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ABSTRACT This paper develops analytical expressions of energy, thrust and losses for all electromag-
netics normal modes in spherical and annular spherical cavities. The implications on the spherical Casimir
effect are also investigated.
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I. INTRODUCTION

THE energy and losses of spherical cavities were studied
in [1] for two of the modes and in [2] for six of them. In

this paper, we extend the analytical calculation to all modes,
both for spherical cavities and for annular spherical cavities.
We add the calculation of the thrust exerted on the walls of
the cavities, with the aim of being able to use the present
study for a more direct calculation of the spherical Casimir
effect than the classical calculation [3].

A. PRELIMINARY WORK
The present study required the development of new formulas
for integrals containing squares of special functions. These
formulas were established in a preliminary work [4] and
given here in appendix.

B. CHOICE OF THE EXPRESSIONS OF FIELDS
The explicit expression of the spherical electromagnetic wave
fields can be obtained by following the detailed method
provided in [5]. The result is given in [2] in the particular
case where the domain considered includes the origin. To
obtain a general formulation, it is sufficient to replace in the
expressions provided in [2] the first kind Bessel function by
a combination of these functions with the second kind Bessel
function [4]. We will write this combination here in the form:

Ψν(x) = Jν(x) cos(ζ)− Yν(x) sin(ζ) (1)

where ζ is any parameter in the range [0, π[. In the particular
case of a spherical cavity, the second term of (1) must be zero
to avoid having a singularity of the fields at the center of the
cavity. In this case, we must therefore have

ζ = 0 and thus Ψν(x) = Jν(x) (2)

The writing (1) is interesting because, for large values of x,
using the asymptotic expansions [6](9.2.1 and 9.2.2) of Jν(x)
and Yν(x), we obtain the asymptotic expansion

Ψν(x) ≈
√

2

πx
cos(x− 1

2
νπ− 1

4
π+ ζ) if x is large (3)

In this paper, we use Bessel functions of fractional order ν =
` + 1/2 with ` ∈ Z. These functions multiplied by

√
2π/x

are most commonly known as spherical Bessel functions.

C. NOTATIONS
We use the spherical coordinates r , θ and ϕ which form a
direct system for this order. The components of the vectors
are given in the orthonormal reference frame associated with
these coordinates. The angle dependence of the waves with
respect to θ and ϕ is fixed by two integers which take
respectively the values:

` = 1, 2, ....,∞ (4)

and
m = 0, 1, ....., ` (5)

The dependency on the coordinate ϕ is set by the number m
in the form of cos(mϕ) and sin(mϕ). When m > 1, we can
distinguish two very similar waves obtained by permuting
these two functions, i.e., an even wave and an odd wave. In
what follows, we will consider only one of these waves. A
distinction is made between TE waves (transverse electric)
and TM waves (transverse magnetic).

We study the normal modes of annular spherical cavities,
i.e., between two concentric conducting spheres of radius a
and R:

0 < a < r < R <∞ (6)
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The case of spherical cavities will be obtained in the limit
a → 0. In a cavity, in addition to the numbers ` and m, one
introduces a number

n = 1, 2, ....∞ (7)

to number the normal TE or TM modes in order of increasing
frequency. The modes are therefore all completely defined,
apart from parity, by the designation TE`mn or TM`mn. In
the following, the time dependence in not made explicit. To
specify a 90° phase, we use the complex number

j =
√
−1 (8)

The spatial dependence will be written using the wave num-
ber k which is related to the pulsation ω by the relation

k =
ω

c
(9)

where c is the speed of light in the considered medium

c =
1
√
εµ

(10)

so
k2 = ω2εµ (11)

To simplify the writing, we also use the coefficient

M(m) = 1 if m 6= 0 and M(m) = 2 if m = 0 (12)

commonly known as Neumann factor with another notation.
With this coefficient, we can write without worrying about
the value of m ∫ 2π

0

cos2(mϕ) = Mπ (13)

and ∫ 2π

0

m sin2(mϕ) = mMπ (14)

II. STUDY OF MODES TE

A. EXPRESSION OF FIELDS
Apart from parity, the fields of waves TE`mn are of the form
given in [2], i.e., after generalization:

Er = 0 (15)

Eθ =
mA√
r sin θ

Ψ`+1/2(kr)Pm` (cos(θ)) sin(mϕ) (16)

Eϕ =
A√
r

Ψ`+1/2(kr)
d

dθ
[Pm` (cos θ)] cos(mϕ) (17)

and

Hr =
`(`+ 1)A

jωµr3/2
Ψ`+1/2(kr)Pm` (cos θ)] cos(mϕ) (18)

Hθ =
A

jωµr

d

dr
[
√
rΨ`+1/2(kr)]

d

dθ
[Pm` (cos θ)] cos(mϕ)

(19)

Hϕ =
mA

jωµr sin θ

d

dr
[
√
rΨ`+1/2(kr)]Pm` (cos θ) sin(mϕ)

(20)

B. BOUNDARY CONDITIONS
Since the walls of the cavity are perfectly conductive, in r =
a and r = R, the tangential component of the electric field
and the radial component of the magnetic field must be zero.
It is immediately clear that these conditions are satisfied if

Ψ`+1/2(ka) = 0 (21)

and
Ψ`+1/2(kR) = 0 (22)

Considering (1), equations (21) and (22) can be written:

tan(ζ) =
J`+1/2(ka)

Y`+1/2(ka)
(23)

and
tan(ζ) =

J`+1/2(kR)

Y`+1/2(kR)
(24)

