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ABSTRACT Electromagnetic waves present very interesting features while the permittivity of the 
environment approaches to zero. This property known as ENZ (Epsilon Near Zero) has been analysed
with the perturbation approach-asymptotic analysis method. Wave equations have been solved by 
space transformation instead of phasor domain solution and the results compared. Wave equation is 
non-dimensionalised in order to allow asymptotic series extension. Singular perturbation theory applied 
to the Wave Equation and second order series extension of electromagnetic waves have been done. 
Validity range of the perturbation method has been investigated by modifying parameters.

INDEX TERMS perturbation; asymptotic expansion, Epsilon Near Zero (ENZ), non dimensionalization, 
dominant balancing, space transformation, electromagnetic wave equation.

I. INTRODUCTION

THIS study aims to introduce an alternative approach to
the solution of Electromagnetic wave equation, which

is asymptotic series expansion-perturbation method. Pertur-
bation method has been widely used in many areas in a spec-
trum from nuclear physics to astronomy. A wide amount of
works explain basic and advanced explanations with various
applications of this method. [1]–[3].
Perturbation, derived from the word "perturb", means to
change some parameters of a process slightly. "Small or
slight change" is a major factor in perturbation [4]. On the
other hand, Epsilon Near Zero (ENZ) is an important and
innovating concept in electromagnetics, which is postulated
by Lorentz [5], [6]. In this work, slight deviations of relative
permittivity within the range "0" to "1", inspired for ENZ
(Epsilon Near Zero) concept. Thus, as a novel approach,
an Electromagnetic transmission problem inside an ENZ
material has been solved with perturbation theory by assign-
ing perturbation parameter as the permittivity of an ENZ
material.
Within the study, basic properties of the perturbation theory is
given with an emphasis on singularity. Singular perturbation
is an interesting feature of this theory since slight deviations
causes big changes on the solution. Thus, going one step fur-
ther, singular perturbation theory is applied on the damping
electromagnetic wave, that travels inside an ENZ material.
But there was an important challenge: additive terms in the

asymptotic series extension has different powers. Only way
to sum them up is to get rid of their units. This is achieved by
making parameters unitless [7] .
Relative permittivity, εr was chosen to be a perturbation
parameter. To introduce singularity, this parameter has to be
a "main actor" of the equation; which means, it has to be a
coefficient of the highest order derivative term. In this way
perturbation parameter (relative permittivity), implements a
singularity while it approaches to zero and its existence
becomes critical for the description of solution pattern. In
order to have this form of the equation and assign perturba-
tion parameter, εr as a coefficient to the largest differential
term, space (β) transformation has been applied to the wave
equation instead of frequency transformation. Next step was
to be sure that this space transformation technique solution
[6], which drops the space dependency from (x, y, z; t) to (t),
has the similar solution set with the classical way of solution
in phaser domain (frequency) transformation.
In the second part of the text, space transformed equation
solved with perturbation concepts. As explained above, since
perturbation theory basically depends on the asymptotic se-
ries expansion of the equation, the parameters are needed to
be deunitized or non-dimensionalised [7]. In this stage,since
de-unitization parameters are not unique, they are chosen
in a way to allow application of perturbation solution for a
singular, second order differential equation. In the study, two
different de-unitization parameter set used and demonstrated
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TABLE 1. Typical values for the verification of space and freq. transform
equivalence

Electric Field (E. Field) Desc. Unit Notation

Vector Electric Field (V/m) E
"x" component of E. Field (V/m) Ex
Freq. Fourier Transf. of Ex Field Eω
Space Fourier Transf. of Ex Field Eβ
Unitless E. Field (unitless) Ẽ

Perturb. Sol’n, Inner E. Field (unitless) Ei

Perturb. Sol’n, Outer E. Field (unitless) Eo

Perturb. Sol’n, Total E. Field (unitless) Ê

to match with the original equation.
So far, two transformations are mentioned for Electric Field
wave, damped propagation function: "Space (β)" and "non-
dimensionalization" transformations. These transformations
are shown to comply with results of traditional phasor
domain solution method. After obtaining a "good form"
equation which can be solved by perturbation methods and
asymptotic series expansion concept, another transformation
needed to overcome the inherited singularity. This is imple-
mented by Dominant Balance Method, which expands the
solution interval where the perturbation parameter is effective
and transformation parameters are determined.
In order to have a better readability, Electric Field variable,
subjected to transformations and notations after these trans-
formations that are used throughout the study, summarized in
the Table 1.
Concepts mentioned above introduced more in detail with
illustrations of simulation results within the text.

