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ABSTRACT This paper develops new integral formulas intended for detailed studies of electromagnetic
normal modes in spherical and spherical annular cavities.

INDEX TERMS Bessel functions, Generalized Legendre polynomials, Integral, Square.

I. INTRODUCTION

TO study electromagnetic normal modes in spherical or
spherical annular cavities, we have developed formulas

that do not seem to be listed in the classical literature. As
these formulas could be applied in several scientific fields,
we think it is useful to publish them independently of their
application. These formulas allow to find expressions for the
energy, thrust and losses of all electromagnetic normal modes
in spherical or annular spherical cavities. Computation of
energy and losses is important in the study of electromagnetic
resonators, whereas their expressions have to our knowledge
only been developed for the first few modes in spherical
cavities [1]. Such cavities are now in development for use
in THz devices (see e.g. [2]). In theoretical physics, the
availability of expressions for the thrust applied by each
mode on a spherical surface should allow a more direct
calculation of the Casimir effect than the classical calculation
based only on the energy variation [3]. Casimir effect is now
studied in different structures with spherical symmetry (see
e.g. [4]). It has also practical implications in NEMS (nano
electro mechanical systems), sensors and material sciences
(see e.g. [5]).

II. QUADRATIC INTEGRALS WITH RESPECT TO
BESSEL FUNCTIONS
Bessel functions of order ν are solution of the differential
equation [6](9.1.1)

x2Ψ”ν(x) + xΨ′ν(x) + (x2 − ν2)Ψν(x) = 0 (1)

where ′ denotes the first derivative and ” the second deriva-
tive. For our purposes, we can always consider that x is a
positive real variable.

x > 0 (2)

The general solution of (1) is a linear combination of Bessel
functions of first and second kind, i.e.

Ψν(x) = AJν(x) +BYν(x) (3)

where A and B are two real parameters with any values.

A. GENERALIZATION OF THE LOMMEL INTEGRALS
We are looking for an analytical solution of the integral∫

xΨ2
ν(αx)dx (4)

In the literature, what are called Lommel integrals are similar
to (4) but are restricted to the special case of the Bessel
function of the first kind Jν(x) and often limited to a finite
integration interval [0, a]. In fact, the two integrals∫ a

0

xJν(αx)Jν(βx)dx (5)

and ∫ a

0

xJ2
ν (αx)dx (6)

are named Lommel integrals [7]. The methods for solving
the Lommel integrals (5) (6), as detailed in [8] or [9], can
however be generalized without difficulty to the calculation
of (4).

One easily obtains

∫
xΨ2

ν(αx)dx =
x2

2
[Ψ′ν

2
(αx)+(1− ν2

α2x2
)Ψ2

ν(αx)]+ cst

(7)
Expression (7) generalizes the Lommel integral (6) as

quoted in [1]. To obtain the generalization of that expression
as quoted in [7], we still have to replace the term Ψ′ν

2
(αx)

so as not to keep any derivative function. To do this, we use
the last two of the recurrence formulas given in [6](9.1.27),
namely:
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Ψ′ν(x) = Ψν−1(x)− νx−1Ψν(x) (8)

and
Ψ′ν(x) = −Ψν+1(x) + νx−1Ψν(x) (9)

The product of (8) and (9) yields

Ψ′ν
2
(x) =

[Ψν−1(x)− νx−1Ψν(x)][−Ψν+1(x) + νx−1Ψν(x)] (10)

or

Ψ′ν
2
(x) = −Ψν−1(x)Ψν+1(x)− ν2x−2Ψ2

ν(x)

+νx−1Ψν(x)[Ψν−1(x) + Ψν+1(x)] (11)

Furthermore, subtracting (9) from (8), we obtain:

Ψν−1(x) + Ψν+1(x) = 2νx−1Ψν(x) (12)

Inserting (12) into (11), we obtain:

Ψ′ν
2
(x) = −Ψν−1(x)Ψν+1(x) + ν2x−2Ψ2

ν(x) (13)

It remains to introduce (13) into (7) to obtain∫
xΨ2

ν(αx)dx =
x2

2
[Ψ2
ν(αx)−Ψν−1(αx)Ψν+1(αx)]+cst

(14)
which generalizes the Lommel integral as quoted in [7].
Equations (7) and (14) generalize equations (6.52) and (6.53)
of reference [9].

