower communications 
between cores (up to 40 cores) than FDTD-ADI, however 
suffers efficiency issues if number of cores goes beyond 40 
cores [18]. Th is method uses less CPU time at the cost of 
memory consumption.  
 
In order to improve performance of conventional FDTD in  
terms of CPU time and memory, Zh i-Hong proposed in [19] 
a DD (Domain Decomposition)-Laguerre-FDTD method to 
solve very large rough surface, PEC, lossy dielectric media, 
large scatterers. The computational domain is discretised 
into sub domains, radiated and scattered fields. DD-FDTD 
can model vast rough region than conventional FDTD. 
Characteristic basis functions (CBFs) are employed to 
mitigate interpolation erro rs between the boundaries thereby 
increasing accuracy of this method. 
 
Min Zhu proposed in [20] a Novel RK-HO-FDTD (Runge 
Kutta Higher Order FDTD) used in computation of EM 
regions which is in terms of accuracy, speed, convergence 
and has reduced dispersion. This method combines SSP-RK 
and HO-FDTD. RK-HO-FDTD is pretty much attractive 
than HO-FDTD, MRTD and RK-MRTD methods due to its 
better scattering properties and quick convergence. 

2.2. FEM (Finite Element Method) 

FEM code meshes computational domain problem into sma ll 
portions and forms linear equations using weighted residual 
method and solves the same by reducing the energy of 
geometry viz. inhomogeneous material resonant cavities. 
Thin wires, large rad iation problem like Eigen value 
problem and 3D problems are difficult to be modelled using 
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FEM due to its unstructured mesh. FEM for 3D EM 
problems faces certain issues than 2D problems like need for 
excessive computation and vector parasites that results in 
false solutions. FEM is used in modelling Yagi-Uda 
antennas, horn antennas, waveguides, vehicular and 
conformal antennas [21].  
 
Bangda Zhou proposed Direct FE solver [22] that uses the 
following algorithm: (i) Divid ing of unknown nested 
dissection (ii) Constructing elimination tree, (iii) Symbolic 
factorization (iv) H matrix creation for frontal matrix for 
every node of elimination tree (v) H matrix based algorithm 
to perform numerical factorization to arrive at the solution 
and (vi) post processing. Although this method is far better 
than the available commercial solvers for applications like 
3D structures, Patch antennas , it is not ideal in terms of CPU 
time and memory storage. 
 
Dual Prime (FETI-DP) method in  [23] incorporates 
Hierarchical-Lower Upper (H-LU) and Nested Dissection 
(ND) is a domain decomposition method. This solver with  
sub-domain finite element systems has faster convergence 
and numerical scalability without sacrificing efficiency. The 
applications of this method include 3D structure problem, 
periodic array problem, Jerusalem type array, Vivald i array. 
These applications use LU for maintain ing computation 
resources and accuracy while ND conforms less memory  
and CPU t ime. Though this method facilitate parameter 
choice based on applications, accuracy and computational 
cost for unconditionally s table system has a trade-off [24].  
 
Ivan Voznyuk [25] discussed Finite - Element Tearing and 
interconnecting Full-Dual-Primal (FETI-FDP2) (FETI-
FDP2) method an extended version of FETI-DPEM2 is used 
in analysis of 3D large-scale electromagnetic problems using 
robin type boundary condition at corners and interface. 
Electrically s mall problems are solved by using Krylov  
solver and ASP/AMG(Auxiallary  Space Preconditioners /  
Algebraic Multigrid) preconditioners as they facilitate 
convergence with lesser iterations. However the 
implementation could be extended not only to geometry  that 
is tedious to solve but also to electrically large problems  
using DDM [26]. The incapability of iterative solver to  
converge due to presence of PML is over ru led by Dirich let-
to-Neumann (DtN) approximat ion [25]. Further, algorithm’s 
parallelization improves convergence. The use of Robin type 
boundary condition at interface cause the Interface issue, 
that is solved by an effective code based on mesh 
partitioning without affecting accuracy. This method 
requires performance enhancement in terms of memory and  
CPU time and is not suitable for hierarchical elements that 
are higher in order.  
 
Zhi-Qing Lü [27] proposed Non-Conforming FETI (NC-
FETI). Few steps involves are (i) Computational domain  is 
discretised to subdomain (ii) Data transfer between 
subdomains is done by imposing Robin type boundary 
condition (iii) Lagrange mult iplier scheme and Schur 
complement approach are used  to solve interface issue and 

(iv) Iterat ive algorithm is to find unknown electric field. 
NC-FETI is far better than DDM and is capable of modeling  
3D large-scale slot array, complicated electromagnetic 
problems such as photonic band gap and antenna arrays with  
efficiency and accuracy at the cost of memory. Memory  
consumption can be greatly reduced for periodic structures 
due to their repetitive nature [27].  
 