Identifying (23) and (24) gives an equation defining the
values of k. That equation is equivalent with the similar
condition given in [3]. The two conditions (21) (22) are thus
satisfied for a discrete set of pairs (k, ζ). From (23) and (24),
we also obtain, with ±1 = sgn[J`+1/2(ka)]:

cos(ζ) =
±Y`+1/2(ka)√

J2
`+1/2(ka) + Y 2

`+1/2(ka)
(25)

sin(ζ) =
±J`+1/2(ka)√

J2
`+1/2(ka) + Y 2

`+1/2(ka)
(26)

and, with ±1 = sgn[J`+1/2(kR)]:

cos(ζ) =
±Y`+1/2(kR)√

J2
`+1/2(kR) + Y 2

`+1/2(kR)
(27)

sin(ζ) =
±J`+1/2(kR)√

J2
`+1/2(kR) + Y 2

`+1/2(kR)
(28)

We can obtain an interesting expression of the derivative
Ψ′
`+1/2(ka). Using (1), we have

Ψ′
`+1/2(ka) = J ′

`+1/2(ka) cos ζ − Y ′
`+1/2(ka) sin ζ (29)

Introducing (25) and (26) in (29), it comes

Ψ′
`+1/2(ka) =

∓
J`+1/2(ka)Y ′

`+1/2(ka)− J ′
`+1/2(ka)Y`+1/2(ka)√

J2
`+1/2(ka) + Y 2

`+1/2(ka)
(30)

The numerator of (30) is a Wronskian. Using its expression
[6](9.1.16)(9.1.27), we obtain

Ψ′
`+1/2(ka) = ∓ 2

πka

1√
J2
`+1/2(ka) + Y 2

`+1/2(ka)
(31)

Of course, one has the similar expression for r = R :

Ψ′
`+1/2(kR) = ∓ 2

πkR

1√
J2
`+1/2(kR) + Y 2

`+1/2(kR)
(32)
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C. CALCULATION OF ENERGY VIA THE ELECTRIC
FIELD
The simplest way to calculate the energy of a TE normal
mode is to do the calculation at the moment when the
magnetic field is zero, since at that moment all energy is in
electric form and the electric field (15) (16) (17) has only two
non-zero components, namely (16) and (17). By introducing
(15), (16) and (17) into the expression for electric energy

W =

∫ ∫ ∫
ε

2
E2r2 sin θdrdθdϕ (33)

and performing the integrals with respect to ϕ using (13) and
(14), we obtain

W =
επA2

2
M

∫ ∫
{ m2

r sin2 θ
Ψ2
`+1/2(kr)[Pm` (cos θ)]2

+
1

r
Ψ2
`+1/2(kr)[

d

dθ
Pm` (cos θ)]2}r2 sin θdrdθ

(34)
or

W =
επA2

2
M [

∫ R

a

rΨ2
`+1/2(kr)dr]∫ π

0

{ m
2

sin θ
[Pm` (cos θ)]2 + sin θ[

d

dr
Pm` (cos θ)]2}dθ (35)

The integral with respect to θ is obtained using (168) and
(167).

W =
επA2

2
M [

∫ R

a

rΨ2
`+1/2(kr)dr]

(m+
`(`+ 1)

`+ 1/2
−m)

(`+m)!

(`−m)!
(36)

or

W =
επA2

2
M [

∫ R

a

rΨ2
`+1/2(kr)dr]

`(`+ 1)

(`+ 1/2)

(`+m)!

(`−m)!
(37)

The integral with respect to r is a Lommel integral. It is done
by using (165), then simplifying the result given the boundary
conditions (21) (22). We obtain

W =
επA2

2
M [R2Ψ′2

`+1/2(kR)− a2Ψ′2
`+1/2(ka)]

`(`+ 1)

`+ 1/2

(`+m)!

(`−m)!
(38)

D. CALCULATION OF ENERGY VIA THE MAGNETIC
FIELD
The energy expression can also be obtained by integrating
the magnetic energy taken at the moment when the electric
field cancels. The calculation is more difficult than in the
previous paragraph because the magnetic field has three non-
zero components. However, we will carry it out for the sake
of verification and mathematical interest. By introducing the
imaginary part of (18) (19) and (20) in the expression of the
magnetic energy

W =

∫ ∫ ∫
µ

2
H2r2 sin θdrdθdϕ (39)

and performing the integrals with respect to ϕ using (13) and
(14), we obtain

W =
πA2

2ω2µ
M

∫ ∫
{`

2(`+ 1)2

r3
Ψ2
`+1/2(kr)[Pm` (cos θ)]2

+
1

r2
{ d
dr

[
√
rΨ`+1/2(kr)]}2dr[ d

dθ
Pml (cos θ)]2

+
m2

r2 sin2 θ

{ d
dr

[
√
rΨ`+1/2(kr)]}2[Pml (cos θ)]2}r2 sin θdrdθ

(40)

or, using (11)

W =
επA2

2k2
M

{`2(`+ 1)2
∫ R

a

1

r
Ψ2
`+1/2(kr)dr

∫ π

0

sin θ[Pm` (cos θ)]2dθ

+

∫ R

0

{ d
dr

[
√
rΨ`+1/2(kr)]}2dr

∫ π

0

sin θ[
d

dθ
Pm` (cos θ)]2dθ

+

∫ R

a

{ d
dr

[
√
rΨ`+1/2(kr)]}2dr

∫ π

0

m2

sin θ
[Pm` (cos θ)]2dθ}

(41)

Performing the integrals with respect to θ , we obtain by (169)
(167) and (168):

W =
επA2

2k2
M{`2(`+ 1)2

∫ R

a

1

r
Ψ2
`+1/2(kr)dr

1

`+ 1/2

+

∫ R

a

{ d
dr

[
√
rΨ`+1/2(kr)]}2dr[`(`+ 1)

`+ 1/2
−m]

+

∫ R

a

{ d
dr

[
√
rΨ`+1/2(kr)]}2dr m} (`+m)!