B. OTHER QUADRATIC INTEGRAL
We are now looking for an analytical solution of the integral∫

{ν
2 − 1/4

r
Ψ2
ν(kr) + [

d

dr
(
√
rΨν(kr))]2}dr (15)

We may write

d

dr
(
√
rΨν(kr)) =

1

2
√
r

Ψν(kr)) +
√
rkΨ′ν(kr)) (16)

so

[
d

dr
(
√
rΨν(kr))]2 =

1

4r
Ψ2
ν(kr) + kΨν(kr)Ψ′ν(kr) + rk2Ψ′ν

2
(kr) (17)

By substituting (17) in (15), we get ∫
...dr =∫

{ν
2

r
Ψ2
ν(kr) + kΨν(kr)Ψ′ν(kr) + rk2Ψ′ν

2
(kr)}dr (18)

By grouping the first and third terms of the integrand, we get∫
...dr =∫

{ν
2

r
Ψ2
ν(kr) + rk2Ψ′ν

2
(kr)}dr +

∫
d

dr

1

2
Ψ2
ν(kr)dr

(19)

so∫
...dr =

∫
{ν

2

r
Ψ2
ν(kr) + rk2Ψ′ν

2
(kr)}dr +

1

2
Ψ2
ν(kr)

(20)
Moreover, by squaring the first two recurrence relations given
in [6](9.1.27) and summing them member to member, we
obtain after division by 4 and substitution of z by kr

Ψ′ν
2
(kr)+

ν2

k2r2
Ψ2
ν(kr) =

1

2
[Ψ2
ν−1(kr)+Ψ2

ν+1(kr)] (21)

Multiplying (21) by k2r and substituting the result in (20),
we get ∫

...dr =

k2

2

∫
rΨ2

ν−1(kr)dr +
k2

2

∫
rΨ2

ν+1(kr)dr +
1

2
Ψ2
ν(kr)

(22)

We recognize in (22) two generalized Lommel integrals (14),
therefore ∫

...dr =
k2

2

r2

2
[Ψ2
ν−1(kr)−Ψν−2(kr)Ψν(kr)]

+
k2

2

r2

2
[Ψ2
ν+1(kr)−Ψν(kr)Ψν+2(kr)] +

1

2
Ψ2
ν(kr) + cst

=
k2r2

2

1

2
[Ψ2
ν−1(kr) + Ψ2

ν+1(kr)]

−k
2r2

4
Ψν(kr)[Ψν−2(kr) + Ψν+2(kr)] +

1

2
Ψ2
ν(kr) + cst

(23)

By using relation (21) in the opposite direction, one obtains∫
...dr =

ν2

2
Ψ2
ν(kr) +

k2r2

2
Ψ′ν

2
(kr)

−k
2r2

4
Ψν(kr)[Ψν−2(kr) + Ψν+2(kr)] +

1

2
Ψ2
ν(kr) + cst

(24)

Now, by substituting x by kr in the equation (47) given in the
appendix, and by introducing the result in (24), we obtain∫

...dr =
ν2 + 1

2
Ψ2
ν(kr) +

k2r2

2
Ψ′ν

2
(kr)

−k
2r2

4
Ψν(kr)[− 4

kr
Ψ′ν(kr) + (

4ν2

k2r2
− 2)Ψν(kr)] + cst

=
ν2 + 1

2
Ψ2
ν(kr) +

k2r2

2
Ψ′ν

2
(kr)

+krΨν(kr)Ψ′ν(kr) + [−ν2 +
k2r2

2
]Ψ2
ν(kr) + cst

(25)

or∫
...dr = [2krΨ′ν(kr) + Ψν(kr)][

kr

4
Ψ′ν(kr) +

3

8
Ψν(kr)]

+[
1

8
− (ν)2

2
+
k2r2

2
]Ψ2
ν(kr) + cst

(26)
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and finally∫
{ν

2 − 1/4

r
Ψ2
ν(kr) + [

d

dr
(
√
rΨν(kr))]2}dr

= [2krΨ′ν(kr) + Ψν(kr)][
kr

4
Ψ′ν(kr) +

3

8
Ψν(kr)]

+[
k2r2

2
− ν2 − 1/4

2
]Ψ2
ν(kr) + cst (27)

The writing of (27) is well suited to easily take into account
the boundary conditions encountered in electromagnetism for
spherical or annular spherical cavities.

III. QUADRATIC INTEGRALS WITH RESPECT TO
GENERALIZED LEGENDRE POLYNOMIALS
For the calculation of the energy and forces of the spherically
symmetric electromagnetic normal modes, we also had to
solve integrals related to the generalized Legendre polyno-
mials Pm` (x). We use the definition of these polynomials
given in [6]. For our purpose, it was sufficient to consider
the values:

` = 1....∞ (28)

m = 0....` (29)

A. FIRST CASE
The first integral we consider is∫ π

0

sin θ[
d

dθ
Pm` (cos θ)]2dθ =

∫ π

0

sin3 θ[P ′
m
` (cos θ)]2dθ

(30)
or, by performing the change of variable u = cos θ ,∫ π

0

sin θ[
d

dθ
Pm` (cos θ)]2dθ = −

∫ −1
1

(1− u2)[P ′
m
` (u)]2du

=

∫ 1

−1
(1− u2)[P ′

m
` (u)]2du

(31)