Jian Guan  proposed an accurate and efficient Finite 
Element-Boundary Integral-Multilevel Fast Multipole  
Algorithm method (FE-BI-MLFMA) [28]. The formulation  
of FE-BI is first approximated by FEM with absorbing 
boundary condition. Further it is solved using FETI with  
numerical complexity and considerable scalability. The 
efficiency of this method is increased by Graphics 
Processing Unit (GPU) accelerated MLFMA. Testing 
schemes involved in this  method are enhancing accuracy 
and ABC preconditioner improves speed by faster 
convergence of iterative solution. However ABC 
preconditioners like algebraic preconditioners demands 
bulky factorizat ion which is solved by DDM. In spite of 
parallelization difficu lty, this method is suitable in real 
applications like biomedical application involving human 
body, RCS, space applications involving missiles, antenna 
arrays due to its accuracy and efficiency.  
 
Ming Lin in [29] suggested that Domain Decomposition 
based Preconditioner - Finite Element-Boundary Integral-
Multilevel Fast Multipole A lgorithm (DDP-FE-BI-
MLFMA) is best for large lossy objects; it finds difficulty in  
dealing with 3D objects that are lossless with high µr and ԑr. 
CFL limit is having an important ro le in unconditional 
stability. Also semi implicit schemes could be used to attain 
memory and CPU time and cost reduction. GPU with  
Compute Unified Device Architecture (CUDA) quickens 
solution to mitigate parallelization blocks.  
 
GPU (Graphics Processing Unit) accelerated parallelization  
is done using ILU (Incomplete LU) preconditioner, SSOR 
preconditioner, Pard iso, MKL solver provided DDA speeds 
up large scale problem [30, 31]. This method holds good for 
fin ite element structures and single array  with large 
structures due to the increased speed within less time, but 
complicated antenna and microwave devices are having 
difficulty in convergence.  

2.3. MOM (Method of Moments) 

Antenna structure is analyzed using MOM by splitting the 
computational area into various segments viz. meshing and 
evaluating each segment using basis functions. The 
selection of basis functions plays a vital role in arriving at  
the solution with accuracy, efficiency. Current distribution 
is decomposed with this basis function. Green’s functions 
help in studying current on each segment and strength of 
each moment. Accuracy of calculat ing integral of Green’s  
function is enhanced by employing singularity extract ion. In  
addition with accuracy in calculating self -interaction and 
near interaction matrix, the problem converges to finite 
solution with less number of iterations using singularity 
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extraction. MOM discretizat ion leads to very large and  
dense matrix, consumes more time making it not suited for 
large problems, this could be solved by using 
preconditioners and iterative methods [32]. MOM is  
capable of modeling thin wire structures with speed, 
accuracy, convergence and versatility using triangular basis 
functions. 
 
MOM, a pro jection based process that solves linear 
equations to find unknown current distribution requires the 
solution to be well conditioned and error controllable. To  
attain these targets we emphasis on an equation to have 
single solution conforming to discretizat ion and well-
conditioned MOM matrix. However various issues 
associated with MOM like singularity, low-frequency 
breakdown and charge cancellation, non-smooth surfaces 
and physical resonances, composite structures, 
inhomogeneous and anisotropic medium, mult i-scale 
problems poses great difficulty in realizing these targets. 
Low-frequency breakdown and charge cancellation related  
problems are rectified by splitting the problem potentially  
and by the use of preconditioners [33]. 
 
Charge cancellation is restricted by derivative recovery of 
charges based on RWG basis functions proposed by Willem 
J. Strydom [34] uses Galerkin testing procedure to maintain  
current continuity between subdomains and nodal ZZ 
(Zhimin Zhang) patch to calculate charge density on various 
non-overlapping RWG basis functions. 
 
The performance of MOM in computational 
electromagnetics is based on its speed, accuracy and 
memory occupancy. Accurate error controllable MOM 
could be achieved by suppressing error measures from 
current, boundary conditions and scattering amplitudes. 
Testing and basis functions contribute to error. Also MOM 
is a projection based method where project ion error acts as 
reference error [35]. The Pocklington integral equation 
(PIE) using pulse basis and weight functions fail to address 
singularity.  However error controllable and good 
conditioned MOM elliptic formulation finds unknown 
current with less number of basis functions. Low-Frequency 
Fast Multipole Method Based on Multiple-Precision  
Arithmetic method (FMM-MPA) discussed in [36] 
produces consistent field values compared to the MOM 
with lesser relative error. 
 
Multiresolution approach enhances spectrum of MOM 
matrix. Th is enhancement is achieved by using regularizing  
diagonal basis functions obtained by using near field part  of 
MOM in standard basis functions that has low 
computational cost and memory occupation [37]. 
Electrically large structures like Vivaldi array [4, 8 element  
array] are analyzed and numerical results shows that 
MLFMA, accelerat ion of MOM is better than other methods 
(FDTD, FEM, conventional MOM) when electrical size of 
structure increases [38]. For Electrically s mall problems in  
which preconditioning could  not be achieved, near field and  
self-interactions matrix must be focused. Multisolver DDM 

method is used in air platform modeling where touching sub 
regions is inevitable. MS-DDM method uses different  
techniques for different subregions to achieve antenna 
isolation in the air p latform.  An example discussed in [39] 
shows EMC interaction effects on air platform using MS-
DDM at 10 GHz uses DD-FEM-BEM for reg ion 1 
(overview) and FEM -DDM for region 2 (mid plane). MS-
DDM solves ill-conditioned MOM matrix with non-smooth 
edges, tips and multiscale structures.  
 
