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ABSTRACT This paper develops analytical expressions of energy, thrust and losses for all electromag-
netics normal modes in spherical and annular spherical cavities. The implications on the spherical Casimir

effect are also investigated.
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I. INTRODUCTION

HE energy and losses of spherical cavities were studied
T in [1] for two of the modes and in [2] for six of them. In
this paper, we extend the analytical calculation to all modes,
both for spherical cavities and for annular spherical cavities.
We add the calculation of the thrust exerted on the walls of
the cavities, with the aim of being able to use the present
study for a more direct calculation of the spherical Casimir
effect than the classical calculation [3].

A. PRELIMINARY WORK

The present study required the development of new formulas
for integrals containing squares of special functions. These
formulas were established in a preliminary work [4] and
given here in appendix.

B. CHOICE OF THE EXPRESSIONS OF FIELDS

The explicit expression of the spherical electromagnetic wave
fields can be obtained by following the detailed method
provided in [5]. The result is given in [2] in the particular
case where the domain considered includes the origin. To
obtain a general formulation, it is sufficient to replace in the
expressions provided in [2] the first kind Bessel function by
a combination of these functions with the second kind Bessel
function [4]. We will write this combination here in the form:

U, (z) = J,(z) cos(¢) — Y, (z)sin(¢) (D)

where ( is any parameter in the range [0, 7[. In the particular
case of a spherical cavity, the second term of (1) must be zero
to avoid having a singularity of the fields at the center of the
cavity. In this case, we must therefore have

¢ =0andthus ¥,(z) = J,(x) ()
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The writing (1) is interesting because, for large values of x,
using the asymptotic expansions [6](9.2.1 and 9.2.2) of J,,(x)
and Y}, (z), we obtain the asymptotic expansion

2 1 1
U, (z) ~ \/acos(x— VT Z7H—C) if xislarge (3)

In this paper, we use Bessel functions of fractional order v =
¢+ 1/2 with ¢ € 7Z. These functions multiplied by /27 /x
are most commonly known as spherical Bessel functions.

C. NOTATIONS

We use the spherical coordinates r , # and ¢ which form a
direct system for this order. The components of the vectors
are given in the orthonormal reference frame associated with
these coordinates. The angle dependence of the waves with
respect to 6 and ¢ is fixed by two integers which take
respectively the values:

(=1,2,...,00 @)

and
m=0,1,....,¢ (®)]

The dependency on the coordinate ¢ is set by the number m
in the form of cos(m¢) and sin(me). When m > 1, we can
distinguish two very similar waves obtained by permuting
these two functions, i.e., an even wave and an odd wave. In
what follows, we will consider only one of these waves. A
distinction is made between T'F waves (transverse electric)
and T'M waves (transverse magnetic).

We study the normal modes of annular spherical cavities,
i.e., between two concentric conducting spheres of radius a
and R:

0<a<r<R<o 6)
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The case of spherical cavities will be obtained in the limit
a — 0. In a cavity, in addition to the numbers ¢ and m, one
introduces a number

n=12,..00 (7)

to number the normal TE or TM modes in order of increasing
frequency. The modes are therefore all completely defined,
apart from parity, by the designation T'Ej,,,, or T'My,,,. In
the following, the time dependence in not made explicit. To
specify a 90° phase, we use the complex number

j=v-1 ®)

The spatial dependence will be written using the wave num-
ber k which is related to the pulsation w by the relation

k=2 ©)

c
where c is the speed of light in the considered medium

e L (10
NG
SO
k? = w?en (11)

To simplify the writing, we also use the coefficient
M(m)=1ifm#0and M(m)=2ifm=0 (12)

commonly known as Neumann factor with another notation.
With this coefficient, we can write without worrying about
the value of m

2
/ cos?(my) = M« (13)
0

and o
msin®(mep) = mMm (14)

0

Il. STUDY OF MODES TF

A. EXPRESSION OF FIELDS

Apart from parity, the fields of waves T Ey,,,,, are of the form
given in [2], i.e., after generalization:

E.=0 (15)
A
Ey = h‘l’g+l/2(lﬂ“>PZm(COS(9)) sin(my)  (16)
E, = A v k d P 0 17
o= TR Veen i) G PP s cos(me) (1T
and
L+ 1A
H,. = W\Pg+1/2(kT)Pﬁ(COS 0)] cos(myp)  (18)
A d d
9 = o dr[\f@p+1/2(kr)]@[sz(cos9)] cos(mey)
N (19)
m
H‘P mdr [\/>\Ijg+1/2(k7')]Pe (COS 0) Sln(m(ﬂ)
(20)
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B. BOUNDARY CONDITIONS