Using the formula (14.10.4) given in [10]:

(1−u2)P ′
m
` (u) = (m−`−1)P ′

m
` (u)+(`+1)Pm` (u) (32)

we can write (31) as ∫ π

0

sin θ[
d

dθ
Pm` (cos θ)]2dθ

=

∫ 1

−1
(m− `− 1)Pm`+1(u)P ′

m
` (u)du

+

∫ 1

−1
(`+ 1)Pm` (u)P ′

m
` (u)du (33)

Since each term contains a product of functions with the same
upper index ` we can use the formulas given in [11] without
worrying about the difference in definition with [6]. So, we
can use formulas (35) and (37) of [11] to solve the integrals
of the right-hand side of (33). We obtain

∫ π

0

sin θ[
d

dθ
Pm` (cos θ)]2dθ

= (m− `− 1)

{
δ0,m −

(`+m)!

(`−m)!

}
+(`+ 1)

{
δ0,m −

(`+m)!

(2`+ 1)(`−m)!

}
(34)

where δ0,m = 0, unless m = 0 in which case δ0,m = 1 . If
m = 0, then we have ∫ π

0

sin θ[
d

dθ
Pm` (cos θ)]2dθ

= (`+ 1)

{
1− 1

(2`+ 1)

}
=
`(`+ 1)

`+ 1/2
(35)

If m 6= 0 , then we have ∫ π

0

sin θ[
d

dθ
Pm` (cos θ)]2dθ

= (`−m+ 1)
(`+m)!

(`−m)!
− (`+ 1)

(`+m)!

(2`+ 1)(`−m)!
(36)

so∫ π

0

sin θ[
d

dθ
Pm` (cos θ)]2dθ = [

`(`+ 1)

(`+ 1/2)
−m]

(`+m)!

(`−m)!
(37)

Formula (37) reduces to (35) when m = 0, so that (37) is
valid without restriction on m.

B. SECOND CASE
If m 6= 0 , using formula (8.14.14) given in [6], we obtain∫ π

0

1

sin θ
[Pm` (cos θ)]2dθ =

(`+m)!

m(`−m)!
(38)

From (38), it is easy to derive a formula that hold for all
values of m given by (29):∫ π

0

m2

sin θ
[Pm` (cos θ)]2dθ = m

(`+m)!

(`−m)!
(39)

IV. CONCLUSIONS
At the end of this study, integrals given in (7) or (14),(27),
(37) and (39), together with (8.14.13) given in [6], are all the
integral formulas needed to obtain analytical expressions for
the energy, thrust and losses of all electromagnetic normal
modes in spherical or annular spherical structures. As stated
in the introduction, the results given in this paper can be
useful in different areas of theoretical physics and applied
physics.

APPENDIX: DOUBLE RECURRENCES ON BESSEL
FUNCTIONS
The last two equations found in [6] (9.1.27) can be written

Ψν±1(x) = ∓Ψ′ν(x) +
ν

x
Ψν(x) (40)
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By deriving these relations, we obtain

Ψ′ν±1(x) = ∓Ψ”ν(x) +
ν

x
Ψ′ν(x)− ν

x2
Ψν(x) (41)

Eliminating the second derivatives by the equation of defini-
tion of the Bessel functions (1), one has

Ψ′ν±1(x) =

± 1

x
Ψ′ν(x)± (1− ν2

x2
)Ψν(x) +

ν

x
Ψ′ν(x)− ν

x2
Ψν(x) (42)

or

Ψ′ν±1(x) =
ν ± 1

x
Ψ′ν(x)∓ (

ν(ν ± 1)

x2
− 1)Ψν(x) (43)

Let us go back to the equations (40). By replacing ν by ν±1,
we obtain

Ψν±2(x) = ∓Ψ′ν±1(x) +
ν ± 1

x
Ψν±1(x) (44)

Introducing (40) and (43) in (44), we obtain

Ψν±2(x) = ∓ν ± 1

x
Ψ′ν(x) + (

ν(ν ± 1)

x2
− 1)Ψν(x)

∓ν ± 1

x
Ψ′ν(x) +

ν(ν ± 1)

x2
Ψν(x) (45)

or, finally

Ψν±2(x) = ∓2
ν ± 1

x
Ψ′ν(x)+(2

ν(ν ± 1)

x2
−1)Ψν(x) (46)

We observe remarkable equality

Ψν+2(x)+Ψν−2(x) = − 4

x
Ψ′ν(x)+(

4ν2

x2
−2)Ψν(x) (47)
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