Geometrical continuity and current continuity in PEC 
scatterers is maintained by using Non-Uniform Rat ional B-
Spline (NURBS) and approximate functions respectively 
developed by modified GMM. Contrasting DDM, GMM 
unites different basis and geometry descriptions to form 
MOM and solves it after breaking it in to sub problem [40]. 
Preconditioners discussed in [33] remove ill conditioning  
effects and fasten convergence to a fin ite solution with less 
number of iterat ions. This operates in two phases (i) 
generation of Z by filtering the NFI matrix and (ii) 
approximating the inverse of Z. Former operation is widely  
used due to its capability to  handle non uniform meshing 
[41]. Many preconditioners like block preconditioners, 
Calderon preconditioner, Algebraic preconditioners, MR 
Preconditioners, Block diagonal preconditioners, incomplete 
LU, Sparse Approximate Inverse (SAI) preconditioners 
mitigate ill conditioning in various scenarios [40]. 
 
Block diagonal preconditioners finds its use in 
preconditioning MLFMA accelerated form of MOM using 
new basis function that arises by linear combination of 
subdomain and entire domain basis functions. Calderon  
preconditioners are used in both open and closed structures. 
This preconditioner promotes convergences without 
affecting discretization density [42]. Calderon  
preconditioner utilized in antenna array treat ill condition in  
open problems employing testing basis function for faster 
convergence of solution. MR preconditioners along with  
diagonal preconditioner handles ill condition ing in  low 
frequency MOM employing incremental mult ilevel filling  
and sparsification thereby enhancing memory requirements, 
CPU t ime and accuracy than standard MOM, MLFMM, 
ACA [43]. 
 
Preconditioning with overlapping triangular basis functions, 
PMCHWT (Poggio, Miller, Chang, Harrington, Wu, Tsai)  
formulat ion can address scattering that occurs from 
penetrable bodies like Yagi – Uda nano antennas [44]. The 
MOM technique is used in  modeling conformal antenna 
structures. Besides this conformal microstrip patch antenna, 
windscreen antennas are also modeled using MOM method 
[21]. 
 

2.4. FDFD (Finite Difference Frequency Domain) 
 

FDFD is similar to FDTD and related to FEM in  the method 
of arriv ing at solutions.  FDFD is obtained from finite 
difference approximat ion of time harmonic Maxwell’s curl 
equations to find partial space and time derivatives. This 
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method is not a time stepping procedure, so the FDFD 
meshes are similar to FEM meshes. Moreover FDFD creates 
linear equations that produce sparse matrix like MOM and 
FEM to compensate time stepping procedure. Although 
FDFD is on par with FEM, it  has not drawn considerable 
attention like the later owing to fast growth of FEM in  
mechanics. FDFD finds its application in 2D Eigen  
formulation and scattering problems at optical frequencies  

2.5. TLM (Transmission Line Matrix Method) 

Although TLM method has similarities to the FDTD, it is 
unique. Modeling nonlinear materials and absorbing 
boundary conditions is simple in TLM. In  this method E-
field and H-field grids are interleaved as single grid and the 
nodes of this grid are connected by virtual transmission 
lines. At each time step excitations at source nodes are 
transmitted to adjacent nodes through these transmission 
lines. Requirement of excessive computation time for large 
problem and increased memory per node than FDTD makes 
this method less appealing.  As they are similar to FDTD, 
designer can chose between the two, based on their 
applications. The applications of TLM method include 
inhomogeneous media, lossy media, and nonlinear device. 

2.6. GMT (Generalized Multipole Techniques) 

GMT is based on method of weighted residuals similar to  
MOM. Field based GMT is advantageous over current based 
MOM due to the fact that it is not necessary to do further 
computation to obtain fields. However MOM yields field  
only after integrating the charge over the surface. GMT 
finds its applications in waveguides and thin-wire modeling. 

2.7. CGM (Conjugate Gradient Method) 

CGM is a frequency domain method that differs from MOM 
in two  aspects viz. the way the weighted residual functions 
are employed and by the method of solving linear equations. 
Hilbert inner product is used for inner product of weighing  
functions instead of symmetric products used in MOM. 
Sparse matrix is solved by iterative solution procedure 
instead of Gaussian Jacobian method used in case of MOM. 

2.8. AEM (Asymptotic - Expansion Methods) 

AEM method includes High frequency CEM [45] and Low 
Frequency CEM (Quasistatic approximat ion) reviewed in  
[46]. The various high frequency techniques like GO, UTD 
and PO are discussed in [45]. 
 
2.8.1 UTD (Uniform Theory of Diffraction (UTD) 

 
UTD falls under the category of High frequency methods. 
This is an extension of GTD. This method produces more 
accurate results relative to the field  wavelength. Fields at the 
point of excitation where wavelength is zero can be 
evaluated using geometric optics. The effects of d iffraction  
are included in UTD and GTD [46]. Small and complex 
geometries that require accurate surface and wire currents 
could not be modeled using GMT and UTD codes. The UTD 
is used in the applications involving modern naval vessel.  