Since the walls of the cavity are perfectly conductive, in r =
a and r = R, the tangential component of the electric field
and the radial component of the magnetic field must be zero.
It is immediately clear that these conditions are satisfied if

Vor1/2(ka) =0 2D
and
Wyp1/2(kR) =0 (22)
Considering (1), equations (21) and (22) can be written:
J€+1/2(ka)
tan({) = ———= (23)
© Yii1/2(ka)
and J (kR)
0412
tan = —1_ 24
©) Yii1/2(kR) @9

Identifying (23) and (24) gives an equation defining the
values of k. That equation is equivalent with the similar
condition given in [3]. The two conditions (21) (22) are thus
satisfied for a discrete set of pairs (k, ¢). From (23) and (24),
we also obtain, with &1 = sgn[Jy11/2(ka)]:

cos(C) = Y1 1/2(ka) 25)
VIi1a(ka) + Y2, o (ka)

. 26)
\/Jz+1/2(ka) + Yz+1/2(k“)

and, with +1 = sgn[Jy41/2(kR)]:

cos(¢) = - £Ver1/2(kR) 27)
V212 (RR) + Y2, o (kR)

sin(¢) = +Joy1/2(kR) 28)

\/ T2 o (KR) + Y2, o (kR)

We can obtain an interesting expression of the derivative
“1/2(1@@) Using (1), we have

\I’z+1/2 (ka) = Jé+1/2 (ka)cos ¢ — Yzl+1/2(ka) sin¢ (29)
Introducing (25) and (26) in (29), it comes

\I]/Z+1/2(ka) =
Je+1/2(ka)yz/+1/2(ka) - J2+1/2(ka)}/€+1/2(ka)
VIR k) + Y2 o (ka)

The numerator of (30) is a Wronskian. Using its expression
[6](9.1.16)(9.1.27), we obtain

(30)

1
‘I’£+1/2 (ka) (€28)
wka \/ Z+1/2 ka —|— £+1/2(/€a)
Of course, one has the similar expression for r = R :
1
\I![+1/2(I<:R (32)

ka V1o (BR) + Y2 o (KR)
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C. CALCULATION OF ENERGY VIA THE ELECTRIC
FIELD

The simplest way to calculate the energy of a T'E' normal
mode is to do the calculation at the moment when the
magnetic field is zero, since at that moment all energy is in
electric form and the electric field (15) (16) (17) has only two
non-zero components, namely (16) and (17). By introducing
(15), (16) and (17) into the expression for electric energy

W= / / / %E%ﬂ sin Odrdodp (33)

and performing the integrals with respect to ¢ using (13) and
(14), we obtain

emr A2 m2 -
M [ [ i o [P cosb)

1 d
+- ‘I’Hl/g(kr)[ pT P} (cos 0)])?}r? sin Odrdf
(34)

W =

or

/ {sm9

The integral with respect to 6 is obtained using (168) and
(167).

emr A2

W:
2

R
M[/ T\I/§+1/2(kr)dr}

(cos)]* + sin G[d%npgm(cos 0)]*}do  (35)

emA? B
w= T / r02, (k) dr]
00+ 1) (£ +m)!
e ey 99
or
ETT 2 R m).:
W= TN [ e

C+1/2) (£ —m)!

(37
The integral with respect to r is a Lommel integral. It is done
by using (165), then simplifying the result given the boundary
conditions (21) (22). We obtain

A?
W= EWQ [RQ\I’2+1/2(]€R) —-a z+1/2(ka)]
Ll+1)(L+m)
(v (—my Y

D. CALCULATION OF ENERGY VIA THE MAGNETIC
FIELD

The energy expression can also be obtained by integrating
the magnetic energy taken at the moment when the electric
field cancels. The calculation is more difficult than in the
previous paragraph because the magnetic field has three non-
zero components. However, we will carry it out for the sake
of verification and mathematical interest. By introducing the
imaginary part of (18) (19) and (20) in the expression of the
magnetic energy

W= / / / gHzrzsinﬁdrdecp (39)
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and performing the integrals with respect to ¢ using (13) and
(14), we obtain

wo A / / 0, B o)

2w
d
2{ [\[\IIZJrl/Z(kT)]} dr|— (9 " (cos 6)]?
_m
r2sin? 6
{di[\/;\ll(+1/2(kr)]}2[le(COS 0)]*}r? sin Odrdf
”
(40)
or, using (11)
em A2

{200+ 1)2/R

a

1\IJEH/Q(Imﬂ)dr /OTr sin @[ P;™ (cos 0)]2df
/ (L g o (k) / sin 0] d9 ™ (cos 0)]2d6
v [t [

7 [P (cos 0)]%dA}
(41

sin

Performing the integrals with respect to 6 , we obtain by (169)
(167) and (168):
em A2

R
1 1
W= M{E(+ 1) / F Vivakr)dr s

T B e
bR e )
(42)

or
emA? (0 +1)(L+m)!
2k2 7 (0+1/2)(1 —m)!

