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Abstract

This article presents two methods for the fast computation
of macroscopic magnetization model called assembled
domain structure model. First, an efficient method for
computing the demagnetizing field is proposed. Secondly, a
direct searching method of equilibrium point is developed,
which greatly reduces the computation time.

1. Introduction

Macroscopic magnetic properties of iron-core material
result from multiscale magnetization processes such as the
microscopic domain-wall motion and the mesoscopic
domain-structure transition. Recently, to construct a
physical macroscopic magnetization model, several energy
based multiscale approaches [1]-[4] have been developed.
For example, Ref. [1] has successfully represented the
macroscopic anhysteretic magnetic property of the grain
oriented silicon steel sheet including the magnetoelastic
property. In Refs. [3] and [4], an assembly of simple
domain structure models (SDSMs) represented the
macroscopic hysteretic behavior of magnetic sheets.

The SDSM [5] is a mesoscopic magnetization model of
crystal-grain scale describing domain-wall motion and
magnetization rotation. The assembly of SDSMs [3] is
expected to constitute a physical macroscopic
magnetization model based on the local energy
minimization. However, the assembly of large number of
SDSMs requires long computation time because of the large
computational cost for obtaining the demagnetizing field
and the long transient process to an equilibrium point.

This article proposes an efficient method for the
computation of demagnetizing field and develops a direct
searching method of equilibrium point.

2. Assembly of Domain Structure Models

2.1. Simplified domain structure model

An SDSM with two domains [5], as shown in Fig. 1(a) is
used to describe behavior of a mesoscopic magnetic particle,
where the magnetization is assumed uniform in each domain
i (i =1, 2). The normalized magnetization vector in domain i
is given by m; = (sinf;cosg;, sind;sing;, coso;).

The total magnetic energy, e, is assumed to be given by
the summation of Zeeman energy, the crystalline
anisotropic energy, the domain-wall energy, and the
magnetostatic energy as is summarized in Appendix A.1.

The magnetization is determined by finding a local
energy minimum that satisfies 0e/0X = 0 where X = (61, ¢1,
6>, 2, A) and A is the volume ratio of domain 1. In Ref. [3], a
local minimum is obtained by finding an equilibrium point
of artificial state equation given as

dX/dt=Y,

dY /dt =—0e/0X - pY (1)
where £ is a dissipation coefficient. A local energy
minimum is obtained by the numerical integration of (1)
until reaching the steady state where dX/ds = dY/dt = 0. If
there are several equilibrium points of the state equation,
one of them is obtained depending on the initial condition
of (1) that reflects the history of past magnetization.
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Figure 1: ADSM: (a) unit cell (SDSM) and (b)
assembled SDSMs (ADSM).

2.2. Assembled domain structure model

The macroscopic magnetization model is constituted by
assembling the SDSMs [3], as shown in Fig. 1 (b), which is
called the assembled domain structure model (ADSM).
Each SDSM composing the ADSM is called a cell. The
Zeeman energy, the anisotropic energy, and the domain-
wall energy of cells are independently summed up to obtain
the components of total energy e in the ADSM.

In the same way as in the micromagnetic simulation (see
Appendix A.2), the magnetostatic energy is given as

e, = 2., (0)-m(@) )



where i is the cell index and hy is the normalized
demagnetizing field; hy is given as

h, (i) =Y s(i—i"m(i")

where S(i—i") is the normalized demagnetizing coefficient
matrix between the cells 7 and i’ (see Appendix A.2) and
m(i) is the normalized magnetization of the cell i.

The state variable vector X consists of X(i) i=1, ...) in
each cell. A local energy minimum point is obtained by
solving (1).
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3. Efficient Computation of Demagnetizing Field

3.1. Computation using field decomposition

The convolution (3) is efficiently executed by using the
fast Fourier transform (FFT) [6], which, however, often
requires a large computational cost even with the use of
FFT.

A simple way to reduce the convolution computation is
updating the demagnetizing field only once at every p time-
steps in the numerical integration of Eq. (1), where p is an
integer. However, this procedure often results in the
instability of numerical integration.