(`−m)!
(42)

or

W =
επA2

2k2
M

`(`+ 1)(`+m)!

(`+ 1/2)(l −m)!∫ R

a

{`(`+ 1)
1

r
Ψ2
`+1/2(kr) + { d

dr
[sqrtrΨ`+1/2(kr)]}2}dr

(43)

The integral in (43) is achieved using (166). We obtain

W =
επA2

2k2
M

`(`+ 1)(`+m)!

(`+ 1/2)(`−m)!

{[2krΨ′
`+1/2(kr) + Ψ`+1/2(kr)]

[
kr

4
Ψ′
`+1/2(kr) +

3

8
Ψ`+1/2(kr)]

+[
k2r2

2
− `(`+ 1)

2
]Ψ2
`+1/2(kr)}|Ra (44)

Let using the boundary conditions (21) and (22)

W =
επA2

2k2
M

`(`+ 1)(`+m)!

(`+ 1/2)(`−m)!

[
k2R2

2
Ψ′
`+1/2(kR)− k2a2

2
Ψ′
`+1/2(ka)] (45)
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and finally

W =
επA2

4
M

`(`+ 1)(`+m)!

(`+ 1/2)(`−m)!

[R2Ψ′2
`+1/2(kR)− a2Ψ′2

`+1/2(ka)] (46)

which is indeed identical to (38).

E. THRUST OF NORMAL MODES ON THE CAVITY
WALLS
The thrust of normal modes on the walls at r = a and
r = R is purely magnetic since the electric field (15) (16)
(17) cancels out at these points by (21) and (22). Since the
magnetic field is purely tangential (19) (20), the peak force
density is, by virtue of Maxwell tensor:

1

2
µ(H2

θ +H2
ϕ) (47)

As the magnetic field varies sinusoidally in time, a factor 1
2

is introduced to account for the time average. The thrust, i.e.,
the integral of the force density, thus becomes, by introducing
(19) and (20) in (47) divided by two and performing the
integrals with respect to ϕ using (13) and (14):

F =
πA2

4ω2µ
M{1

r

d

dr
[
√
rΨ`+1/2(kr)]}2∫

{ d
dθ

[Pm` (cos θ)]}2r2 sin θdθ

+
πA2

4ω2µ
M{1

r

d

dr
[
√
rΨ`+1/2(kr)]}2∫

m2

sin2 θ
{[Pm` (cos θ)]}2r2 sin θdθ

(48)

By performing the derivatives with respect to r and using the
boundary conditions (21) (22), as well as (11), the thrust is
written

F =
πεA2

4k2
M{1

r
k
√
rΨ′

`+1/2(kr)}2∫
{ d
dθ

[Pm` (cos θ)]}2r2 sin θdθ

+
πεA2

4k2
M{1

r
k
√
rΨ′

`+1/2(kr)}2∫
m2

sin θ
{[Pm` (cos θ)]}2r2dθ (49)

or

F =
πεA2

4
MrΨ′2

`+1/2(kr)

∫ π

0

{ d
dθ

[Pm` (cos θ)]}2 sin θdθ

+
πεA2

4
MrΨ′2

`+1/2(kr)

∫ π

0

m2

sin θ
[Pm` (cos θ)]2dθ

(50)

Performing the integrals with respect to θ , we obtain by
(167) and (168)

F =
πεA2

4
MrΨ′2

`+1/2(kr)
`(`+ 1)

`+ 1/2

(`+m)!

(`−m)!
(51)

By specifying (51) for r = a and r = R , and then comparing
the result with (38), we can write

F (a) =
aΨ′2

`+1/2(ka)

R2Ψ′2
`+1/2(kR)− a2Ψ′2

`+1/2(ka)
W (52)

F (R) =
RΨ′2

`+1/2(kR)

R2Ψ′2
`+1/2(kR)− a2Ψ′2

`+1/2(ka)
W (53)

Combining (52) and (53), we have the remarkable relation-
ship

RF (R)− aF (a) = W (54)

F. LOSSES DUE TO SURFACE CURRENTS
At the boundaries of the cavity, a surface current arises
which, by Ampère’s law, must be equal to the tangential
component of the magnetic field. If the material that bounds
the cavity is not perfectly conductive, but conductive enough
for the losses to be small, the losses can be calculated by
keeping the expressions (16) (17) for the field of the un-
damped normal modes. Surface currents encounter a surface
resistance Rs which is

Rs =
1

σδ
(55)

where σ is the conductivity of the metal and δ the skin depth:

δ =

√
2

ωµσ
(56)

The peak power loss density is therefore given by

Rs(H
2
θ +H2

ϕ) (57)

The comparison of (57) and (47) shows that the calculations
in the previous paragraph allow the losses to be calculated. It
is sufficient to multiply the results (52) (53) by the fraction
2Rs/µ That is, by (55), (56) and (9),

2
Rs
µ

=
2

σµδ
=

√
2ω

σµ
=

√
2kc

σµ
(58)

whose value can be different in r = a and in r = R if the
conductivity σ is not the same for both walls.