R 1 d
AU 20 )+ (G sartr o))
(43)

W =

The integral in (43) is achieved using (166). We obtain
emA?Z L0+ 1)L+ m)!
= M
W= e M= my
{[2kr Wy, jo(kr) + Wy a(kr)]
kr 3
[Z t1/2(kr) + g‘l’eﬂ/z(k‘?“)]
E2r?2 (041
M D ey e
Let using the boundary conditions (21) and (22)
W= erA? 00+ 1)(0+ m)!
C2k2 T (04 1/2)(6 —m)!

k2R2 k‘2 2
[T le+1/2(kR) 9 \Ilg+1/2(k:a)] (45)
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and finally
emA? LU+ 1)L+ m)!
= M
W= M= m)
[RQ‘IJZH/Q (kR) — a2‘1122+1/2 (ka)] (46)

which is indeed identical to (38).

E. THRUST OF NORMAL MODES ON THE CAVITY
WALLS
The thrust of normal modes on the walls at r = a and
r = R is purely magnetic since the electric field (15) (16)
(17) cancels out at these points by (21) and (22). Since the
magnetic field is purely tangential (19) (20), the peak force
density is, by virtue of Maxwell tensor:

%u(H& + H3) (47)
As the magnetic field varies sinusoidally in time, a factor %
is introduced to account for the time average. The thrust, i.e.,
the integral of the force density, thus becomes, by introducing
(19) and (20) in (47) divided by two and performing the
integrals with respect to ¢ using (13) and (14):

TA2 1d 9
F= MM{;%[\/;WZJA/ZUCT)]}

/{diﬂ [P;™(cos 6)]}2r? sin 0d

A2 1
7er

+4w2,u {;%

VW os1/2(kr)]}

m2
——{[P;"(cos 0)]}*r? sin 0d0
sin“ 0

(48)
By performing the derivatives with respect to r and using the
boundary conditions (21) (22), as well as (11), the thrust is
written

meA? 1

F= WM{;]C\/F\I/2+1/2(/€T)}2
/{%[sz(cos 6)]}%r? sin 0d6
meA? 1
+mM{;k\/7:‘I’Z+1/2(kT)}2
P cos 020 (@)
g " (cos T
or
2 ™
F= 7TZ4M7«\1122+1/2(]§7”)/0 {dila[PZm(cosﬂ)]}2 sin 6d6
meA? 2 Tm? 2
+TMT\IIZ+1/2(IC7")/O sine[PZ (cos 0)]*df

(50)
Performing the integrals with respect to 6 , we obtain by
(167) and (168)
meA?
4

0e+1) (€+m)!

F= (+1/2 ((—m)!

MrY o (kr) (51)
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By specifying (51) for » = a and r = R, and then comparing
the result with (38), we can write

a\II’Z2 1/5(ka)
F(a) = 1/ W (52)
R2WZ | (kR) — a?U,, ,(ka)
RU2 . (kR)
F(R) = +1/ W (53)
R2WZ |, (kR) — a?U2, |, (ka)

Combining (52) and (53), we have the remarkable relation-
ship
RF(R) —aF(a) =W (54)

F. LOSSES DUE TO SURFACE CURRENTS

At the boundaries of the cavity, a surface current arises
which, by Ampere’s law, must be equal to the tangential
component of the magnetic field. If the material that bounds
the cavity is not perfectly conductive, but conductive enough
for the losses to be small, the losses can be calculated by
keeping the expressions (16) (17) for the field of the un-
damped normal modes. Surface currents encounter a surface

resistance R, which is
1
R, = — 55
- (55)

where o is the conductivity of the metal and 9 the skin depth:

J = i (56)
wpo

The peak power loss density is therefore given by
R (Hj + H2) (57)

The comparison of (57) and (47) shows that the calculations
in the previous paragraph allow the losses to be calculated. It
is sufficient to multiply the results (52) (53) by the fraction
2R, /p That is, by (55), (56) and (9),

, 2 2 /2
2& R 2ke (58)
I oud op o

whose value can be different in 7 = a and in r = R if the
conductivity o is not the same for both walls.

