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Abstract

This paper introduces a MATLAB-based Graphical User
Interface (GUI) which could help electromagnetics engineers
and researchers who are interested in designing layered
media for various applications. The paper begins with
presenting the analysis method the program employs,
continues by encountering specific considerations and
techniques of implementation, and ends with providing
different numerical examples. These examples show good
efficiency of the program for analysis of diverse problems.

1. Introduction

Layered or composite Media have drawn lots of attention due
to their wide spectrum of applications. They could serve as
microwave and optical filters [1,2], coatings for cloaking and
radar cross section (RCS) reduction [3-6], boosted
transparency surfaces [7], high-reflection coatings [8],
multilayer circuits [9], etc. This fact has not only resulted in
myriads of researches pertaining their usages, but also has
inspired many novel analysis methods, some of which are:
transfer matrix method (TMM) [10,11], classical numerical
techniques such as finite difference time domain (FDTD)
[12] and integral equations [13], transmission line
equivalence [14], and recursive methods [15,16].

This paper uses a relatively simple and efficient method
which is based on transfer matrix method. The mathematical
formulation is elaborated in [6] and will be restated briefly
here with stressing some practical considerations. The reason
we choose the transfer matrix method is firstly for its
generality to solve nearly any related homogeneous
theoretical and practical structure and secondly, for its clear
and well-developed algorithm to be converted into
MATLAB code. The provided algorithm is applicable for
lossless and lossy media, anisotropic as well as isotropic
ones, dispersive media, and complex structures composed of
metamaterials and conventional media. The only restriction
is that each layer should be homogeneous in every direction.
Of course in special cases which the inhomogeneity is
aligned with the structure’s normal vector (here z axis), the
structure may be viewed as infinite number (in practice, large
number) of homogeneous layers and analyzed using current
program. The proposed algorithm employs matrices and so is

suitable to be realized by MATLAB which has a matrix-
based coding.

The program receives constitutive parameters of structure
layers and incident wave properties namely frequency,
incidence direction and polarization and gives the scattered
wave parameters. The incident and scattered waves are all
assumed to be planar in this research. After describing
mathematical formulation, it will be verified using a few
significant numerical examples.

2. Formulation

The geometry of the structure and incident and scattered
wave vectors are shown in figure 1. The wave travels from
left halfspace to the right halfspace that are assumed to be air
(or some other isotropic media). Also, the right halfspace
may be perfect electric conductor (PEC). This case is
especially important when the structure is supposed to be
used as a radar absorbing material (RAM) or anti-reflection
coating.

Each homogeneous layer in its most general form can be
identified with its permittivity and permeability tensors
(which are frequency dependent in common) and its
thickness. We do not impose any limitation for permittivity
and permeability tensors’ elements in order to keep the
generality of the problem. However, mostly in the literature,
these tensors are assumed diagonal. The physical limitation
that this assumption impose is that the layer’s principal axis
should be aligned with the normal vector of the structure.

Figure 1: Geometry of the problem



Note that the propagation direction lies in the x-z plane in
figure 1 and this will be applied throughout our formulation.
However, this does not reduce the generality of the problem
as far as our formulation contains the general form of
permittivity and permeability tensors. That’s because if the
propagation be not in x-z plane, we can take it in x-z plane
and instead, rotate the whole structure around the z axis in
order to keep the relative angle untouched. To apply such
rotation, tensors should be updated by

e>R'(@eR, () ad  p—>R(P)pR, (9)

conversions in which €, p, R, , and ¢ are the relative
permittivity, relative permeability, rotation matrix about z
axis, and propagation angle, respectively.

To know the overall scattering behavior of the structure, we
should learn how planar waves propagate in any medium
possessing aforementioned parameters. Assuming all plane
wave fields as harmonic functions of space and time as

exp( jot — jk_.r_) , Maxwell’s curl equations in frequency

domain become k xE = @B and k xH =—wD [17]
which in combination give the wave equation as:

k x(u'(k xE))+k2eE =0 )

where ko is the wave number in free space. Equation (1) is

a vector equation and could also be represented by matrix
form as:

(kp 'k +k2e)E =0 @

where K is a matrix that transforms any vector like E to
k xE and its value is:

0 -k, 0
x=|k, 0 -k ®)
0 k, ©0

while the value of K, is the same in the whole space due to
phase matching at the boundaries and equals to
k, =k'sin(@) in which k' is the wave number in the

left halfspace and @ denotes the incident wave propagation
angle .

