
 ADVANCED ELECTROMAGNETICS, VOL. 5, NO. 3, SEPTEMBER 2016 

A Graphical User Interface for Scattering Analysis of 
Electromagnetic Waves Incident on Planar Layered Media 

Ali Mirala1* and Ali Abdolali2 

1Department of Electrical Engineering, Amirkabir University of Technology (Tehran Polytechnic), Tehran, Iran 
2Department of Electrical Engineering, Iran University of Science and Technology, Tehran, Iran 

*corresponding author, E-mail: mirala@aut.ac.ir

Abstract 

This paper introduces a MATLAB-based Graphical User 
Interface (GUI) which could help electromagnetics engineers 
and researchers who are interested in designing layered 
media for various applications. The paper begins with 
presenting the analysis method the program employs, 
continues by encountering specific considerations and 
techniques of implementation, and ends with providing 
different numerical examples. These examples show good 
efficiency of the program for analysis of diverse problems. 

1. Introduction

Layered or composite Media have drawn lots of attention due 
to their wide spectrum of applications. They could serve as 
microwave and optical filters [1,2], coatings for cloaking and 
radar cross section (RCS) reduction [3-6], boosted 
transparency surfaces [7], high-reflection coatings [8], 
multilayer circuits [9], etc. This fact has not only resulted in 
myriads of researches pertaining their usages, but also has 
inspired many novel analysis methods, some of which are: 
transfer matrix method (TMM) [10,11], classical numerical 
techniques such as finite difference time domain (FDTD) 
[12] and integral equations [13], transmission line 
equivalence [14], and recursive methods [15,16]. 
This paper uses a relatively simple and efficient method 
which is based on transfer matrix method. The mathematical 
formulation is elaborated in [6] and will be restated briefly 
here with stressing some practical considerations. The reason 
we choose the transfer matrix method is firstly for its 
generality to solve nearly any related homogeneous 
theoretical and practical structure and secondly, for its clear 
and well-developed algorithm to be converted into 
MATLAB code. The provided algorithm is applicable for 
lossless and lossy media, anisotropic as well as isotropic 
ones, dispersive media, and complex structures composed of 
metamaterials and conventional media. The only restriction 
is that each layer should be homogeneous in every direction. 
Of course in special cases which the inhomogeneity is 
aligned with the structure’s normal vector (here z axis), the 
structure may be viewed as infinite number (in practice, large 
number) of homogeneous layers and analyzed using current 
program. The proposed algorithm employs matrices and so is 

suitable to be realized by MATLAB which has a matrix-
based coding. 
The program receives constitutive parameters of structure 
layers and incident wave properties namely frequency, 
incidence direction and polarization and gives the scattered 
wave parameters. The incident and scattered waves are all 
assumed to be planar in this research. After describing 
mathematical formulation, it will be verified using a few 
significant numerical examples. 

2. Formulation

The geometry of the structure and incident and scattered 
wave vectors are shown in figure 1. The wave travels from 
left halfspace to the right halfspace that are assumed to be air 
(or some other isotropic media). Also, the right halfspace 
may be perfect electric conductor (PEC). This case is 
especially important when the structure is supposed to be 
used as a radar absorbing material (RAM) or anti-reflection 
coating. 
Each homogeneous layer in its most general form can be 
identified with its permittivity and permeability tensors 
(which are frequency dependent in common) and its 
thickness. We do not impose any limitation for permittivity 
and permeability tensors’ elements in order to keep the 
generality of the problem. However, mostly in the literature, 
these tensors are assumed diagonal. The physical limitation 
that this assumption impose is that the layer’s principal axis 
should be aligned with the normal vector of the structure. 