G. CASE OF SPHERICAL CAVITY

In the case of a spherical cavity, a = 0 and (52) is irrelevant.
The continuity of the fields at the origin imposes

\Ifg+1/2(k7') = Jg+1/2(k7') (59)
Using the limit form [6](9.1.7), it is easy to check that
lim aWwy p(ka) =0 (60)

By introducing (60) into (54), we see that the thrust (53)
reduces to
F(R)=— if a=20 (61)
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H. EXTERIOR MODES OF SPHERES

Furthermore, if we study the exterior of spheres of radius a
when R — oo, the asymptotic form (3) introduced in the
boundary condition (22) shows that we must have

cos(kR — %EW — 17T +¢0)=0 if Ris large (62)

2
and therefore also
. 1 1 ) .
51n(ka§Z7rf§7r+§) =41 if R is large (63)

Using (3), (62) and (63), we obtain

2
, N . .
Uyi1/0(kR) =~ £ R if Rislarge (64)
It can be deduced that
2
1 RY kR) = — 65
m Ze1y2(kR) — (65)
Introducing (65) into (52) and (53), we obtain
TkaW ka
F(a z”—l/z()w if R—oo (66)
2R
W
F(R)Nﬁ if R — o0 (67)
Using (31), equation (66) can be written as
2 1
F(a) =~ — if R—= o0
nka J£+1/2(ka) + Ye+1/2(ka) R
(68)

lll. STUDY OF MODES 7'M

A. EXPRESSION OF THE FIELDS

Apart from parity, the wave fields T'My,,,,, are of the form
given in [2], i.e., after generalization:

B, = DBy (k)P (cos6) cos(mp)  (69)
jwerd/?
B d 4 om
Ey = Forer dr[\f z+1/2(k7’)]d9 [Pg" (cos 0)] cos(mp)
(70)
Bo= —0 [ i o (k) P (cos ) sin(imp)
v Jjwersin @ dr 172Uk (cos 6) sin{mp
(71)
and
H, =0 (72)
mB m :
Ho = W‘I’ZH/Z(W)Pé (cos(9)) sin(mep) — (73)
B d om
H, = 7qje+1/2(kr)@[Pz (cosB)]| cos(me)  (74)

\/77,
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B. BOUNDARY CONDITIONS
Since the walls of the cavity are perfectly conductive, in r =
a and r = R the tangential component of the electric field
and the radial component of the magnetic field must be zero.
It is immediately clear that these conditions are satisfied if
d
%[\/77”\1144,1/2(]?7")} =0  forr=aand forr=R.
(75)
In order to shorten the writings, let us define for any function
F(z): F(x) = F(z) + 22F'(z). Then, by performing the
derivation of (75), we obtain the conditions:
Uyi1/o(ka) + Qka%ﬂ/g(ka) =Wyy12(ka) =0 (76)
and
Wop1/2(kR) + QkR\I12+1/2(kR) = \i/(_;'_l/z(kR) =0 (77)

Considering (1), equations (76) and (77) can be written:

. je+1/2(/w)
tan(¢) = Yii1/2(ka) 7
d
" tan(¢) = Jo1/2(kR) (79)
Yoi1/2(kR)

Identifying (78) and (79) gives an equation defining the
values of k. Thus, the two conditions (76) (77) are satisfied
for a discrete set of pairs (k, ¢). From (78) and (79), we also
obtain, with £1 = sgn[Jyi1/2(ka)]

cos(() = —— +Yyi1/2(ka) 80)
V21 ja(ka) + Y2 5(ka)

in(¢) = +Jp11/2(ka) @1)
\/ e+1/2<ka) + e+1/2(ka)

And, with £1 = sgn[Jy41/2(kR)]

cos(C) = Yy 11/2(kR) (82)
V212 (RR) + Y2 o (kR)

sin(¢) = +Joy1/2(kR) (83)

\/ T2 o (KR) + Yisrj2(kR)

We can obtain an interesting expression of W, ;/(ka).
Using (1), we have

Vyi1y2(ka) = Jpyy2(ka) cos(C) — Yiq1/2(ka) sin(¢)

(84)
Introducing (80) and (81) in (84), it comes
\I/g+1/2(]€a)
B :I:Jé+1/2(ka)[YE+1/2(ka')] = Yiy12(ka)[Jeg12(ka)]

\/j42+1/2(]m) + Ye+1/2(ka)

(85)
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or
\I/g+1/2 (ka)
Joy1/2 (ka)Y@’H/Q(k‘a) — Ygﬂ/g(ka)JéJrl/2 (ka)

= +2ka —
\/Jz2+1/2(ka) + Y£+1/2(ka)

(86)

The numerator of (86) is a Wronskian. Using its expression
[6](9.1.16)(9.1.27), we obtain
4 1
\I/g+1/2(ka) = :l:; (87)
\/ e+1/2(ka) e+1/2(k“)

Of course, one has the similar expression for r = R:

1
\IJ@+1/2 kR (88)

¢ Zo1jo(BR) + Y2 jo(kR)

C. ENERGY CALCULATION VIA THE MAGNETIC FIELD

The simplest way to calculate the energy of a 7'M normal
mode is to do the calculation at the moment when the
electric field is zero, since at that moment all the energy is in
magnetic form and the magnetic field (72) (73) (74) has only
two non-zero component. By introducing these components
into the expression for the magnetic energy (39), i.e.