Equation (2) is the matrix wave equation and in order to yield
nonzero solution for electric field, Ku_lK + k028 should be
singular. This condition leads us to equation:

Kk +kle[=0 )

which is a fourth order equation in terms of K, and has four

solutions in general. Therefore, there are four wave vectors
each of which expresses a different propagation mode. The

overall field inside the medium is the linear superposition of
all modes’ fields as:
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where B~ and E_ are the electric field excitation
coefficient and unit vector of the mode “m” respectively and

k., =k, X +k, 7 isthe wave vector of that mode. The

excitation coefficients are determined using the boundary
conditions. To calculate the unit vectors, we return to
equation (2). This matrix equation is in fact a set of three

linear equations for E elements. Each of these equations is
equation of a plane in (E, ,E ,E,) space and the three
planes intersect in one line that passes from origin and on

whichthe E solution lies. Thus, the electric unit vector is the
same as the unit direction vector of the line and equals to the
normalized cross product of planes’ normal vectors. In sum,

assuming (kp K + K €), to be the r’th row of the matrix,
the unit electric field would be:

~  (kp'k+kie), x(kp K +KkiE),
|Ocn ke +k J2), x (e +K ),
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forany r and r' if r #r'. The value of above equation
does not depend on the choice of r and r', since three
planes intersect in a single line. Equation (6) should be
worked out for each K, . The rest of calculations is the

ordinary transfer matrix method.

To apply transfer matrix method, we need to define
characteristic matrix of each layer that contains all the
information about that layer and relates the field values of
layer’s two sides. The n’th layer characteristic matrix is

definedas C, =B, P,B." in which [6,11]:
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The matrix given in equation (7) should be calculated for the
left and right halfspaces as well as layers and B, and B, ,;
will stand for them. To do this calculation, we use

A
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Ifz = cos(0)X —sin(0)Z , and |§4 =cos(0)X +sin(0)Z
for the left halfspace and similar relations for the right
halfspace.

Next, we define the scattering matrix which relates the
incident and scattered waves’ fields in such a way that:

E'IEE E1!E
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and could be calculated as:

N
S= BN1+1(HCNn+ljBO (10)

n=1

To take advantage of these relations, we define reflection and
transmission matrices as:
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where Sij is the ij’th component of scattering matrix. If the

and:

structure is PEC-backed, there is no transmission (T =0)
and from equation (11) the reflection matrix turns out to be:
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Now, the scattered fields could be obtained through:
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Equations (14) and (15) are the ultimate solutions and are able
to be put into use by a computer code to solve the layered
media scattering problems.

3. Algorithm of implementation

The proposed formulation is algorithmic and ready to use by
a computer. The algorithm requests calculations which are
basic matrix algebra and are embedded as basic operations in
MATLAB. The only time-consuming equation to solve by
numerical solution that MATLAB employs is equation (4).

For simpler and faster solution of equation (4), we use another
procedure as explained subsequently.

To solve equation (4) which is a fourth order equation, in the
4
shape of [Kp 'K + koza‘ = Z:ankzn =0, we need to know
n=0
the polynomial coefficients @ that could be calculated by

expanding the determinant in terms of kZ . However, these

coefficients are long terms and hard to determine in closed
form, in general. An alternative way is to calculate the

determinant for a set of five arbitrary values of kz namely
S;,i =0,---,4 and putting the determinant values

respectively in a series like d, . Now, the @, coefficients
could be easily achieved by equation:
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and the solutions of Z:ankzn =0 which are values of K,
n=0

may be computed by the “roots” function in MATLAB. This

process is coded in a MATLAB pseudo-code in figure 2.

These calculations should be separately worked out for all

values of frequency and incidence angles (€ and @) in the

solution domain.

calculate s;
forn=1:N
fori =0:4
k, =s(i);
d (i) = det (kp " (n)xc +k &(n));
end
a=s d
k, = roots (aT);
forj=1:4
calculate E (i);
end
calculate C(n);
end
Figure 2: Pseudo-code for calculating characteristic matrices

% for arbitrary setof s(i)
% sweep layers

% k, isadx1matrix

% fork, =k, (j)

4. Verification of algorithm

This section tests the validation of the proposed algorithm by
different numerical examples which are chosen to reflect the
importance and extension of layered media and accordingly,
prove the applicability of the program. All the data applied
in examples are chosen from respected papers and our results
are in excellent accordance with the results in these



references. Before presenting examples, the dispersion
models which are applicable in the GUI are given.

All of media (excepting ideal vacuum), whether natural or
artificial (just as metamaterials), are dispersive in the whole
spectrum of electromagnetic waves because of their non-
uniform spatial structure in atomic or coarser levels. Several
models have been proposed to describe this electromagnetic
dispersion mathematically and some of the well-known
isotropic and anisotropic models for permittivity and
permeability of both conventional materials and
metamaterials are given in tables 1 and 2 [18,19]. To handle
dispersive layers in structure, the GUI receives the
parameters of these models as inputs.