Figure 1: Geometry of the problem 
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Note that the propagation direction lies in the x-z plane in 
figure 1 and this will be applied throughout our formulation. 
However, this does not reduce the generality of the problem 
as far as our formulation contains the general form of 
permittivity and permeability tensors. That’s because if the 
propagation be not in x-z plane, we can take it in x-z plane 
and instead, rotate the whole structure around the z axis in 
order to keep the relative angle untouched. To apply such 
rotation, tensors should be updated by 

1( ) ( )ε R εRz z   and 
1( ) ( )μ R μRz z   

conversions in which ε , μ , R z , and   are the relative

permittivity, relative permeability, rotation matrix about z 
axis, and propagation angle, respectively. 

To know the overall scattering behavior of the structure, we 
should learn how planar waves propagate in any medium 
possessing aforementioned parameters. Assuming all plane 
wave fields as harmonic functions of space and time as 

 exp .j t jk r , Maxwell’s curl equations in frequency

domain become k E B   and k H D    [17]
which in combination give the wave equation as: 

1 2
0( ( )) 0   μ εk k E k E (1)

where 0k  is the wave number in free space. Equation (1) is 

a vector equation and could also be represented by matrix 
form as: 

1 2
0( ) 0  κμ κ εk E (2) 

where κ  is a matrix that transforms any vector like E  to 

k E  and its value is: 
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while the value of xk  is the same in the whole space due to

phase matching at the boundaries and equals to 

sin( ) i
xk k  in which ik  is the wave number in the

left halfspace and   denotes the incident wave propagation 
angle . 

Equation (2) is the matrix wave equation and in order to yield 

nonzero solution for electric field, 1 2
0k κμ κ ε  should be 

singular. This condition leads us to equation: 

1 2
0 0k  κμ κ ε (4)

which is a fourth order equation in terms of zk  and has four 

solutions in general. Therefore, there are four wave vectors 
each of which expresses a different propagation mode. The 

overall field inside the medium is the linear superposition of 
all modes’ fields as: 

4
.

1

ˆ mjk r
m m

m

E E E e 



  (5)

where mE  and ˆ
mE  are the electric field excitation

coefficient and unit vector  of the mode “m” respectively and 

ˆ ˆm x zmk k x k z   is the wave vector of that mode. The 

excitation coefficients are determined using the boundary 
conditions. To calculate the unit vectors, we return to 
equation (2). This matrix equation is in fact a set of three 

linear equations for E  elements. Each of these equations is 

equation of a plane in ( , , )x y zE E E  space and the three 

planes intersect in one line that passes from origin and on 

which the E  solution lies. Thus, the electric unit vector is the 
same as the unit direction vector of the line and equals to the 
normalized cross product of planes’ normal vectors. In sum, 

assuming 1 2
0( ) κμ κ ε rk  to be the r’th row of the matrix, 

the unit electric field would be: 
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for any r  and r  if r r . The value of above equation
does not depend on the choice of r  and r , since three
planes intersect in a single line. Equation (6) should be 

worked out for each zmk . The rest of calculations is the 

ordinary transfer matrix method. 

To apply transfer matrix method, we need to define 
characteristic matrix of each layer that contains all the 
information about that layer and relates the field values of 
layer’s two sides. The n’th layer characteristic matrix is 

defined as 1
n n n n

C B P B  in which [6,11]: 
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The matrix given in equation (7) should be calculated for the 

left and right halfspaces as well as layers and 0Β  and 1N Β
will stand for them. To do this calculation, we use 

1 2
ik k k  , 3 4

rk k k  , 1 3
ˆ ˆ ˆE E y  ,
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2
ˆ ˆ ˆcos( ) sin( ) E x z  , and 4

ˆ ˆ ˆcos( ) sin( ) E x z 
for the left halfspace and similar relations for the right 
halfspace. 

Next, we define the scattering matrix which relates the 
incident and scattered waves’ fields in such a way that: 

0

0

  
  
      
     

   

S

it
TETE
it

TMTM
r

TE
r

TM

EE

EE

E

E

(9) 

and could be calculated as: 

1
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To take advantage of these relations, we define reflection and 
transmission matrices as: 

1

33 34 31 32

43 44 41 42

S S S S

S S S S


   

    
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Γ (11)

and: 
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where ijS  is the ij’th component of scattering matrix. If the 

structure is PEC-backed, there is no transmission ( 0T )
and from equation (11) the reflection matrix turns out to be: 

1

13 14 11 12

23 24 21 22
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Now, the scattered fields could be obtained through: 
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Equations (14) and (15) are the ultimate solutions and are able 
to be put into use by a computer code to solve the layered 
media scattering problems. 