The demagnetizing field hg(i) in a cell can be divided
into the two components hgin(/) and hgex(i) that are
generated by the own cell i and by the other cells,
respectively. They are given as

s (1) = SOM() 4)
he ()= Y sG=imG@) = Y s'a-m@y O

where
(i=0) . (6)

s@=1 "
Y7 s6) (20

The components of S(0) are often large. This is why the
demagnetizing field should be updated at every time-step.
Compared with s(0), s(i) (i # 0) is relatively small, which
implies that the hgx may be updated less frequently than
hyin. Consequently, it is reasonable to update hgin at every
time-step and hgex at every p (= 2) time-steps in the
numerical integration.
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Figure 2: The relation between the execution period for
the convolution and the computation time.
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3.2. Computational results

A magnetic material having dimensions /, x [, x [ is
analyzed with the ADSM, where /.: [;: I, is set to 2: 1: 0.01.
The material is divided into 32 x 16 x 1 cells. A cubic
crystalline anisotropy is assumed with k = 2K / (poMs?) =
0.01.

Figure 2 shows the relation between the execution
period p for the convolution and the computation time.
When p = 20, the computation time is reduced by 64 %
compared with that with p = 1. When p > 50, the
computation time slightly increases with p because the
infrequent update of demagnetizing field deteriorates the
convergence to an equilibrium point. Figure 3 shows the
MH curves along the <110> axis set along the y-direction,
which are obtained with p = 1 and 20. The numerical
integration is executed by the forward Euler scheme. The
property obtained with p = 20 coincides with that with p = 1.
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Figure 3: Simulation results with or without convolution
execution reduction: (a) execution period p =1 and (b) p
=20.

4. Direct Solution of Equilibrium Point

4.1. Direct solution using unit cell property

If the magnetization property of unit cell is known, the
macroscopic magnetization property can be synthesized
from the magnetizations of unit cells.

Figure 4 shows an example of the magnetization
property of SDSM along the easy-axis direction. The
magnetization state is classified into three types as below:

S.: the single domain state with positive magnetization,
S-: the single domain state with negative magnetization,
WM: the state of 180° domain-wall motion.



The three magnetization states above exist within the
respective intervals of the normalized applied field 4 as
below (see Appendix A.3):
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Figure 4: Magnetization property of unit cell: (a) when
—hwwm < hs and (b) when As < —hwwm.
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Figure 5: Flowchart of direct solution method.

Is: {h hs <h<oo},
Is: {h| —oo< h < —hs},
IWMZ {h| —hWM <h< /’IWM}.

When the SDSM is used as a cell in the macroscopic
model, by including /.x into the applied field / as

heff(i) =h+ hstex(i) (7)

the magnetization of each cell can be determined using the
unit cell property, where he(i) is called effective field.
When /es(i) moves outside the interval of present
magnetization state, the magnetization state transition
occurs in cell 7.

The alternating magnetization property is obtained by
changing the applied field % step by step to find
corresponding equilibrium point as follows.

Among all the cells where /(i) moves outside the
present interval, the cell is chosen where /es(7) is the most
distant from the present interval. The magnetization state in
the chosen cell is changed to another state so as for /.(7) to
be included in the corresponding interval as shown in Fig. 4.
When hs < —hwwm, the transition to the WM state does not
occur as shown in Fig. 4(b). The magnetizations are also
corrected in the cells having the 180° domain-wall motion
state in accordance with the change of /.s(7) so as to satisfy
Eq. (A.15). After the state transition and the magnetization
correction, the demagnetizing field is recalculated and the
procedure above is repeated until the demagnetizing field
converges. The flowchart of above procedure is shown in
Fig. 5.

It is basically possible for the direct solution method to
be applied to the 2D or 3D analysis if the 2D or 3D cell
property is known. However, the classification of
magnetization states and the transition process among them
are complex in the 2D/3D analysis and are not derived in a
straightforward manner generally.
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4.2. Computational results

The cells aligned one-dimensionally as in Fig. 6 are
magnetized along the longitudinal direction. The
normalized cell size is given by 4: /,: . = 1: 1: 0.1 with k =
0.01 and w = 0.01. For example, those normalized
parameters are obtained from artificial material parameters
of uoMs =22 T, K=1.9 x10*J/m?>, 4 =12 x10"" J/m, D =
10 m, and the cell size of D x D x 0.1D. This geometry
gives s(0) = (4.48, 4.48, 91.0). Figure 7 shows the
magnetization curves obtained by the original ADSM
solving Eq. (1) using 1, 8 and 128 cells, whereas the
properties shown in Fig. 8 is given by the direct solution.
The simulation is started from the demagnetization state
(see Appendix A.4).