W= / / / gH%? sin Odrdfdy (89)

and performing the integrals with respect to ¢ using (13) and
(14), we obtain

W= N [ [t ) 7 eos )
+- ‘I’z+1/2(k7“)[d%Pz (cos 0)]*}r? sin Odrd6
(90)
or

pmB?

R
W = 3 M[/a T\If?+1/2(kT)dT]

T m2 m 2 . d m 2
/ {sinQ[PZ (cos0)] +sm9[—d6P€ (cos9)]“}d6 (91)
0

The integral with respect to 6 is obtained using (168) and
(167).

_ pmB? (0 +m)!
W= 2 M (£ —m)!
R
[ /a ¥, Jo(kr)drl{m + i(_ﬁ /12) -m}  (92)

 B? R ((L+1) (+m)!
W= B[ e ST

74

The integral with respect to r is a Lommel integral. It is
performed using (165), We obtain

_ pmB? (0 41) ({+m)!

W= My s —m),

g pom +0- S e )
SOtk + - T2 ey 00

The derivatives can be eliminated by the boundary conditions
(76) (77), and we obtain

prB? (0 +1) (€ +m)!
M
2 £+1/2 (£ —m)!
R? (€ +1/2)? 1
o VT T R2R2 4k2R2)‘1/%+1/2(k;R)
a2 ((+1/22 1

W =

5 (=g + ) Venp(ka)]  99)
or
o e
- e 0m)
- e eel o6

D. CALCULATING OF ENERGY VIA THE ELECTRIC
FIELD

The energy expression can also be obtained by integrating the
electrical energy taken at the moment where the magnetic
field is zero. The calculation is more difficult than in the
previous paragraph because the electric field has three non-
zero components. However, we will do it for the sake of
overlap. By introducing the imaginary part of the electric
field expression (69) (70) (71) into the electric expression

33), ie.
W= / / / %Eer sin @drdfdy 97

and performing the integrals with respect to ¢ using (13) and
(14), we obtain

W= %M//{@‘I’?ﬂ/z(kr)[ljﬁ(cos9)]2
+{i[\/;‘l’e+1/2(k‘7°)]} [ddGPZ (cos ))?

[f‘lfeﬂ/z(k?")]} [Py

m2

tonZe sin? @ dr /" (cos 0)]*} sin Odrdd

(98)
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or, using (11) and performing the integrals with respect to 6
by (169) (167) and (168)
pm B2 2 2 "1 2 1

2k2 M{g (€+1) . *\I/e_"_l/Q(kr)dTm

T o | e I

W =

/ {1+ \[‘I’é+1/2(k7“)]}2d7’ m} Ef ha m§
99)

That is, if we combine the last two integrals
prB? 40+ 1)(£+m)!
2k2 (L+1/2)(£+m)!

/ [+ 1) 20, )+ ([P k)]
(100)

W =

The integral in (100) is solved using (166). We obtain
prB? (0 +1)(£+m)!
2k2 (L+1/2)(+m)!
_ kr 3
{‘I’e+1/2(k7“)[z‘1’2+1/2(/f7“) + g Vo2 (kr)]

k2r? fé—i—l
M e e

Let, using the boundary conditions (76) and (77)

prB? L0+ 1) (£+m)!
2k2 04172 (L +m)!

KRZ (0 +1
Crlyge L kR)

(55
)‘1154-1/2(]%)]

W =

(101)

W:

7(k2a2 _U(+1)
2 2

(102)

and finally

prB? (0 +1) (€4 m)!

L2 (m)
(41

F Ut SRR (TT)

L0 +1
—a2(1 - W)‘I’fﬂm(’m)]

W =

(103)

which is indeed identical to (96).