A. EPSILON NEAR ZERO (ENZ) MATERIALS
Recently, epsilon-near-zero (ENZ) materials have been pro-
posed as a way to achieve efficient sub wavelength electro-
magnetic energy transport. [8], [9] ENZ materials have near-
zero dielectric constant (epsilon) in the effective medium
limit resulting in an unusually large effective wavelength
even at optical frequencies is thus expected to enable energy
squeezing and transfer through sub wavelength channels with
lower losses over larger bandwidth. The optical properties
of materials which is the response to an applied external
electromagnetic field can be expressed using the relative
permittivity(εr) and the relative permeability (µr) of the
medium [10], [11].

B. SPACE TRANSFORMATION
Fourier Transformation on frequency is frequently used to
simplify an equation with frequency dependency [12]. In this
study, space transformation will be used as to be explained in
the related section. The function for the solution is chosen to
be; f(t, β) = A cos(βz − ωt).
Following Fourier transformations applied to f(t;β):
i) Frequency Transformation (Phaser Domain):

F (ω) ≡ Fw =

∫ ∞
−∞

f(t, z) e−jωtdt (1)

FIGURE 1. Space and Frequency Fourier Transformation of an EM wave

ii) Space Transformation (β-Domain):

F (β) ≡ Fβ =

∫ ∞
−∞

f(t, z) e−jβzdz (2)

For space transformation 1st and 2nd derivative transforma-
tions defined as in conventional case:

Fβ{
∂Ex
∂t
} = (jβ)Eβ ,

Fβ{
∂2Ex
∂t2
} = (jβ)2Eβ = −β2Eβ

(3)

where Eβ is the space Fourier transformation (2) of the
Electric field, Ex. In this study, space transformation is
used and solutions validity is checked with the frequency
transformation.

A schematic flow for frequency and space transformation
is given in Fig. 1 where β subscript for Electric (Ex) and
Magnetic (Hy) fields represents space Fourier Transforma-
tion, and ω subscript stands for frequency Fourier Transfor-
mation.

C. PERTURBATION THEORY
Perturbation theory is a collection of mathematical methods
used to obtain approximate solution to "hard" problems that
do not have closed-form analytical solutions. These methods
reduces a hard problem to an infinite sequence of relatively
easy problems that can be solved analytically. Perturbation
problems depend on a small positive parameter.
This parameter, when applied to the highest order term in the
equation, affects the problem in such a way that the solution
varies rapidly in some region of the problem domain and
slowly in other parts. [2], [4]. The region where the solution
varies rapidly is called the inner region. A variety of solution
techniques are used to extent this region and to provide a
solution for this very narrow but very fast changing and
important region. Beyond the inner region, whose boundaries
are also determined with literally well known techniques,
the singularly perturbed boundary value problem possesses
boundary or interior layer. regions of rapid change in the
solution near the end points or some interior points with
interval as detailed in [2], [13].
A question may arise, why to use perturbation techniques
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while there are computers that can solve very compli-
cated non-linear, inhomogeneous, multidimensional prob-
lems. What is the need for such a method? The answer is
that the insight capability in to the physics of the problem.
The principal objective when using perturbation methods, is
to provide a reasonably accurate expression for the solution,
with an understanding of the physics of a problem. Also,
results can be used in conjunction with the original problem,
to obtain more efficient numerical procedures for computing
the solution [3], [14]. Boundary value problem which has
a perturbation leading to singularity, possesses boundary or
interior layer i.e. regions of rapid change in the solution near
the end points or some interior points with width O(1) as
ε→ 0.