G. CASE OF SPHERICAL CAVITY
In the case of a spherical cavity, a = 0 and (52) is irrelevant.
The continuity of the fields at the origin imposes

Ψ`+1/2(kr) = J`+1/2(kr) (59)

Using the limit form [6](9.1.7), it is easy to check that

lim
a→0

aΨ′2
`+1/2(ka) = 0 (60)

By introducing (60) into (54), we see that the thrust (53)
reduces to

F (R) =
W

R
if a = 0 (61)
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H. EXTERIOR MODES OF SPHERES
Furthermore, if we study the exterior of spheres of radius a
when R → ∞, the asymptotic form (3) introduced in the
boundary condition (22) shows that we must have

cos(kR− 1

2
`π− 1

2
π+ ζ) = 0 if R is large (62)

and therefore also

sin(kR− 1

2
`π− 1

2
π+ζ) = ±1 if R is large (63)

Using (3), (62) and (63), we obtain

Ψ′
`+1/2(kR) ≈ ±

√
2

πkR
if R is large (64)

It can be deduced that

lim
R→∞

RΨ′2
`+1/2(kR) =

2

πk
(65)

Introducing (65) into (52) and (53), we obtain

F (a) ≈
πkaΨ′2

`+1/2(ka)

2R
W if R→∞ (66)

F (R) ≈ W

R
if R→∞ (67)

Using (31), equation (66) can be written as

F (a) ≈ 2

πka

1

J2
`+1/2(ka) + Y 2

`+1/2(ka)

W

R
if R→∞

(68)

III. STUDY OF MODES TM

A. EXPRESSION OF THE FIELDS
Apart from parity, the wave fields TM`mn are of the form
given in [2], i.e., after generalization:

Er =
`(`+ 1)B

jωεr3/2
Ψ`+1/2(kr)Pm` (cos θ) cos(mϕ) (69)

Eθ =
B

jωεr

d

dr
[
√
rΨ`+1/2(kr)]

d

dθ
[Pm` (cos θ)] cos(mϕ)

(70)

Eϕ =
mB

jωεr sin θ

d

dr
[
√
rΨ`+1/2(kr)]Pm` (cos θ) sin(mϕ)

(71)
and

Hr = 0 (72)

Hθ =
mB√
r sin θ

Ψ`+1/2(kr)Pm` (cos(θ)) sin(mϕ) (73)

Hϕ =
B√
r

Ψ`+1/2(kr)
d

dθ
[Pm` (cos θ)] cos(mϕ) (74)

B. BOUNDARY CONDITIONS
Since the walls of the cavity are perfectly conductive, in r =
a and r = R the tangential component of the electric field
and the radial component of the magnetic field must be zero.
It is immediately clear that these conditions are satisfied if

d

dr
[
√
rΨ`+1/2(kr)] = 0 for r = a and for r = R.

(75)
In order to shorten the writings, let us define for any function
F (x): F̄ (x) = F (x) + 2xF ′(x). Then, by performing the
derivation of (75), we obtain the conditions:

Ψ`+1/2(ka) + 2kaΨ′
`+1/2(ka) = Ψ̄`+1/2(ka) = 0 (76)

and

Ψ`+1/2(kR) + 2kRΨ′
`+1/2(kR) = Ψ̄`+1/2(kR) = 0 (77)

Considering (1), equations (76) and (77) can be written:

tan(ζ) =
J̄`+1/2(ka)

Ȳ`+1/2(ka)
(78)

and

tan(ζ) =
J̄`+1/2(kR)

Ȳ`+1/2(kR)
(79)

Identifying (78) and (79) gives an equation defining the
values of k. Thus, the two conditions (76) (77) are satisfied
for a discrete set of pairs (k, ζ). From (78) and (79), we also
obtain, with ±1 = sgn[J̄`+1/2(ka)]

cos(ζ) =
±Ȳ`+1/2(ka)√

J̄2
`+1/2(ka) + Ȳ 2

`+1/2(ka)
(80)

sin(ζ) =
±J̄`+1/2(ka)√

J̄2
`+1/2(ka) + Ȳ 2

`+1/2(ka)
(81)

And, with ±1 = sgn[J̄`+1/2(kR)]

cos(ζ) =
±Ȳ`+1/2(kR)√

J̄2
`+1/2(kR) + Ȳ 2

`+1/2(kR)
(82)

sin(ζ) =
±J̄`+1/2(kR)√

J̄2
`+1/2(kR) + Ȳ`+1/2(kR)

(83)

We can obtain an interesting expression of Ψ`+1/2(ka).
Using (1), we have

Ψ`+1/2(ka) = J`+1/2(ka) cos(ζ)− Y`+1/2(ka) sin(ζ)
(84)

Introducing (80) and (81) in (84), it comes

Ψ`+1/2(ka)

= ±
J`+1/2(ka)[Ȳ`+1/2(ka)]− Y`+1/2(ka)[J̄`+1/2(ka)]√

J̄2
`+1/2(ka) + Ȳ 2

`+1/2(ka)

(85)
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or

Ψ`+1/2(ka)

= ±2ka
J`+1/2(ka)Y ′

`+1/2(ka)− Y`+1/2(ka)J ′
`+1/2(ka)√

J̄2
`+1/2(ka) + Ȳ 2

`+1/2(ka)

(86)

The numerator of (86) is a Wronskian. Using its expression
[6](9.1.16)(9.1.27), we obtain

Ψ`+1/2(ka) = ± 4

π

1√
J̄2
`+1/2(ka) + Ȳ 2

`+1/2(ka)
(87)

Of course, one has the similar expression for r = R:

Ψ`+1/2(kR) = ± 4

π

1√
J̄2
`+1/2(kR) + Ȳ 2

`+1/2(kR)
(88)

C. ENERGY CALCULATION VIA THE MAGNETIC FIELD
The simplest way to calculate the energy of a TM normal
mode is to do the calculation at the moment when the
electric field is zero, since at that moment all the energy is in
magnetic form and the magnetic field (72) (73) (74) has only
two non-zero component. By introducing these components
into the expression for the magnetic energy (39), i.e.