E. CALCULATION OF THE MAGNETIC THRUST

In the case of T'M modes, there is at the boundaries both a
tangential magnetic field component and a normal electric
field component. The thrust due to the magnetic field is
directed outwards as the thrust in the case of 7'E modes. In
contrast, the electric field gives rise to an inward pull. The
resulting thrust can therefore be written as

F=F,—F. (104)

We will calculate the two right-hand terms separately because
only the calculation of I}, can be reused for the calculation of
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losses. Since the magnetic field is purely tangential, the force
density is, by virtue of Maxwell’s tensor, given by (47), i.e.:

1

SH(HG + H) (105)
As the magnetic field varies sinusoidally in time, a factor
1/2 must be introduced to account for the time average. The
integral of the force density (105) divided by two becomes,
introducing (73) et (74) and performing the integrals accord-
ing to o using (13) and (14):

umB?
Fy, = 4 — M- \I’e+1/2(k7“)
(cos 0)]? + {dila[Pem(cos 0)]}2}r% sin 0d6

(106)

The integral with respect to 6 is obtained using (167) and
(168).

00 +1)

(£+m)!
MVESY?

—m) s — -
¢ (10)7!)

We+1) (0 +m)
(¢+1/2) (£ —m)!

2
MaV3, , s (ka) (108)

F. LOSSES CALCULATION

As in the case of the T'E modes, to obtain the expression for
the losses it is sufficient to multiply the expression for the
magnetic thrusts (108) or (109) as the case may be, by the
factor (58), i.e.:

M2 [T [
I oud ou o
G. CALCULATION OF THE ELECTRIC PULL AND THE
RESULTING THRUST
In the case of 7'M mode, the radial component of the electric
field is not zero at the boundaries. Therefore, the Maxwell

tensor gives a force density facing the interior of the cavity,
which is

(110)

1
SeF? (111)
As the electric field varies sinusoidally in time, a factor 1/2
is introduced to account for the time average. Introducing
(69)in (111) divided by two and performing the integral with
respect to o by (13), we obtain
T 2(0+1)>B2

Fe(r) = 4 w3e

/[Pg" (cos #)]% sin(6)db

1
M;\P?H/z(kr)
(112)
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The integral with respect to 6 is performed by (169). Using
(11), we obtain

7 2(0+1)*uB?

Fe(r)= 7 2 M \P4+1/2(kr)
(E—Fm).
(€+1/2)(€ —m)! (>
thus
™ pB? CU+1)* (L4 m)!
Fe(a) = 152 —z M- ‘I’e+1/2(ka) (C+1/2) (€—m)!
(114)
and
B2 G +1)? (L +m)!
Fe(R)_ZMm M- lI’€+1/2(kR) )

{+1/2) (£ —m)!
(£+1/2) ( ()1 5)
To find the expression for the resultant thrust, it is sufficient
to introduce (108) and (114) or (109) and (115) into (104).
This gives us,
pn B2

4

L(L+1)
W)\I’?+1/2(ka)

0E+1) (0+m)!
(C+1/2) ((—m)!

Ma(l -

(116)

o+ 1)
—3g2 ) Virya(kR)

Ll+1) (L+m)!

(L+1/2) (¢ —m)!
Comparing the expressions (116) or (117) with those of
energy (96), we see that we have:

£(641)
a(l — W)\IJ?H/Q(ka)W

(117)

a) =

denoma
with
e+1
denoma = R*(1 — (1627]%2))‘1’ZJF1/2(1€R)
{e+1
- ez k) (1)
0041
Firy < FL e VR
o denomR
with
L0+1
denomR = R*(1 — Wﬁ))‘l’ul/z(k}z)
{e+1
—a?(1 - (]CTQ))‘I’?HQUW) (119)

Combining (118) and (119), we obtain a relationship identi-
cal to the one that was found for the TE modes, namely

RF(R) — aF(a) =W (120)

H. CASE OF SPHERICAL CAVITY
In the case of a spherical cavity (a — 0 ), (119) provides the
same relationship (61) then in the case of T'F, i.e.:

(121)

76

I. EXTERIOR MODES OF SPHERES

Furthermore, if we study the exterior of spheres of radius a
when R — oo, the limit form (3) gives

2+1/2(kR) ~

2, 1 1 1 1
;(—5) GO cos(kR — 5577 -5t ¢)
2 1 1
R sin(kR — 5577— §7T—|—C) (122)

Introducing (122) into the boundary condition (77), we obtain

2 1 1
R sin(kR — §€7r 5Tt )
1 1 1 1
—2kR\/; 5) CoE cos(kR — §€7T — 57 + <)

2 1 1
+kR R sin(kR — 5677 — 57 +(¢) =0
(123)
or
2 . 1 1
\/WkRsm(kR—géﬂ'—iw—&—g“)NO (124)
)
. 1 1 . .
sin(kR — iﬂﬂ— §7r+C) ~0 if Rislarge (125)

and therefore also
1 1 ) .
cos(kR — 5677 — 57 +() ~+1 if Rislarge (126)