II. DAMPED WAVE EQUATION SOLUTION
A. GENERAL APPROACH
One dimensional wave equation can be defined in general as
follows [15], [16]:

∂2u

∂t2
= υ2

∂2u

∂z2
(4)

Solution to (4) is defined by D’Alambert as:

u(z, t) = f(z − υt) + f(z + υt) (5)

where f is a differentiable, arbitrary function with an argu-
ment of (z − υt), (z + υt); causing the function to "travel"
to left and right. If the function is chosen as a sinusoid which
travels to "right" and solved for different time values, the
argument of the function do not change wrt an imaginative
observer 5.
Since the argument of the function is constant, its derivative
wrt time is zero and ”υ” is the propagation speed of the wave,
which is given by 1/

√
µε.

Selecting function as a sinusoid, its argument turns out:

(z − υt)⇔ (β(z − υt)) = (βz − ωt) (6)

solution function as; f(z, t) = A cos(βz − ωt). where, for
lossless systems, β = k = 2π/λ is the wave number, λ is the
wavelength and ω is the angular frequency, ω = βυ = 2πf.
Since instead of time, space transformation is used, space
derivative wrt. z component is applied to the argument:

∂

∂z
(βz − ωt) = 0, β − ω ∂t

∂z
= 0

∂t

∂z
=

1

υ
, β − ω( 1

υ
) = 0, β =

ω

υ

(7)

which gives the same result above. Wave equation for a Lossy
Electric field vector, derived from Maxwell Equations in a
lossy media:

∇2E− µσ∂E
∂t
− µε∂

2E

∂t2
= 0

E = Exâ(x) + Eyâ(y) + Ezâ(z))
(8)

Its simplified version for a wave travelling in z direction, with
x component only:

∂2Ex
∂z2

− µσ∂Ex
∂t
− µε∂

2Ex
∂t2

= 0 ,

Ex(0) = 0;E′x(0) = C/εr

(9)

Initial condition for the first derivative in (9) is the dis-
placement current. (9) is the function that is to be solved
by using space transformation and perturbation techniques.
A generic solution to this equation is given in Fig. 2. It
should be noted that the wave function itself is dispersive,
due to frequency dependency of lossy characteristic of the
environment (εc = ε− j σω ).
For a lossless, non magnetic medium (µr = 1), phase
velocity is independent of frequency. However, In dispersive
(lossy) environment, as ∂ω → 0, instead of phase velocity,
group velocity defined. Relation between the two coordi-
nates; "distance z(m)" and "time t(s)" is;

z = vt =
ω

β
t

similarly, t =
z

v
= z

β

ω
,

∂Ex
∂t

=
β

ω

∂Ex
∂z

phase velocity : vp =
w

β
(m/s) =

1
√
µε

=
c
√
εr

(10)

Group velocity may be higher (anomalous dispersion) or
lower (normal dispersion) than phase velocity. These facts
causes some deviations from the equality conditions for fre-
quency and space transformations, especially for the phaser
terms. Below the Electric field equations will be solved by
frequency and space transformation methods to show their
similar characteristics, with small deviations defined above.

B. SOLUTION BY SPACE TRANSFORMATION

Equation (9) can be solved by using conventional frequency
domain representation. However in this study, (9) will be
solved by Fourier transformation in Space (x,y,z) domain,
in order to obtain a function which is suitable to be solved by
singular perturbation techniques [12]. If the transformations
defined in (2), (3) are used for (9);

Fβ{
∂2Ex
∂z2

− µσ∂Ex
∂t
− µε∂

2Ex
∂t2
} = 0 ,

= −β2Eβ − µσ
∂Eβ
∂t
− µε∂

2Eβ
∂t2

= 0

(11)

where Eβ is the space transformed version of E. Using (9);

µε
∂2Eβ
∂t2

+ µσ
∂Eβ
∂t

+ ω2µεEβ = 0

εr
∂2Eβ
∂t2

+
σ

ε0

∂Eβ
∂t

+ ω2εrEβ = 0

(12)
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Where, ε = ε0εr is used and simple algebraic operations
applied (12). Further simplified in representation as;