2.8.2 PO (Physical Optics) 

 
Physical optics is a current based method used to find  
current density induced on a surface. This finds application  
in large scatterers. This method could be used for smooth 
and curved surface since they ignore edge diffractions. 
However, integration with reflector is complicated and time 
consuming.  In ray launchers contribution of rays in finding 
fields is done by using PO integration [47]. In some cases 
that demand efficiency and accuracy PO could not be used. 
High frequency (HF) methods like GO-PO combination are 
extensively used in electrically  large objects for spline 
approximations prediction and coarse oceanic surface [48]. 
NSDP (Numerical Steepest Descent Path) method is a used 
widely to find solution for PO scattered field [49]. High-
resolution RCS matrices, generated using Physical Opt ics 
(PO) were used in  an investigation of RCS matrix 
resolution. In [50] accuracy dependent problems use RCS 
interpolation that is obtained from spline approximat ions.  
Computational cost dependent PO Problems use bilinear 
interpolation with compromise in accuracy. Mult ilevel 
method based on PO in [51] is used in analysis of near field  
single bounce back scattering. Computational time is 
minimized by data from far fields and areas around near 
field. Further Near field (NF) scattering analysis makes it  
viable for realistic applications with less CPU timers.  
 
2.8.3 GO (Geometric Optics):  

 
This is a field based method in which equivalent currents on 
geometric plane is set up using ray tracing. Integration of 
GO with Aperture Integration (AI) is performed with ease. 
This method is advantageous as it ignores edge diffractions. 
The applications like ray-launching uses Multi-core CPUs or 
cluster computers to solve ray  launching problems using 
geometric optics. The entire process of RL-GO is controlled 
by angular spacing or transverse spacing. GO meshes the 
region in  same way as MOM and PO.  However, GO 
triangles are larger than for MOM as mesh is implemented 
in surface geometry thereby reducing mesh storage 
efficiently. Fin ite dielectric materials, dielectric coatings of 
metallic surfaces, anisotropic materials are modeled using 
GO. 

2.9. EEM (Eigen Expansion Method) 

A challenge is posed on CEM to provide efficient solutions 
to Generalized Eigenvalue Problems (GEP) in order to aid  
CM analysis. The computational time  and memory  
requirement for matrix-vector product is greatly reduced 
with the use of Multilevel Fast Multipole Algorithm 
(MLFMA). MLFMA could be combined into the implicit  
restarted Arnoldi (IRA) method for the estimat ion of 
Characteristic modes. MLFMA is combined with the sparse 
approximate inverse (SAI) to accelerate the creation of 
Arnoldi vectors.  
 
Large-scale and complicated 3D objects with restricted 
computational resources can be modeled by this method for 
CM analysis [52]. Develop ing MLFMA based CM analysis 
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is a challenge to conventional MOM approach. MLFMA can  
be implemented in parallel processing using iterative Eigen  

Source of the Figure: 3[21] 
 
Figure : 3. Applications of computational Electromagnetics 
 
solvers, yield desired performance in  CM analysis.  The 
applications of various computational electromagnetic 
techniques are depicted in Figure: 3. 
 
The commercial codes like HFSS®, CST®, FEKO®, 
XFDTD®, Empire®, SEMCAD® uses differential methods 
like fin ite difference method and finite element method.  
FEKO, WIPL-D®  (IE3D, Sonnet, Designer etc. – 2D) are 
using integral methods like method of moments . 
 
The Survey of CEM method is compared  in  Table 1: Survey  
of these methods based on issues associated with each 
method like MOM, FEM, FDTD and Hybrid izat ion of 
Techniques is discussed. Correspondingly solutions to these 
issues are also addressed in this Table.  

3. Meshless and Meshfree methods  

Mesh less method are used in arriving at numerical solut ion 
for problems where meshes are not necessary however they 
use mesh only once in final stage to solve linear equations.   
In order to remove meshes, we require designing of fitting 
policies for scattered data in multi-d imensional spaces that 
results in definit ion of mesh less shape functions [53].  Point  
interpolation method, radial point  interpolation  method and 
Shepard approximat ion are few natural neighboring methods 
used to define shape function. The Shepard approximation  
help in achieving good accuracy and considerable 
computing time [54].  These problems are solved by 
expanding unknown field variab le over such shape function 
and also reduce number of unknowns. This method has few 
drawbacks in terms of accuracy and  computational time. 
Sharp discontinuity and difficult  simulat ion are dealt in  
mesh less method. The various advantages of mesh less 
method are increased support domain, change in basis 
functions, adopting nodal densities. The meshless methods 

like Meshless Local Petrov- Galerkin (MLPG) , Local 
Boundary Integral Equation (LBIE)  and Meshless Local 
Boundary Equation (MLBE)  are used in  the analysis of 
microstrip antennas [53]. 

Table 1:  Survey on CEM methods  
 
Categories 

 
Issues Solution 

MOM Based 

Techniques  
 
 
 

Singularity, 
Low frequency 
break down, 
Charge 
cancellation 

Singularity 
extraction, 
MOM elliptic 
formulation, 
Preconditioners, 
Charge recovery 

FEM based 
Techniques  

Internal 
interface issue, 
Spurious 
solution , 
Difficult in 
solving 
electrically 
large problem 

HLU, DDA-
ABC 
preconditioners. 
DDA- parallelization. 