W =

∫ ∫ ∫
µ

2
H2r2 sin θdrdθdϕ (89)

and performing the integrals with respect to ϕ using (13) and
(14), we obtain

W =
µπB2

2
M

∫ ∫
{ m2

r sin2 θ
Ψ2
`+1/2(kr)[Pm` (cos θ)]2

+
1

r
Ψ2
`+1/2(kr)[

d

dθ
Pm` (cos θ)]2}r2 sin θdrdθ

(90)

or

W =
µπB2

2
M [

∫ R

a

rΨ2
`+1/2(kr)dr]∫ π

0

{ m
2

sin θ
[Pm` (cos θ)]2 + sin θ[

d

dθ
Pm` (cos θ)]2}dθ (91)

The integral with respect to θ is obtained using (168) and
(167).

W =
µπB2

2
M

(`+m)!

(`−m)!

[

∫ R

a

rΨ2
`+1/2(kr)dr]{m+

`(`+ 1)

`+ 1/2
−m} (92)

W =
µπB2

2
M [

∫ R

a

rΨ2
`+1/2(kr)dr]

`(`+ 1)

`+ 1/2

(`+m)!

(`−m)!
(93)

The integral with respect to r is a Lommel integral. It is
performed using (165), We obtain

W =
µπB2

2
M
`(`+ 1)

`+ 1/2

(`+m)!

(`−m)!

{R
2

2
[Ψ′2
`+1/2(kR) + (1− (`+ 1/2)2

k2R2
)Ψ2

`+1/2(kR)]

−a
2

2
[Ψ′2
`+1/2(ka) + (1− (`+ 1/2)2

k2a2
Ψ2
`+1/2(ka)]} (94)

The derivatives can be eliminated by the boundary conditions
(76) (77), and we obtain

W =
µπB2

2
M
`(`+ 1)

`+ 1/2

(`+m)!

(`−m)!

[
R2

2
(1− (`+ 1/2)2

k2R2
− 1

4k2R2
)Ψ2

`+1/2(kR)

−a
2

2
(1− (`+ 1/2)2

k2a2
+

1

4k2a2
)Ψ2

`+1/2(ka)] (95)

or

W =
µπB2

4
M
`(`+ 1)

`+ 1/2

(`+m)!

(`−m)!

[R2(1− `(`+ 1)

k2R2
)Ψ2

`+1/2(kR)

−a2(1− `(`+ 1)

k2a2
)Ψ2

`+1/2(ka)] (96)

D. CALCULATING OF ENERGY VIA THE ELECTRIC
FIELD

The energy expression can also be obtained by integrating the
electrical energy taken at the moment where the magnetic
field is zero. The calculation is more difficult than in the
previous paragraph because the electric field has three non-
zero components. However, we will do it for the sake of
overlap. By introducing the imaginary part of the electric
field expression (69) (70) (71) into the electric expression
(33), i.e.

W =

∫ ∫ ∫
ε

2
E2r2 sin θdrdθdϕ (97)

and performing the integrals with respect to ϕ using (13) and
(14), we obtain

W =
πB2

2ω2ε
M

∫ ∫
{`

2(`+ 1)2

r
Ψ2
`+1/2(kr)[Pm` (cos θ)]2

+{ d
dr

[
√
rΨ`+1/2(kr)]}2[

d

dθ
Pm` (cos θ)]2

+
m2

sin2 θ

d

dr
[
√
rΨ`+1/2(kr)]}2[Pm` (cos θ)]2} sin θdrdθ

(98)
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or, using (11) and performing the integrals with respect to θ
by (169) (167) and (168)

W =
µπB2

2k2
M{`2(`+ 1)2

∫ R

a

1

r
Ψ2
`+1/2(kr)dr

1

`+ 1/2

+

∫ R

a

{ d
dr

[
√
rΨ`+1/2(kr)]}2dr[`(`+ 1)

`+ 1/2
−m]

+

∫ R

a

{ d
dr

[
√
rΨ`+1/2(kr)]}2dr m} (`+m)!

(`−m)!
(99)

That is, if we combine the last two integrals

W =
µπB2

2k2
M

`(`+ 1)(`+m)!

(`+ 1/2)(`+m)!∫ R

a

{`(`+ 1)
1

r
Ψ2
`+1/2(kr)dr + { d

dr
[
√
rΨ`+1/2(kr)]}2}dr

(100)

The integral in (100) is solved using (166). We obtain

W =
µπB2

2k2
M

`(`+ 1)(`+m)!

(`+ 1/2)(`+m)!

{Ψ̄`+1/2(kr)[
kr

4
Ψ′
`+1/2(kr) +

3

8
Ψ`+1/2(kr)]

+[
k2r2

2
− `(`+ 1

2
]Ψ2
`+1/2(kr)}|Ra (101)

Let, using the boundary conditions (76) and (77)

W =
µπB2

2k2
M
`(`+ 1)

`+ 1/2

(`+m)!

(`+m)!

[(
k2R2

2
− `(`+ 1

2
)Ψ2

`+1/2(kR)

−(
k2a2

2
− `(`+ 1)

2
)Ψ2

`+1/2(ka)] (102)

and finally

W =
µπB2

4
M
`(`+ 1)

`+ 1/2

(`+m)!

(`+m)!

[R2(1− `(`+ 1

k2R2
)Ψ2

`+1/2(kR)

−a2(1− `(`+ 1

k2a2
)Ψ2

`+1/2(ka)] (103)

which is indeed identical to (96).