Using (3) again, given (125) and (126)

2
] kR) ~ —_ 127
e1/2(kR) iR (127
It can be deduced from (127) that
2
. 2 o
Rh—r>n<>0 R\IJEH/Q(kR) = (128)
By introducing (128) into (118) and (119), we obtain
mka(l — LEDNO2 (ka
ALk o L ST S
(129)
1
F(R) =~ EW if R— o0 (130)
Using (87), the expression (129) can be written
8ka 1— 4D W
F(a) » — k2a — if R—
T J42+1/2(ka) + Ye+1/2(ka) R
(131)

Although (130) is identical to (67), the difference between
(129) and (66), or between (131) and (67), should be noted.

VOL. 11, NO. 4, DECEMBER 2022
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IV. CONCLUSIONS

We have obtained analytical formulae expressing the energy
and losses of all modes of a spherical annular cavity. These
formulae apply to the case of spherical cavities by making
the inner radius tend toward 0. We also obtained simple
relationships between the thrust exerted by the modes and
their energy, as well as the relationships between the surface
losses of the modes and their energy.

V. EPILOGUE
It is known that each normal mode has at low temperature, an

energy 1

where 7 is Plank’s constant divided by 27. Given (9), we have

(132)

1
W = Zhek (133)

The spherical Casimir effect was calculated by Boyer [3]
by assuming that the thrust is the derivative of the energy
calculated by (133) with respect to the radius, i.e.

F(a) = —~ (134)
and
dw

We consider this to be a conjecture because, since the system
is not closed, conservation of energy cannot be invoked to
justify (134) and (135).

We assume that if relations (134) and (135) are valid for
the total of the modes, they must also be valid for each mode
separately. We should therefore have

dk
and
1. dk

A. CASE OF SPHERICAL CAVITY

In the interior case of a spherical cavity, conditions (22) and
(77) lead, given (2), to a relationship between k and R of the
form

kR =k (138)
where k is a different constant for each mode.
From (138), we derive
K
dk = — 2 dR (139)

Introducing (139) into (137) and again using (133) and (138),
we obtain

1 K K1 1. &
F = ——he(— — — = Zhe— 14
(R) 5 he( 2 —) = 5 h RE- hc o (140)
which is consistent with the Casimir’s hypothesis [3], and
1 1w
F = -hck— = — 141
(R) = ghekp =& (141)

which is consistent with (67) and (121).

VOL. 11, NO. 4, DECEMBER 2022

B. EXTERIOR MODES OF SPHERES (GENERALITIES)

However, in the case of a spherical annular cavity, the situ-
ation is different because the coefficient { varies with k£ and
therefore with a . We limit our analysis to the case where R
is very large. In this case, by (62) or (125), we have

d¢ = —Rdk (142)

C. EXTERIOR TE MODES OF SPHERES
Let us first consider the T'E modes. Condition (21) provides

aVyy p(ka)dk + k¥, o(ka)da

+[0Wyy1/2(ka)/0C]d¢ =0 (143)
Therefore, using (142),
{a\I’/z+1/2(ka) - R[aq’é+1/2(ka)/a<]}dk
= kWi, /s(ka)da (144)
k! ka
dk____ tr1/2(k0) (145)
da aVy,, jp(ka) — R[OV 14 2(ka)/OC]
and so, since R is large,
k! ka
dk _ t41/2(ka) (146)
da  R[OVy/5(ka)/OC]
By (136), we obtain
kW ka
F(a) = h dk _ 1. ex1/2(ka)
da 2 [8‘1’e+1/2(ka)/8d
v ka
w e+1/2( ) (147)

"R OV /2(ka)/0¢
Using (1), (147) becomes

E‘]é+1/2(ka) 08(C) — Y/, jp(ka) sin(C)

R Jyy12(ka) sin(C) + Yii1/2(ka) cos(C)
(148)

Introducing (25) and (26) in (148) and simplifying, one

obtains

F(a)=—

F(a) =
Ejé+1/2(ka)yz+l/2(k )_Yel+1/2(k )J£+1/2(ka)
R J22+1/2(k )JFYZH/Q(]‘: a)

(149)