E′β =
∂Eβ
∂t

, E′′β =
∂2Eβ
∂t2

εrE
′′
β +

σ

ε0
E′β + ω2εrEβ = 0

initial conditions; Eβ(0) = 0;
∂Eβ
∂t

(0) = C/εr

(13)

Equation (13) is an ODE and can be solved conventionally;

characth. eqn : εr
_
a

D2 +
σ

ε0
_

b

D + ω2εr
_
c

D = 0

D1,2 =
−b∓

√
b2 − 4ac

2a
= α̃∓ jβ̃

(14)

Thus, solution for space transformation can be written as;

Eβ(t) = Aβe
−D1t +BeD2t;

Eβ(t) = Aβe
α̃tejβ̃t +Be−α̃te−jβ̃t

(15)

Taking one solution which travels to right:

Eβ(t) = Aβe
−Dt; D = α̃+ jβ̃

Eβ =
[
e−α̃tejβ̃t

]
Eβ(z, t) = Aβe

−α̃tcos(βz − β̃t)

(16)

Constant, Aβ can be found by using initial conditions given
in (9).

C. SOLUTION BY FREQUENCY TRANSFORMATION
Frequency transformation (1),(2) was used to reduce and
solve the same equation (9). Basically in this transformation,
"∂

2Ex
∂z2 " replaced by "jω" and "∂

2Eω
∂z2 " replaced by "−ω2":

Fw{
∂2Ex
∂z2

− µσ∂Ex
∂t
− µε∂

2Ex
∂t2
} = 0 ,

∂2Eω
∂z2

− (jωµσ)Eω + (ω2µε)Eω,

∂2Eω
∂z2

− (jωµσ − ω2µε)Eω

let γ2 = jωµσ − ω2µε), γ =
√
jωµσ − ω2µε),

γ =
√
jωµ(σ + jωε) = α+ jβ

∂2Eω
∂z2

− γ2Eω = 0

(17)

where Eω, Eβ are used to differentiate Frequency trans-
formed and Space transformed versions of E Field. The
parameter "γ represents complex wavenumber "k", for a
lossy medium.
Relation between the Frequency and Space transformed ver-
sions of E Field are;

E(z,t) = Re{ejωtEω} = Re{ejβzEβ} (18)

using (17), conventional solution in frequency domain:

Eω(z) = Ae−γz +Beγz

γ = α+ jβ

Eω(z) = Ae−αze−jβz +Beαzejβz
(19)

Taking the solution which travels to right yields;

Eω = Awe
−αze−jβz

Eω(z, t) = Awe
−αzcos(βz − wt)

(20)

Initial conditions, were given originally wrt to time (t). Thus,
for frequency transformation solution, initial conditions has
to be transformed to space domain while finding the constant
Aw.

Ew(0) = 0;
∂E

∂t
(0) =

C

εr

jωEω(0) = C/εr, Eω(0) =
C

jωεr

(21)

Evaluating (20) and (21), constant found to be;
Aω = Cβ/(εrωγ)
Damping Electric field equation that propagates in the direc-
tion of "z" is given in Fig. 2

D. FREQUENCY TRANSFORMATION-SPACE
TRANSFORMATION COMPARISON
Regarding the two transformed versions for the lossy wave
equation, equations are obtained(18), (14). Below, these
second order Ordinary Differential Equations (ODEs) are
conventionally solved and plotted.
Constants throughout the calculations are; Permeability
=(µ0) 4π10−7 H/m, Permittivity =(ε0) 10−9/(36π) F/m,
Displacement Current constant, C = 109

Equations (16) and (20) shall refer to the same solution,
Electric field. Below, these equations will be solved and
plotted in order to show their similar behaviour. While
frequency response solution basically depends on space and
space transformation depends on time, they have to be on the
same coordinate axis to be plotted together: Relation between
time and space is;

t =
z

v
, v =

w

β
t =

w

β
z

For lossless case; υ = 1/
√
µε, β = ω

√
µε

(22)