E. CALCULATION OF THE MAGNETIC THRUST
In the case of TM modes, there is at the boundaries both a
tangential magnetic field component and a normal electric
field component. The thrust due to the magnetic field is
directed outwards as the thrust in the case of TE modes. In
contrast, the electric field gives rise to an inward pull. The
resulting thrust can therefore be written as

F = Fµ − Fε (104)

We will calculate the two right-hand terms separately because
only the calculation of Fµ can be reused for the calculation of

losses. Since the magnetic field is purely tangential, the force
density is, by virtue of Maxwell’s tensor, given by (47), i.e.:

1

2
µ(H2

θ +H2
ϕ) (105)

As the magnetic field varies sinusoidally in time, a factor
1/2 must be introduced to account for the time average. The
integral of the force density (105) divided by two becomes,
introducing (73) et (74) and performing the integrals accord-
ing to ϕ using (13) and (14):

Fµ =
µπB2

4
M

1

r
Ψ2
`+1/2(kr)

{
∫

m2

sin2 θ
[Pm` (cos θ)]2 + { d

dθ
[Pm` (cos θ)]}2}r2 sin θdθ

(106)

The integral with respect to θ is obtained using (167) and
(168).

Fµ =
µπB2

4
MrΨ2

`+1/2(kr)(m+
`(`+ 1)

`+ 1/2
−m)

(`+m)!

(`−m)!
(107)

so

Fµ(a) =
µπB2

4
MaΨ2

`+1/2(ka)
`(`+ 1)

(`+ 1/2)

(`+m)!

(`−m)!
(108)

Fµ(R) =
µπB2

4
MRΨ2

`+1/2(kR)
`(`+ 1)

(`+ 1/2)

(`+m)!

(`−m)!
(109)

F. LOSSES CALCULATION
As in the case of the TE modes, to obtain the expression for
the losses it is sufficient to multiply the expression for the
magnetic thrusts (108) or (109) as the case may be, by the
factor (58), i.e.:

2
Rs
µ

=
2

σµδ
=

√
2ω

σµ
=

√
2kc

σµ
(110)

G. CALCULATION OF THE ELECTRIC PULL AND THE
RESULTING THRUST
In the case of TM mode, the radial component of the electric
field is not zero at the boundaries. Therefore, the Maxwell
tensor gives a force density facing the interior of the cavity,
which is

1

2
εE2

r (111)

As the electric field varies sinusoidally in time, a factor 1/2
is introduced to account for the time average. Introducing
(69) in (111) divided by two and performing the integral with
respect to ϕ by (13), we obtain

Fe(r) =
π

4

`2(`+ 1)
2
B2

ω2ε
M

1

r
Ψ2
`+1/2(kr)∫

[Pm` (cos θ)]2 sin(θ)dθ (112)
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The integral with respect to θ is performed by (169). Using
(11), we obtain

Fe(r) =
π

4

`2(`+ 1)
2
µB2

k2
M

1

r
Ψ2
`+1/2(kr)

(`+m)!

(`+ 1/2)(`−m)!
(113)

thus

Fe(a) =
π

4

µB2

k2
M

1

r
Ψ2
`+1/2(ka)

`2(`+ 1)
2

(`+ 1/2)

(`+m)!

(`−m)!
(114)

and

Fe(R) =
π

4

µB2

k2
M

1

r
Ψ2
`+1/2(kR)

`2(`+ 1)
2

(`+ 1/2)

(`+m)!

(`−m)!
(115)

To find the expression for the resultant thrust, it is sufficient
to introduce (108) and (114) or (109) and (115) into (104).
This gives us,

F (a) =
µπB2

4
Ma(1− `(`+ 1)

k2a2
)Ψ2

`+1/2(ka)

`(`+ 1)

(`+ 1/2)

(`+m)!

(`−m)!
(116)

F (R) =
µπB2

4
Ma(1− `(`+ 1)

k2a2
)Ψ2

`+1/2(kR)

`(`+ 1)

(`+ 1/2)

(`+m)!

(`−m)!
(117)

Comparing the expressions (116) or (117) with those of
energy (96), we see that we have:

F (a) =
a(1− `(`+1)

k2a2 )Ψ2
`+1/2(ka)

denoma
W

with

denoma = R2(1− `(`+ 1)

k2R2
)Ψ2

`+1/2(kR)

−a2(1− `(`+ 1)

k2a2
)Ψ2

`+1/2(ka) (118)

F (R) =
R(1− `(`+1)

k2a2 )Ψ2
`+1/2(kR)

denomR
W

with

denomR = R2(1− `(`+ 1)

k2R2
)Ψ2

`+1/2(kR)

−a2(1− `(`+ 1)

k2a2
)Ψ2

`+1/2(ka) (119)

Combining (118) and (119), we obtain a relationship identi-
cal to the one that was found for the TE modes, namely

RF (R)− aF (a) = W (120)

H. CASE OF SPHERICAL CAVITY
In the case of a spherical cavity (a→ 0 ), (119) provides the
same relationship (61) then in the case of TE, i.e.:

F (R) =
W

R
(121)

I. EXTERIOR MODES OF SPHERES
Furthermore, if we study the exterior of spheres of radius a
when R→∞ , the limit form (3) gives

Ψ′
`+1/2(kR) ≈√

2

π
(−1

2
)

1√
(kR)3

cos(kR− 1

2
`π − 1

2
π + ζ)

−
√

2

πkR
sin(kR− 1

2
`π − 1

2
π + ζ) (122)

Introducing (122) into the boundary condition (77), we obtain√
2

πkR
sin(kR− 1

2
`π − 1

2
π + ζ)

−2kR

√
2

π
(−1

2
)