The numerator of (149) is the Wronskian of Jy1/2(ka)
and Yyy1/2(ka). Its value is given in [6](9.1.16). So, (149)
becomes

w2 1
F(a (150)
(@)= R e T2 jp(ka) + Y2, ,(ka)
which is equal to (68).
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D. EXTERIOR T M MODES OF SPHERES
Consider now the 7'M modes. Condition (76) provides
a[Wiyq o (ka) + 2ka¥” o1 /9 (ka) + 29y o (ka)ldk
TE[T 1 o (ka) +2kaW” g1 o (ka) + 29 o (ka)]da
[0W 41 o (ka) [OC + 2kad TV}, (Ka) /OC)C = 0
(151)
or, using again (142), we obtain since R is large
dk  k 3\112“/2(/{@) +2kaV” 1y o (ka)
da  ROVyiq/o(ka)/0¢ + 2ka8\1/2+1/2(ka)/8(
Thus, introducing (152) into (136), we obtain using (133):
1117 3\112+1/2(ka) +2kaV” 14 2(ka)

R 0V /5(ka)/0C + 2ka8\11’e+1/2(ka)/8§“
(153)
From the differential equation [6](9.1.1) which define the
Bessel’s functions, we have

kaV” ;. 2(ka) + \112+1/2(ka)
1
= _%U‘;QQQ — (0 +1/2)*|W 41 /2 (ka)
Thus, (153) becomes
w \I’/z+1/2(ka) — &K% — (0+1/2)*]W; 1)

"R 0Wyp)5(ka)/OC + 2kad ¥, ,(ka)/OC
(155)

(152)

F(a)

(154)

F(a) =

Using (1), (155) becomes

Fla) = _K Numl
R [Jy1/2(ka)] sin € 4 [Yq1/2(ka)] cos ¢
(156)
with
Numl =

[Ji11/9(ka) = 2kalk?a® — (€ +1/2)?]Jp412(ka)] cos ¢
—[Y},1/o(ka) — 2kalk?a® — (£ +1/2)%)Yy 41 2(ka)] sin ¢

(157)
Introducing (80) and (81) in (156,157), we obtain
w Num?2
F(a) = ——= = (158)
R J} jp(ka) + Y jp(ka)
with
0+1/2)2
Num2 = [}y 5 k) —2fka — 200 )
[Yet1/2(ka) + 2ka§@’+1/2(ka)]
0+1/2)2
Wy jpthe) —2lka — EE )
[Jev1/2 +2kadyy jo(ka)]
(159)

or
Num?2 = [Jé+1/2(ka)Y£+1/2(ka) - Yz/+1/2(ka)‘]£+1/2(ka)]
—4[k%a® — (£ +1/2)%

[Jes1/2(ka)Y y jp(ka) = Yii1 o(ka)Jy jo(ka)l
(160)
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thus
Num2 = [4k%a? — 4(0 +1/2)% + 1]
[Jet1/2(ka)Y/ 1 j5(ka) = Yey1/2(ka) Ty jo(ka)]  (161)

and finally, replacing the Wronskian of (161) by its value
[6](9.1.16) and inserting the result in (158)

w8 k*a* —0(0+1)
Flay= V8 7 (162)
R mka J},, (ka) + Y7 5(ka)
or
L(6+1
Play= W8a__ 1- 5@292; (163)
Rom Ji p(ka) + Y7 5 (ka)

which is identical to (131).

E. CONCLUSION

The expressions of the thrust (61), (68), (121) and (131)
obtained by Maxwell theory are respectively identical to the
expressions (141), (150), (141) and (163) obtained using
for each normal mode the Boyer conjecture. In conclusion,
Boyer’s conjecture does fully apply to each eigenmode sep-
arately, at least for the limit cases implicated in spherical
Casimir effect.

F. REMARK

When R — oo, the thrust (150) or (163) of one mode
tends to 0 . However, the number of modes becomes very
dense. Equation (62) or (125) shows that the gap between
two consecutive modes is only

Ak =7/R (164)

Multiplying (150) or (163) by the limit of the mode density
R/7 , inverse of (164), one sees that the limit of a sum of
modes, i.e. [ F(a)£dk is nonzero.

APPENDIX: SOME INTEGRALS
We use formulas demonstrated in the preliminary work [4]

2

- W)\I/?,(ax)] +cst

2
/x\Il?,(ax)dx = %[\Ilf(am) +(1
(165)

JH = 1w )+ L )

— 2k (k) + \I/,,(l-cr)][%\llﬁ,(kr) + %\Ily(kr)]

k2 v2—-1/4

+[ 5~ T]\Ilf(kr)+cst (166)
Toood o LU+ (L4 m)
/0 sm@[@Pé (cos 0)]d6 = [é+ 72 m| (E—m?!
° (£+m)! on
7Tmi a2, U+ m)!
; sinﬂ[Pé (cos0)])“do = = m) (168)
From [6](8.14.13), it is easy to obtain also
T : m 2 _ (€+m)'
/0 sin O[P;" (cos 0)]°df = @+ 12){C —m)! (169)
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