3. Algorithm of implementation

The proposed formulation is algorithmic and ready to use by 
a computer. The algorithm requests calculations which are 
basic matrix algebra and are embedded as basic operations in 
MATLAB. The only time-consuming equation to solve by 
numerical solution that MATLAB employs is equation (4). 

For simpler and faster solution of equation (4), we use another 
procedure as explained subsequently. 

To solve equation (4) which is a fourth order equation, in the 

shape of 
4

1 2
0

0

0



  κμ κ ε n
n z

n

k a k , we need to know 

the polynomial coefficients na  that could be calculated by 

expanding the determinant in terms of zk . However, these 

coefficients are long terms and hard to determine in closed 
form, in general. An alternative way is to calculate the 

determinant for a set of five arbitrary values of zk  namely 

, 0, , 4 is i  and putting the determinant values 

respectively in a series like id . Now, the na  coefficients 

could be easily achieved by equation: 
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and the solutions of 
4

0

0


 n
n z

n

a k  which are values of zk

may be computed by the “roots” function in MATLAB. This 
process is coded in a MATLAB pseudo-code in figure 2. 
These calculations should be separately worked out for all 

values of frequency and incidence angles (  and  ) in the 

solution domain. 
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Figure 2: Pseudo-code for calculating characteristic matrices 

4. Verification of algorithm

This section tests the validation of the proposed algorithm by 
different numerical examples which are chosen to reflect the 
importance and extension of layered media and accordingly, 
prove the applicability of the program. All the data applied 
in examples are chosen from respected papers and our results 
are in excellent accordance with the results in these 
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references. Before presenting examples, the dispersion 
models which are applicable in the GUI are given. 
All of media (excepting ideal vacuum), whether natural or 
artificial (just as metamaterials), are dispersive in the whole 
spectrum of electromagnetic waves because of their non-
uniform spatial structure in atomic or coarser levels. Several 
models have been proposed to describe this electromagnetic 
dispersion mathematically and some of the well-known 
isotropic and anisotropic models for permittivity and 
permeability of both conventional materials and 
metamaterials are given in tables 1 and 2 [18,19]. To handle 
dispersive layers in structure, the GUI receives the 
parameters of these models as inputs. 

Table 1: Dispersion models of permittivity 
Model Dispersion relation Parameters 

Lossy 
dielectric 

r ij
f f 

 
 r , i ,  ,

and   

Magnetized 
plasma 

2

2 2
1


p

c

f

f f
pf  and cf

2

2 2

( )



p c

c

f f f
j

f f

Rods 
metamaterial 

2

2
1 ep

e

f

f jf 


 epf  and e

Table 2: Dispersion models of permeability 
Model Dispersion relation Parameters 

Lossy 
magnetic 

r ij
f f 

 
 r , i ,  ,

and   

Magnetized 
ferrite 

0
2 2

0

1


Mf f

f f
0f  and Mf

2 2
0




Mf f
j

f f

Rings 
metamaterial 

2 2

2 2
1 mp mo

mo m

f f

f f jf 



 

mof , mpf ,

and m

4.1. PEC with magnetoplasma coating 

The first example is taken from [15] in which the transfer 
matrix method is utilized to calculate the reflection 
coefficient of a conductor with a magnetized plasma layer that 
is biased with a z-direction magnetic field. Magnetized 
plasmas and magnetized ferrites are used in microwave 
engineering to fabricate non-reciprocal components which 
need anisotropic media [19]. Elements of relative permittivity 

are assumed to be 40 xx yy  , 80  xy yx j  , 

1zz , and zero for others. The GUI layout and the 

problem’s solution for 04 6 k d  is plotted in Figure 3. 