1√
(kR)3

cos(kR− 1

2
`π − 1

2
π + ζ)

+kR

√
2

πkR
sin(kR− 1

2
`π − 1

2
π + ζ) ≈ 0

(123)

or √
2

πkR
sin(kR− 1

2
`π − 1

2
π + ζ) ≈ 0 (124)

so

sin(kR− 1

2
`π − 1

2
π + ζ) ≈ 0 if R is large (125)

and therefore also

cos(kR− 1

2
`π − 1

2
π + ζ) ≈ ±1 if R is large (126)

Using (3) again, given (125) and (126)

Ψ`+1/2(kR) ≈ ±
√

2

πkR
(127)

It can be deduced from (127) that

lim
R→∞

RΨ2
`+1/2(kR) =

2

πk
(128)

By introducing (128) into (118) and (119), we obtain

F (a) ≈
πka(1− `(`+1)

k2a2 )Ψ2
`+1/2(ka)

2R
W if R→∞

(129)

F (R) ≈ 1

R
W if R→∞ (130)

Using (87), the expression (129) can be written

F (a) ≈ 8ka

π

1− `(`+1)
k2a2

J̄2
`+1/2(ka) + Ȳ 2

`+1/2(ka)

W

R
if R→∞

(131)
Although (130) is identical to (67), the difference between
(129) and (66), or between (131) and (67), should be noted.
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IV. CONCLUSIONS
We have obtained analytical formulae expressing the energy
and losses of all modes of a spherical annular cavity. These
formulae apply to the case of spherical cavities by making
the inner radius tend toward 0. We also obtained simple
relationships between the thrust exerted by the modes and
their energy, as well as the relationships between the surface
losses of the modes and their energy.

V. EPILOGUE
It is known that each normal mode has at low temperature, an
energy

W =
1

2
~ω (132)

where ~ is Plank’s constant divided by 2π. Given (9), we have

W =
1

2
~ck (133)

The spherical Casimir effect was calculated by Boyer [3]
by assuming that the thrust is the derivative of the energy
calculated by (133) with respect to the radius, i.e.

F (a) =
dW

da
(134)

and
F (R) = −dW

dR
(135)

We consider this to be a conjecture because, since the system
is not closed, conservation of energy cannot be invoked to
justify (134) and (135).

We assume that if relations (134) and (135) are valid for
the total of the modes, they must also be valid for each mode
separately. We should therefore have

F (a) =
1

2
~c
dk

da
(136)

and
F (R) = −1

2
~c
dk

dR
(137)

A. CASE OF SPHERICAL CAVITY
In the interior case of a spherical cavity, conditions (22) and
(77) lead, given (2), to a relationship between k and R of the
form

kR = κ (138)

where κ is a different constant for each mode.
From (138), we derive

dk = − κ

R2
dR (139)

Introducing (139) into (137) and again using (133) and (138),
we obtain

F (R) = −1

2
~c(− κ

R2
) =

1

2
~c
κ

R

1

R
=

1

2
~c

κ

R2
(140)

which is consistent with the Casimir’s hypothesis [3], and

F (R) =
1

2
~ck

1

R
=
W

R
(141)

which is consistent with (67) and (121).

B. EXTERIOR MODES OF SPHERES (GENERALITIES)
However, in the case of a spherical annular cavity, the situ-
ation is different because the coefficient ζ varies with k and
therefore with a . We limit our analysis to the case where R
is very large. In this case, by (62) or (125), we have

dζ = −Rdk (142)

C. EXTERIOR TE MODES OF SPHERES
Let us first consider the TE modes. Condition (21) provides

aΨ′
`+1/2(ka)dk + kΨ′

`+1/2(ka)da

+[∂Ψ`+1/2(ka)/∂ζ]dζ = 0 (143)

Therefore, using (142),

{aΨ′
`+1/2(ka)−R[∂Ψ`+1/2(ka)/∂ζ]}dk

= −kΨ′
`+1/2(ka)da (144)

dk

da
= −

kΨ′
`+1/2(ka)

aΨ′
`+1/2(ka)−R[∂Ψ`+1/2(ka)/∂ζ]

(145)

and so, since R is large,

dk

da
=

kΨ′
`+1/2(ka)

R[∂Ψ`+1/2(ka)/∂ζ]
(146)

By (136), we obtain

F (a) =
1

2
~c
dk

da
=

1

2
~c

kΨ′
`+1/2(ka)

R[∂Ψ`+1/2(ka)/∂ζ]

=
W

R

Ψ′
`+1/2(ka)

∂Ψ`+1/2(ka)/∂ζ
(147)

Using (1), (147) becomes

F (a) = −W
R

J ′
`+1/2(ka) cos(ζ)− Y ′

`+1/2(ka) sin(ζ)

J`+1/2(ka) sin(ζ) + Y`+1/2(ka) cos(ζ)
(148)

Introducing (25) and (26) in (148) and simplifying, one
obtains

F (a) =

W

R

J ′
`+1/2(ka)Y`+1/2(ka)− Y ′

`+1/2(ka)J`+1/2(ka)

J2
`+1/2(ka) + Y 2

`+1/2(ka)

(149)

The numerator of (149) is the Wronskian of J`+1/2(ka)
and Y`+1/2(ka). Its value is given in [6](9.1.16). So, (149)
becomes