Table 1: Dispersion models of permittivity

Model Dispersion relation Parameters |
Lossy & L& &, &, &,
dielectric fe f7 and 3
f 2
1+2—p
; |
Magnetized c f oand f
lasma f2(F /f P ¢
P L)
- 2 2
fo-f
2
Rods 1— fep f  and 7
H 2 . ep e
metamaterial f2—jfy

Table 2: Dispersion models of permeability

Model Dispersion relation | Parameters |
Lossy He M He B, @
magnetic fe f7 and 3
fof
_ 1+f 2 2
Magnetized 0 f oand f
ferrite f f 0 M
iJ f ZM f 2
2-
2 2
Rings _ fmp _fmo fmo’fmp'
i 2 2 :
metamaterial f2-f2—jfy, and y_

4.1. PEC with magnetoplasma coating

The first example is taken from [15] in which the transfer
matrix method is utilized to calculate the reflection
coefficient of a conductor with a magnetized plasma layer that
is biased with a z-direction magnetic field. Magnetized
plasmas and magnetized ferrites are used in microwave
engineering to fabricate non-reciprocal components which
need anisotropic media [19]. Elements of relative permittivity

are assumed to be &, =¢, =40, ¢, =-¢, =80] ,
&, =1, and zero for others. The GUI layout and the

problem’s solution for 4 <Kk ,d <6 is plotted in Figure 3.

The solution is in agreement with original article. However,
the transfer matrix method fails for large values of K ,d due

to round-off errors as enormous exponential terms arise. For
these values, other methods like recursive methods should be
used.
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Figure 3: The GUI layout and its response for the first example.
This example demonstrates the accuracy of the proposed algorithm
for smaller kod values and its unstable response for higher
frequencies.

4.2. Dispersive DPS-DNG bilayer structure

One great advantage of our algorithm is that its solution is
valid for any sign of permittivity and permeability elements
without extra considerations. In fact, the solutions of (4)
satisfy the criteria of choosing correct sign [4] when the
medium has negative values in its € or p . Therefore, we are

able to analyze any class of DPS (double positive), DNG
(double negative), ENG (epsilon negative), and MNG (mu
negative) materials with the same equations. Combining these
media in one structure, yields several interesting cases like
absolute transparency.

Figure 4 shows the reflectance (reflected wave power
normalized to incident power) against frequency from a pair
of DPS and DNG isotropic layers with thicknesses 1 and 2
millimeters that acts as a backward notch filter. The first layer
is assumed to be a non-magnetic material with relative
permittivity of 2.2 and the second layer is a lossless
metamaterial with dispersion relations of table 1. Dispersion
parameters are given in the figure legend. Agreement with [5]
proves the potential of the algorithm to analyze highly
dispersive metamaterial structures.

4.3. Perfectly matched layer

Perfectly matched layer (PML) is an extremely lossy medium
that is used to absorb radiation in boundaries of numerical
electromagnetic problems (mostly when finite difference time
domain is adopted) to make the simulation space finite. The
most common type of these media is Gedney’s PML [20]
which is defined as a uniaxial anisotropic material with

permittivity elements of &, =&, =1/¢,, =1+ 0/ jws,



and zero elsewhere and the same values for permeability. For
O'/a)go >1 (which is always true in PMLs), we have

l+o/jwe, =0/ jwe, and the permittivity and

permeability become entirely imaginary. Therefore, we may
use lossy electric and lossy magnetic models of tables 1 and

2 with & =4 =0/2rg, and f=1 for xx and yy

elements and & = g =—27r80/0' and f=-1 for zz

elements to model the Gedney’s PML. Gedney’s PML is
matched to the air for any incidence angle, so is able to make
better absorption relative to ordinary isotropic absorber with

e=pu=1+ a/ ] we, parameters—which is perfectly

matched only for normal incidence—when the incidence
angle is not zero. However, for the normal incidence, the two
cases are identical for equal conductivities. Figure 5 compares
the isotropic and anisotropic (Gedney’s) absorbers’ power for
killing TE-polarized electromagnetic wave with frequencies
between 0-10 GHz and at angles of 0-90 degrees when they
are backed by PEC. The layer’s thickness and conductivity
are assumed to be 1 (cm) and 1 (S/m). While the two act
excellent for normal incidence, the anisotropic case is more
efficient for oblique waves (as it can be seen from its
concavity).
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Figure 4: Reflectance of wave with TM polarization and angle 45°
from a dispersive DPS-DNG bilayer structure with different
dispersion parameters given in the legend (in GHz) in terms of dB
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Figure 5: Reflectance of TE-polarized wave from perfect
conductor covered with isotropic (top) and anisotropic (bottom)
perfectly matched layers against frequency and incidence angle

5. Conclusions

First, mathematical formulation based on the transfer matrix
method for planar electromagnetic wave scattering analysis
of planar layered structures consisting homogeneous
materials that can be lossy, anisotropic, dispersive, and
metamaterial was presented. The mathematical formulation
was optimized for being coded by MATLAB scripting
language and for easy and standalone use of the code, it was
packaged as a graphical user interface. After considering the
algorithm, the program was validated by three examples, and
the good agreement with reports in resources, proved the
integrity of the program.
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