The magnetization curve obtained by the direct method
coincides with that obtained by the original ADSM in the
case of single cell. In the case of 128 cells, however, the
coercive force given by the direct solution is smaller than
that given by the original ADSM. This suggests that the
ADSM solving Eq. (1) sometimes fails to judge the
convergence to an equilibrium point correctly and stops the
time-integration of Eq. (1) incorrectly before escape from
an unstable equilibrium point becomes evident. This is
because the escaping process often requires very long



transient time. In fact, the coercive force obtained by the
original ADSM is not very robust and is affected by the
computational condition such as the convergence criterion
and the amplitude of /. Figure 9 shows the distributions of
my(i) and he(i) / Hs (i = 1, ..., 9) given by the original
ADSM using 128 cells when & = 0 — —0.2. Even though
hetr(S) is slightly smaller than Hs (he(S) / Hs < 1), cell 5
stays in the single domain state (m«(5) = 1) when & = —0.2.
Figure 10 shows those distribution obtained by the direct
solution method. The cells are in the positive and negative
single domain states when 1 < he(i) / Hs and h / Hs < —
Hwwm / Hs (= —1.28), respectively. As a result, the ADSM
with the direct solution reconstructs the very small coercive
force compared with the anisotropy field that is often
observed in soft magnetic materials. For example, the
coercive force of oriented silicon steel is generally less than
1/100 of anisotropy field of Fe, which is not easy to be
predicted by the micromagnetic simulation. However, the
mechanism of small coercivity should be discussed further
in future study.
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Table I compares the computation time required by both
methods to obtain the MH curve. The direct solution
reduces the computation time to less than 1/450 of that
consumed by the ADSM solving Eq. (1) in the case of 128
cells.

Table 1: The computation time of ADSMs (sec).

# of cells 8 128
direct solution 0.702 7.64
solving Eq. (1) 134.4 3511.
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Figure 8: Simulation results of the direct method with
(a) 1, (b) 8, and (c) 128 cells.
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with 128 cells: (a) # =0 and (b) 7 =-0.2.
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Figure 10: Distribution of m, and /e in the direct solution
method with 128 cells: (a) 2= 0 and (b) 2 =-0.2.

5. Conclusion

First, this article presents an efficient method for the
demagnetizing field computation using the decomposition
into near and far fields. It is also expected that the
decomposition allows the near filed to be integrated by an
implicit scheme.

Second, the search of an equilibrium point is greatly
accelerated by the direct solution method using the
magnetization property of unit cell. If the unit cell property
is unknown, the magnetization state transition should be
switched based on the bifurcation point detection as was
discussed in Ref. [7].
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Appendix A. Domain Structure Model

A.1. Simplified domain structure model

The SDSM locally minimizes the total magnetic energy, e,
normalized by the crystalline anisotropy energy [5]; e is
given as

(A.1)

where e, is the Zeeman energy, e., is the crystalline
anisotropic energy, ey is the domain-wall energy, and ey is
the magnetostatic energy.

The normalized crystalline anisotropic energy is given

e=e, te, +te, te,

as

€ =0 (61,0)+(1-2) [, (6,,9,) (A2)
where fi, represents the angular dependence and A is the
volume ratio of domain 1. The Zeeman energy due to the
normalized applied field, h = & (cosen, singn, 0), is given as,

e,, =—2h-[Am, +(1-A)m,] (A.3)
where h = Hy, / (kMs), Hyp is the magnitude of the applied
magnetic field, Ms is the magnitude of spontaneous
magnetization, k = 2K / (uMs?) and K is the anisotropy
constant. A simple Bloch wall model gives the domain-wall
energy as

ew=w (1-m;-my) /2 (A4)

where w = 4L/D, Ik = (A/K)"? is the characteristic length
relevant to the exchange energy, 4 is the exchange stiffness
constant and D is the width of the two domains; w
represents the influence of energy cost to have domain walls.