FDTD based 
Techniques  

Truncation 
error at each 
step , 
synchronization 
issues, 
interpolation 
error 

CFL limit- step 
size small, 
Semi implicit 
schemes- step 
size large, 
RK-HO-FDTD. 

Hybridization 

of 

 Techniques  

Ill  conditioning 
effects 
Multiscale 
problems 

DDA-ABC 
preconditioner 
MLFMA with 
some 
FFT-based algorithm 

 
All these methods decrease computational time by changing 
domain  integrals to boundary integrals . Amongst these three 
methods it is expected that MLBE is fastest. The comparison 
of all these methods for thin microstrip with coax fed and 
line fed shows same convergence rate. LBIE has least 
condition number and MLBE needs low CPU time. 
 
Mesh free method usually bypasses mesh generation.  Mesh 
free methods are used in solving computationally  difficult  
problems at the cost of computational time and  
programming effort.  The mesh free method has several 
benefits over FEM and FDM such as Overlapping domain  
gives much support and gives good approximation.  

4. GPU acceleration 

In spite of development in GPGPU computing and speeding 
of parts of programs or using easy problems many factors 
that make problem robust are considered before 
implementing this technique to commercial software. The 
expected solution needs increased computational power and 
therefore time required for solution is reduced.  Successful 
GPU implementation needs code implementation and 
optimization depending on problem t ime regardless of 
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whether it is my memory bound or compound bound. 
GPGPU has both hardware capability like c/c++ and  
software programming. This method is used in FEKO and  
choice of solution depends on electrical size of problem and  
intricacy of materials that are simulated. The Challenges in  
GPU acceleration are versatility, reliab ility and 
reproducibility, variety of CEM methods and software and 
design decisions. Multi GPU and heterogeneous system 
increase computational performance are discussed in [55]. 
 
Challenges faced by GPU acceleration are discussed in [56]. 
1. Flexibility, consistency and reproducibility 

Commercial software settings demands accurate results 
without exceeding allocated memory fo r GPU 
acceleration. They require addit ional computational 
resources when they run out of GPU memory, in such 
cases the switching algorithms transfer control to CPU. 

2. Wide variety of computational electromagnetics  

methods 

GPU faces several challenges in parallelization  
techniques like MPI, Open MP and GPU computation.   
GPU accelerat ion has similar approaches for MOM and 
FEM, In  spite of their differences (Linear system is  
dense matrix fo r MOM and sparse for FEM).  However 
realized speed will d iffer for dense and sparse GPU 
computation. 

3. Software used and design decisions 

GPU acceleration on commercial CEM software are 
based on decisions such as language for software 
implementation and low-level program flow such that it  
maps well to GPU architecture 

 
Open CL, Open  MP and CUDA are few programming  
languages preferred and partially used in commercial soft 
wares like FEKO. GPU programming is C/C++ based and 
acceleration of this is FORTRAN based. Any modification  
of codes may result in bugs; further introduce need for 
testing, tuning and software verification  
 
GPU processing for MOM matrix experiences run time that 
is quadratic and solution that is  cubic.  In case of larger 
problem matrix solution will dominate the run time. Speed 
up for MOM code needs resources to be invested due to 
complex nature of code.  
 
In case of FEM GPU acceleration must be overlooked. The 
total simulation t ime of FEM include construction of 
preconditioner and solution to sparse matrix. Use of right 
preconditioner decreases the solution time in comparison to  
direct sparse solvers. Single GPU is used for small problems  
and GPU cluster is used for large problem. Iterative solvers 
show performance improvement in cases where GPU 
memory is a limitation and they provide a speed up of 50%. 
 
 FDTD based GPU accelerat ion is no hybridization is 
involved so computational resources are reduced. 
Optimization of GPU based FDTD is done by exp loiting  
shared memory, achieves global memory coalesced 
accesses, employing texture caches, use of build in arrays, 

properly arrange computation in third domain. GPU 
provides speed up of ten times compared to CPU. 
Parallelizat ion of 75% is achieved by overlapping 
computation and communication. Ray Launching- 
Geometric optics used UTD, PO, RL-GO co llect ively  
resulting in Shooting and Bouncing Ray (SBR) fo r dealing  
with large  objects and is well suited for GPU acceleration.  
CUDA code is run through GPU compiler to obtain  
accelerated GPU implementation. Stack size must be 
addressed well to deal with GPU limitation in terms of 
difficulty and recursive code. 
 
Further acceleration of these methods is done by using 
numerical algorithms through hybridization for all methods 
except FDTD. 

5. Hybridization 

MOM faces difficulty in modeling inhomogeneous, interior 
of conducting enclosures and dielectrics with non-linearity. 
FEM is not suited for efficient modeling of thin wires, large 
radiation problems  and Eigen value p roblem due to its 
unstructured mesh. FDTD is difficult  in  modeling structure 
with sharp edges. GTM and UTD techniques are not suitable 
for problems that need accurate measurement of surface 
currents. It is obvious from the above discussion that none of 
the numerical techniques can solve all EM problems. All 
these techniques fail to cater the needs of printed radiation 
models that have all these structures. The most appropriate 
solution found by the researchers is to club two or three 
techniques and produce one code i.e. Hybridizat ion code. 
Hybridizat ion techniques involve combing two or more 
techniques into a single code. Various hybridization  
techniques are discussed in the forthcoming section. 