F (a) =
W

R

2

πka

1

J2
`+1/2(ka) + Y 2

`+1/2(ka)
(150)

which is equal to (68).
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D. EXTERIOR TM MODES OF SPHERES
Consider now the TM modes. Condition (76) provides

a[Ψ′
`+1/2(ka) + 2kaΨ”`+1/2(ka) + 2Ψ′

`+1/2(ka)]dk

+k[Ψ′
`+1/2(ka) + 2kaΨ”`+1/2(ka) + 2Ψ′

`+1/2(ka)]da

−[∂Ψ`+1/2(ka)/∂ζ + 2ka∂Ψ′
`+1/2(ka)/∂ζ]dζ = 0

(151)

or, using again (142), we obtain since R is large

dk

da
=
k

R

3Ψ′
`+1/2(ka) + 2kaΨ”`+1/2(ka)

∂Ψ`+1/2(ka)/∂ζ + 2ka∂Ψ′
`+1/2(ka)/∂ζ

(152)

Thus, introducing (152) into (136), we obtain using (133):

F (a) =
W

R

3Ψ′
`+1/2(ka) + 2kaΨ”`+1/2(ka)

∂Ψ`+1/2(ka)/∂ζ + 2ka∂Ψ′
`+1/2(ka)/∂ζ

(153)
From the differential equation [6](9.1.1) which define the
Bessel’s functions, we have

kaΨ”`+1/2(ka) + Ψ′
`+1/2(ka)

= − 1

ka
[k2a2 − (`+ 1/2)2]Ψ`+1/2(ka) (154)

Thus, (153) becomes

F (a) = −W
R

Ψ′
`+1/2(ka)− 2

ka [k2a2 − (`+ 1/2)2]Ψ`+1/2

∂Ψ`+1/2(ka)/∂ζ + 2ka∂Ψ′
`+1/2(ka)/∂ζ

(155)
Using (1), (155) becomes

F (a) = −W
R

Num1

[J̄`+1/2(ka)] sin ζ + [Ȳ`+1/2(ka)] cos ζ
(156)

with

Num1 =

[J ′
`+1/2(ka)− 2ka[k2a2 − (`+ 1/2)2]J`+1/2(ka)] cos ζ

−[Y ′
`+1/2(ka)− 2ka[k2a2 − (`+ 1/2)2]Y`+1/2(ka)] sin ζ

(157)

Introducing (80) and (81) in (156,157), we obtain

F (a) =
W

R

Num2

J̄2
`+1/2(ka) + Ȳ 2

`+1/2(ka)
(158)

with

Num2 = [J ′
`+1/2(ka)− 2[ka− (`+ 1/2)2

ka
]J`+1/2(ka)]

[Y`+1/2(ka) + 2kaY ′
`+1/2(ka)]

−[Y ′
`+1/2(ka)− 2[ka− (`+ 1/2)2

ka
]Y`+1/2(ka)]

[J`+1/2 + 2kaJ ′
`+1/2(ka)]

(159)
or

Num2 = [J ′
`+1/2(ka)Y`+1/2(ka)− Y ′

`+1/2(ka)J`+1/2(ka)]

−4[k2a2 − (`+ 1/2)2]

[J`+1/2(ka)Y ′
`+1/2(ka)− Y`+1/2(ka)J ′

`+1/2(ka)]

(160)

thus

Num2 = [4k2a2 − 4(`+ 1/2)2 + 1]

[J`+1/2(ka)Y ′
`+1/2(ka)− Y`+1/2(ka)J ′

`+1/2(ka)] (161)

and finally, replacing the Wronskian of (161) by its value
[6](9.1.16) and inserting the result in (158)

F (a) =
W

R

8

πka

k2a2 − `(`+ 1)

J̄2
`+1/2(ka) + Ȳ 2

`+1/2(ka)
(162)

or

F (a) =
W

R

8ka

π

1− `(`+1)
k2a2

J̄2
`+1/2(ka) + Ȳ 2

`+1/2(ka)
(163)

which is identical to (131).

E. CONCLUSION
The expressions of the thrust (61), (68), (121) and (131)
obtained by Maxwell theory are respectively identical to the
expressions (141), (150), (141) and (163) obtained using
for each normal mode the Boyer conjecture. In conclusion,
Boyer’s conjecture does fully apply to each eigenmode sep-
arately, at least for the limit cases implicated in spherical
Casimir effect.

F. REMARK
When R → ∞, the thrust (150) or (163) of one mode
tends to 0 . However, the number of modes becomes very
dense. Equation (62) or (125) shows that the gap between
two consecutive modes is only

∆k = π/R (164)

Multiplying (150) or (163) by the limit of the mode density
R/π , inverse of (164), one sees that the limit of a sum of
modes, i.e.

∫
F (a)Rπ dk is nonzero.

APPENDIX: SOME INTEGRALS
We use formulas demonstrated in the preliminary work [4]∫
xΨ2

ν(αx)dx =
x2

2
[Ψ′2
ν (αx) + (1− ν2

α2x2
)Ψ2

ν(αx)] + cst

(165)∫
{(ν2 − 1/4)

1

r
Ψ2
ν(kr) +

d

dr
[
√
rΨν(kr)]2}dr

= [2krΨ′
ν(kr) + Ψν(kr)][

kr

4
Ψ′
ν(kr) +

3

8
Ψν(kr)]

+[
k2r2

2
− ν2 − 1/4

2
]Ψ2
ν(kr) + cst (166)∫ π

0

sin θ[
d

dθ
Pm` (cos θ)]2dθ = [

`(`+ 1)

`+ 1/2
−m]

(`+m)!

(`−m)!
(167)∫ π

0

m2

sin θ
[Pm` (cos θ)]2dθ =

m(`+m)!

(`−m)!
(168)

From [6](8.14.13), it is easy to obtain also∫ π

0

sin θ[Pm` (cos θ)]2dθ =
(`+m)!

(`+ 1/2)(`−m)!
(169)
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