The solution is in agreement with original article. However, 

the transfer matrix method fails for large values of 0k d  due 

to round-off errors as enormous exponential terms arise. For 
these values, other methods like recursive methods should be 
used.  

Figure 3: The GUI layout and its response for the first example. 
This example demonstrates the accuracy of the proposed algorithm 
for smaller k0d values and its unstable response for higher 
frequencies. 

4.2. Dispersive DPS-DNG bilayer structure 

One great advantage of our algorithm is that its solution is 
valid for any sign of permittivity and permeability elements 
without extra considerations. In fact, the solutions of (4) 
satisfy the criteria of choosing correct sign [4] when the 
medium has negative values in its ε  or μ . Therefore, we are

able to analyze any class of DPS (double positive), DNG 
(double negative), ENG (epsilon negative), and MNG (mu 
negative) materials with the same equations. Combining these 
media in one structure, yields several interesting cases like 
absolute transparency. 

Figure 4 shows the reflectance (reflected wave power 
normalized to incident power) against frequency from a pair 
of DPS and DNG isotropic layers with thicknesses 1 and 2 
millimeters that acts as a backward notch filter. The first layer 
is assumed to be a non-magnetic material with relative 
permittivity of 2.2 and the second layer is a lossless 
metamaterial with dispersion relations of table 1. Dispersion 
parameters are given in the figure legend. Agreement with [5] 
proves the potential of the algorithm to analyze highly 
dispersive metamaterial structures. 

4.3. Perfectly matched layer 

Perfectly matched layer (PML) is an extremely lossy medium 
that is used to absorb radiation in boundaries of numerical 
electromagnetic problems (mostly when finite difference time 
domain is adopted) to make the simulation space finite. The 
most common type of these media is Gedney’s PML [20] 
which is defined as a uniaxial anisotropic material with 

permittivity elements of 01 1   xx yy zz j      
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and zero elsewhere and the same values for permeability. For 

0 1   (which is always true in PMLs), we have

0 01 j j    and the permittivity and 

permeability become entirely imaginary. Therefore, we may 
use lossy electric and lossy magnetic models of tables 1 and 

2 with 02 i i     and 1  for xx and yy 

elements and 02  i i     and 1   for zz 

elements to model the Gedney’s PML. Gedney’s PML is 
matched to the air for any incidence angle, so is able to make 
better absorption relative to ordinary isotropic absorber with 

01   j     parameters—which is perfectly 

matched  only for normal incidence—when the incidence 
angle is not zero. However, for the normal incidence, the two 
cases are identical for equal conductivities. Figure 5 compares 
the isotropic and anisotropic (Gedney’s) absorbers’ power for 
killing TE-polarized electromagnetic wave with frequencies 
between 0-10 GHz and at angles of 0-90 degrees when they 
are backed by PEC. The layer’s thickness and conductivity 
are assumed to be 1 (cm) and 1 (S/m). While the two act 
excellent for normal incidence, the anisotropic case is more 
efficient for oblique waves (as it can be seen from its 
concavity). 

Figure 4: Reflectance of wave with TM polarization and angle 45o 
from a dispersive DPS-DNG bilayer structure with different 
dispersion parameters given in the legend (in GHz) in terms of dB 

Figure 5: Reflectance of TE-polarized wave from perfect 
conductor covered with isotropic (top) and anisotropic (bottom) 
perfectly matched layers against frequency and incidence angle 

5. Conclusions

First, mathematical formulation based on the transfer matrix 
method for planar electromagnetic wave scattering analysis 
of planar layered structures consisting homogeneous 
materials that can be lossy, anisotropic, dispersive, and 
metamaterial was presented. The mathematical formulation 
was optimized for being coded by MATLAB scripting 
language and for easy and standalone use of the code, it was 
packaged as a graphical user interface. After considering the 
algorithm, the program was validated by three examples, and 
the good agreement with reports in resources, proved the 
integrity of the program. 
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