5.1. Hybrid MOM - FDTD 

FDTD method accomplishes propagation simulations 
excellently but not suited for modeling complex metallic  
structures like antennas. On the other hand the Method of 
Moments (MOM) is ideal for modeling complex metallic  
structures and is not very well suited for penetrating into 
such structures, hybrid MOM /FDTD method is used in 
application that require penetration into these structures eg. 
human tissue [57]. Antenna and scattering problems could  
be resolved using hybrid MOM and FDTD based on IMR 
(Iterative Mult i-Region) technique [58]. IMR div ides the 
domain p roblem into separate sub regions. In a problem with  
thin wire and scatterer MOM is used to solve thin wire 
antenna while the other region can be solved using FDTD 
solutions. Iterative algorithm helps in achieving the solution 
for combined sub regions. Radiated fields arising from 
MOM region due to current distribution on the antenna helps 
in interaction of two sub regions. Since the FDTD is a time 
domain solver, fields emanating from the MOM region that 
excite the FDTD region needs to be changed into time 
domain  waveforms. This method helps in achieving  
reduction in the memory  storage requirements and 
computation time. 
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Hybrid MOM-FDTD method employing the Asymptotic 
Waveform Evaluation (AW E) technique [59] involves 
swapping back and forth information between the MOM 
(DFT) and FDTD (IDFT). The AWE technique in the MOM 
domain is implemented to reduce the computational time 
needed for wide-band analysis. Frequency hopping 
technique is suggested for choice of expansion points in  
AWE technique. The computational time is reduced from 3 
hours 18 min to 1 hour 4 min by using AWE technique. 

5.2. Hybrid FDTD - PO 

Radiat ing planar antennas in the existence of large 
conductive structures are analyzed using Hybrid FDTD and  
PO [60].  Surface equivalence theorem is used to combine 
FDTD and PO and spatial interpolation technique is used to 
enhance computational efficiency of the proposed approach. 
The idea of using this technique is to calculate samples of 
the electric and magnetic fields on a comparatively coarse 
spatial grid over the Huygens surface and then to use 
interpolation for obtaining field  values on the required fine 
grid. FDTD regions enclose the antennas and 
inhomogeneous dielectric objects surrounded by Huygens 
Surface. Conducting bodies in frequency domain are 
analyzed using PO. Memory storage and CPU t ime are 
saved by using this technique. 

5.3. Hybrid FEM - FDTD 

Hybrid FEM - FDTD is aids to present modified equivalent  
surface current [61] by means of equivalent princip le 
theorem to extend the field transformation. FDTD gained  
popularity due to its simplicity and efficiency. However 
compromise is made in terms of accuracy. FEM permits   
good estimates of complicated boundaries and with edge 
elements it perfo rms well for Maxwell’s equations but needs 
further memory hybrid that applies FDTD in large volumes. 
FEM is difficult to be applied for p roblems with large 
dimensions but FDTD can handle this even for penetrable 
structures. 70% of the required memory  locations of the 
field points between the two  domains are saved along with  
increase in speed for updating boundary equations inside the 
FDTD method [62]. 

5.4. Hybrid MOM - PO 

MOM could be hybrid ized with FEM, FDTD, TLM, AEM, 
and PO. In case of MOM - PO hybrid  MOM method is used 
in small, resonating structures near edge while PO is used 
for large and smooth regions. MOM /PO hybrid is preferred  
for modeling large reflector antenna instead of MLFMM. 
Reflector is modeled using PO and feed of the reflector is 
accurately modeled using MOM.   

5.5. Hybrid FEM - MOM  

In spite of the advantage of FEM like mesh adaption and 
mesh refinement that improves accuracy, there is 
disadvantage in this technique in case of mesh termination. 
Mesh termination issue arises when radiation condition are 
enforced in open region. Various methodologies have been 
used for mesh termination but FEM-MOM hybrid is the best 

method. FEM uses curl and field based Whitney element  
while MOM uses divergence and current based RWG 
element.  

5.6. Hybrid FDTD with two level atomic systems  

Hybrid of atomic systems emerged from coupling rate 
equations and FDTD. EM fields and atoms population 
density are updated and leads to the significant reduction of 
computational effort for the analysis of absorbing materials 
[63]. Short FDTD simulations allow updating the population 
density of the system at  a much longer time scale than a 
single cycle of the wave  

5.7. Hybrid FDTD with DGF formulation 

Hybridizat ion of FDTD method with formulat ion of DGF 
(Discrete Green Function) [64, 65] has limited utility due to 
computation overhead. It anticipates new fast methods for 
DGF generation. However this hybrid formulation finds its 
application in antenna and disjoints domains. The antenna is 
modeled by DGF formulation of FDTD, while scatterer is 
modeled with FDTD. Implementation of this method in  
parallel processing using iterative Eigen solvers yield 
desired performance in CM analysis .  