It is assumed that the demagnetizing field is uniform in
the SDSM and that it is approximated as the multiplication
of demagnetizing factors and the average magnetization.
The magnetostatic energy is given as

2 2 2
€y = S,my +5,my, +s.mZ (A.5)

where (my, my, m:;) =m=Am; + (1-2)My, sx = kJ/X, 5, = ky/K
and s. = k/x; kx, ky, and k. are the demagnetizing factors.
The effect of domain shape becomes abstracted by the
approximation of magnetostatic energy. For example, the
domain size affects only D and the direction of domain wall
is not taken into account (Fig. 1 does not reflect a real
domain structure).

The total energy e becomes a local extremum when Eq.
(1) is satisfied. Its solution gives a local minimum for e
when all the eigenvalues of 0*e/0X? are positive.

A.2. Assembly of domain structure models

To obtain the energy components of the ADSM, the
Zeeman energy, the anisotropic energy and the domain-wall
energy of cells are independently summed up. The
normalized magnetostatic energy e is computed as follows.

The demagnetizing field Hy in the ADSM is obtained in
the same way as in the micromagnetic simulation [6]; Hg at
cell i is given as

Ho (@) ==M 2 NG=im()
where i and i’ are cell indexes and N is the demagnetizing

coefficient matrix [3]. For example, the cell index i is
ordered as

(A.6)



i=nmy(K-1)+ny(J-1)+1

U=1,..,n,J=1,..,n,K=1,..,n) (A7)
where (1, J, K) and (n., n,, n:) are the cell indexes and the
numbers of cells along the x-, y- and z-directions,
respectively. Using (7, J, K), the demagnetizing coefficient
matrix N(7) = {N,(i)} is given as

(K%)Az (J+%)Ay (1+h)ar

. 1 5w(x2+y2+22)—3uv
Nuv (l) - 472' I .[ I
1 1 1
(K*E)AZ(J*E)A}’ (I*E)AX

dxdydz
(x2 +y2 +ZZ)5/2 2
(A.8)
where u and v are x, y or z; d,, denotes Kronecker’s delta,
and (Ax, Ay, Az) is the cell size. The proportional scaling
up/down of cell size does not affect the demagnetizing
coefficients.
The magnetostatic energy Eg is given as
£, =~ 20N Y HL @) mG) (A9)
where V' is the cell volume. The normalized magnetostatic
energy is given by

Est . .
€y = W = _Z hst (l) ' m(l) (AIO)
where hg is the normalized demagnetizing field; hy is
given as
H
h (i) = -5 = S s~ iy (A.11)
. (D) . ;(11)0)
where s(7) = N(i) / k.
A.3. Solution types of the SDSM
The uniaxial anisotropy is represented as
fan(el’(pi):Sinz 0, cos’ @i+ (Alz)
The cubic anisotropy is given as
Sfon(6,,0,)=sin” 6, cos® @,(1-cos’ @, sin’ §,) (A.13)

+%(cos2 0, —sin* @, sin” p,)’

where the three easy axes are along e, = (1, 0, 0) , e,+e. = (0,
1, 1), and —e,te. = (0, —1, 1) directions similarly to the
grain-oriented silicon steel sheet. Both anisotropy types
(A.12) and (A.13) yield the single-domain and two-domain
magnetization states in the SDSM as follows.
When ¢y = 0, the single domain state, S., is represented
by
=0=72, pr=p2=0, 1=1/2 (A.14)

whereas the state of 180° domain-wall motion, Sww, is
represented as

&=@=nﬂ,w=0,m=n,z:%a+ﬁg.
N

X

(A.15)
The state S+ is stable when
h > hg Emax(sx -s,—Ls —s.—Ls, —w—l)
(A.16)

whereas the state Swy is stable when
I+s,—w

I+s. —w
h| < hy,, =min| s K z .
‘ ‘ WM [x X\1+sz+ssz

2
1+ s, +s,w
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(A.17)

In the determination process of direct solution method, /4

is replaced by A7) to judge the magnetization state of cell
15 (sx, Sy, 52) is given by S(0).

A.4. Demagnetization state

At the beginning of the simulation, the demagnetization
state is given as follows. First, the initial values of variable
vector X(i) in every cell i is set as
=0=m2, p=0, p2=71, A=1/2 . (A.18)

Then the artificial state equation is solved to obtain an
equilibrium point in the ADSM with 2 = 0. The
demagnetization state is also obtained by the direct solution
method with the initial guess of (A.18).