5.8. Advanced Hybridization Schemes  

FE-BI-MLFMA which is derived from FE-BI uses 
absorbing boundary condition to do first approximat ion by 
FEM. The solution   based on FETI faces issues in terms of 
numerical scalability and computational difficulty. 
Although, preconditioners are utilized to reduce 
computational time enabling fast convergence towards 
desired solution with less number of iterations, algebraic 
preconditioners need complex factorizat ion making them 
unsuitable in  this regard. However DDA-ABC 
preconditioner employing iterat ive solver using DDM 
satisfies the need. This method finds its application in  
antenna arrays and large lossless objects. Computational 
time can  be reduced by incorporating ID algorithm and the 
solution is obtained by combining direct solvers with  
iterative solvers. The proposed method with ID exhib its 
more accurate, efficient and robust result.  Further it  
decreases the peak memory requirement while it maintains 
the number of the final skeleton direct ions the same as or 
less is applicable in 3-D composite objects [66]. 

 
Multiscale problems are analyzed using various hybrid 
techniques like MLFMA, LFFIPWA effective in solving sub 
wavelength breakdown with high accuracy  and low 
efficiency compromising the speed. MLIPFFT-MLFMA 
(Multilevel Interpolatory Fast Fourier Transform –MLFMA) 
is a broadband method with higher efficiency. ID-MLFMA, 
MLFMA-ACA and MLFMA with some Fast Fourier 
Transform based method solves multiscale problem in large 
structures. On the other hand in terms of memory storage 
and computing resources ID-MLFMA and MLFMA-ACA 
techniques are capable of treating multiscale problem [67]. 
MLFMA-PO is a hybrid technique used in scenarios where 
geometry with fine details  needs to be modeled with  
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accuracy and efficiency. MLFMA is an acceleration of 
MOM that is responsible for modeling fin ite parts with  
accuracy. PO can  model large structures with efficiency. 
Hybrid MLFMA-PO can be used in applications involving 
large scattering and large radiation problems like certain  
critical parts of antenna [68]. 
 

           Parallelization improve the speed and efficiency of a 
process, also this is implemented in  hybrid parallel open MP 
-VALU (Vector Arithmet ic Logic Unit) MLFMA to achieve 
the same. In contrast to GPU accelerat ion the above cited 
technique does not demand extra device due to the presence 
of essential VALU inside CPU. The hybrid  SPMD-SIMD 
parallel scheme is not supported by hybrid parallel Open  
MP-VALU MLFMA method [69]. Hybrid MPI and Open  
MP parallel programming technique is one such technique 
where in BOR-MOD-CFIE  code is subjected to 
parallelization to enhance performance of MOD method in 
terms of memory, accuracy  and CPU time  [70].  

 
MLFMA with PO to form hybrid finds its application in  
analyzing scattering and radiation problems for electrically  
large structures. The proposed hybrid uses MLFMA, 
accelerated version of MOM  for analyzing certain  
structures where complex linear equation are solved by  
iterative solvers exp licitly and PO, on the other hand  to  
enhance the accuracy dealing with scattered fields. The 
application involving  fast RCS predict ion of electrically  
large target  are accomplished using  hybridizat ion of  
GO/PO accelerated by open graphics library enabling  
accuracy in capturing  creep ing effect  and wave d iffraction  
effects [71]. 
 
High frequency approximat ion method called shooting and 
bouncing ray is used in applications involving PEC and  
dielectric using CUDA. This method uses physical 
approximation, current based method in SBR owing to its 
capability to penetrating into objects for applications like 
RADAR and ISAR [72] 
 
Juan Chen [73] proposed a hybridization method based on 
WCS-PSTD (Weakly Conditionally Stable – Pseudo Spectral 
Time Domain).This method is fo rmulated to deal with  
electrically large object with continuity between subdomains 
implies less memory  and less computational time.  For 
photonic crystal this method is better than FDTD. However, 
accuracy of the proposed method that largely depends on 
step size and is not applicable to surfaces with discontinuity. 
 
Time domain applicat ion of Hybridization like DGTD and  
TDBI incorporates calculation of truncated boundary while 
truncation is brought about by ABC or EAC, PML.  Flux 
produced by truncated boundary is responsible for 
communicat ion between the domains and determines shape 
of scatterer by imposing physical radiation. DGTD truncated 
by EAC makes radiat ion condition elastic than all DGTD 
systems to address EM scattering problems [74]. 
 
 

TABLE 2: Techniques for performance up gradation of 
CEM methods 

 
Category Techniques for performance upgradation of CEM  

MOM
®

 FEM
®

 FDTD
®

 Hybridization
®

 

Accuracy Singularity 
extraction, 
MOM  
elliptic 
formulation   

1.H-LU  
-
computat
ion cost 
and 
accuracy 

CFL 
limit- step 
size small 
Semi 
implicit 
schemes- 
step size 
large 
RK-HO-
FDTD. 

Hybrid 
techniques 
accelerated by 
open graphics 
library enabling 
accuracy 
DDP-FE-BI-
MLFMA 

Memory Incremental 
multilevel 
filling and 
sparsi- 
fication 

Nested 
Dissectio
n- DDM. 
Semi 
Implicit 
Schemes
. 
 
     - 

Sub cell 
algorithm, 
RK-HO-
FDTD. 

ID-MLFMA 
and 
MLFMA-ACA, 
Open MP  
parallel 
programming 

CPU 
time 

Singularity 
extraction, 
Paralleli- 
zation 

DDA- 
paralleliz
ation- 
increases 
speed 

ADI- 
FDTD, 
LOD-
FDTD –
paralleli-
zation, 
Sub cell 
algorithm,  
RK-HO-
FDTD. 

Hybrid MPI 
and Open MP 
parallel 
programming 
technique, 
WCS-PSTD, 
Preconditioner, 
ID algorithm. 
AWE technique 
in MOM-FDTD 
hybrid reduce 
resource 

 
The strengths and weakness of different CEM techniques 
were discussed. In summary, the following were observed: 
FDTD is a time stepping phenomena used in the analysis of 
domains like Debye dispersive media. Discretization of th is 
media imposes error due to truncation, thereby increasing 
dependency of accuracy to Courant, Friedrichs, Lewy (CFL) 
limit [8, 10].  
 
This dependency is mit igated by using Semi implicit  
schemes (SIS) [12]. Novel Runge-Kutta algorithm makes 
FDTD stable, dispersive and convergent [18]. FEM schemes 
faced problems in modeling 3D objects, Eigen value 
problem and thin wires. Domain decomposition method 
(DDM) based FETI-DPEM solves FE system and makes 
good in terms of convergence and scalability with aid of 
direct FEM solvers. Nested Dissection assures less memory  
and CPU t ime, while H-LU prov ides accuracy and fewer 
resources when used along with FEM. Table 2 depicts 
techniques for performance upgradation of CEM methods.  



52 
 

Iterative solvers face difficulty in convergence due to 
existence of PML. However DtN approximation, 
preconditioners promotes convergence [25]. DDM makes it  
applicable to large domain problems. MLFMA acceleration  
incorporates accuracy as depicted DDP-FE-BI-MLFMA 
technique, is suitable for all domains  [29]. MOM needs the 
domain  to be well conditioned and error controllable.  Ill 
conditioning effects could be reduced by potentially splitting  
the domain or by the use of preconditioners. Error could be 
controlled by using semi implicit schemes and formulation  
like MOM elliptic approach [36]. Various hybrid 
combinations and advanced hybridization like FE-BI-
MLFMA with limited scalability and computational 
complications [28,29], ID-MLFMA [67], MLFMA-ACA 
that treat mult iscale problems [67], Open MP VALU[69], 
MLFMA, W CS-PSTD[73], DGTD–TDBI with truncated by 
EAC shows better performance in terms of accuracy, 
convergence and CPU time  [74]. Most widely used 
softwares are CST®[75] based on Finite Integration 
Technique, HFSS® [76] based on FEM and FEKO ® [77] 
based on MOM and FEM. 
 

6. Future of CEM 

CEM Research has wide scope of evolution in next  few 
decades. A few techniques have been incorporated to 
improve the performance of this stream of research. The 
hybrid GPU–CPU parallelization may acquire considerable 
attention in few years. The computational time is expected 
to be reduced by implementing fast convergence methods 
and implementing efficient preconditioners. Multi scaling  
methods that are fast and accurate use efficient DDM 
methods like d iscontinuous Galerkin methods and 
generalized transition matrix. Methods with higher order 
modeling capabilit ies with high  order basis function, 
characteristic basis functions are expected to have 
considerable growth. Novel integral and differential methods 
can be used for several realistic applicat ions and these 
applications may also require choice of d ifferent material in  
cases like nonlinear sensing, Spectroscopy, frequency 
generation.  The collaboration of CEM with other field of 
research like Mult iphysics aids in dealing with realistic 
applications and has potential to grow tremendously. 
 

7. Conclusion 

A review on different computational electromagnetics shows 
that these methods are application specific. Selecting a 
correct method that will afford fast and accurate solutions 
may  be a difficult task. Comparing the performance of 
FDTD, FEM, MLFMA accelerated MOM will give better 
insight on CEM. Although FDTD uses SIS for enhancing 
accuracy, parallelizat ion for reducing CPU t ime and Novel 
RK-HO FDTD to enhance both, is time consuming. On the 
other hand FEM is producing spurious solution that makes it  
not ideal for Eigen value problem. However MOM 
accelerated MLFMA is found to be suitable for well-
conditioned and error controllable solver. Preconditioners 

speed the convergence, parallelization makes CPU time 
usage less, incremental multilevel filling and spars ification  
reduces memory and MOM elliptic formulation promotes 
the accuracy, thereby proving efficiency of MOM. 
 
To cater the needs of emerg ing technology CEM 
incorporates the technique called hybridisation. Introduction 
of this technique helps in  achieving  the efficiency in terms  
of computational time, memory storage and accuracy. ID 
algorithm reduces computational issues, ID-MLFMA and 
MLFMA-ACA reduces mult iscale problem, open MP-
VALU MLFMA method enhances the CPU t ime, in turn  
making MOM hybrid more reliable. On analysing pros and 
cons of CEM techniques, it could be noticed that in 
application specific tasks, hybridisation of techniques 
involving MOM accelerated MLFMA are exh ibit ing better 
results in terms of memory, accuracy and computational 
time.  
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