E. NONDIMENSIONALIZATION OF THE WAVE
EQUATION
Due to the Principle of Dimensional Homogeneity (PDH),
every additive term in an equation must have the same
dimensions. Thus for Series expansions, in order to apply
PDH, each item in the series shall be unitless since they
do not have the same order. Similarly, since the perturbation
theory introduces an (asymptotic) series expansion, removal
of units from physical quantities by a suitable substitution of
variables is needed. As a result, unitless terms (which can
be added now) constitute a unitless equation, whatever any
nonlinear operation (taking square or cube or higher order)
applied to each term.
As a natural result of the process, non-dimensionalization
has another advantage: to reduce number of variables (or
natural parameters like ε, µ, σ, ..) by combining them into a
"super" variable. Similar case encountered here and a new
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FIGURE 2. Electric field solution and attenuations by frequency and space
domain approaches

TABLE 2. Units for the non-dimensionalization process of the wave equation

Parameter Dimension (Unit)
Electric Field (E) V/m

Time (t) second (s)
Conductivity (σ) s/(H.m)

Rel. permittivity (εr) unitless
Permittivity (ε0) F/m

Permeability (µ0) H/m
Wave number (k) 1/m

Radial freq. (ω = 2πf) 1/s
(εµ) s2

perturbation parameter which is a combination of the other
parameters of the system created. This has the advantages to
analyse perturbation effect of all the parameters involved, as
well. These concepts will be clarified in this section.
Wave equation form that will be used hereafter, which is
space transformed, is repeated below for convenience:

εrE
′′
β +

σ

ε0
E′β + ω2ε0Eβ = 0

with;Eβ(0) = 0; E′β(0) = C/(εr)
(23)

The two variables (coordinates) of the system are E (V/m)
and t (s). Other (natural) parameters are listed in Table II-E
with their units.

In order to make the variables E and t unitless, values
E0, t0 that has the same unit with original E, (V/m) and
t, (s) has to be found. Since these values have same dimen-
sions, the units cancel out and the resultant variable is unitless
when their ratios are taken.
Representing unitless electric field with Ẽ, and unitless time
variable as τ following definitions are valid:

Ẽ =
Eβ
E0

, Eβ = ẼE0

τ =
t

t0
, t = τt0

(24)

Any selection for t0 with unit "second" and any selec-
tion for E0, with unit "V/m" are suitable for the non-
dimensionalization process. Thus the solution for these con-
stants are not unique. For example, t0 = 1/ω is one of the
solutions, since the result of this operation has a unit "s",
(second), making time variable unitless when divided.
But for this study, without going into detail, after some trials
following coefficients are found to be convenient for the rest
of the work. All these coefficients below, are unitless.

t01 =
σ

ω2ε
[s], τ =

ω2ε

σ
t,

E0 =
ε0C

σ
[V/m], Ẽ = (

σ

ε0C
)Eβ ,

alt. choice : t02 =
σ

ε
[s], τ̃ =

σ

ε
t.

(25)

Solutions were not unique; for time (t) variable, 2 different
de-unitizing parameter, t01, t02 with corresponding unitless
time parametres τ, τ̃ are found and defined in (25).
It should be noted that for t01, t02, corresponding E0’s are
found from initial condition equation:

initial condition : εr
∂Eβ
∂t

= C

So, Eβ = E0Ẽ; t = t02t̃, τ̃ ′ =
t

t02
=
σ

ε
t

εr
E0

t02

∂Ẽ

∂τ̃
= C, E0 =

ε0C

σ

(26)

As a crosscheck, unit of the E0 can be verified by units given
in Table (2); (F/m)(m.s/V )(m.H/s) = (V/m) ; which is
the desired result (note : [unit]FH = [s2]).
First and second order derivatives can be calculated by using
chain rule and values given in (26);

∂Eβ
∂t

=
E0

t0

∂Ẽ

∂τ

∂2Eβ
∂t2

=
E0

t0
2

∂2Ẽ2

∂τ2

(27)

Now, substituting these equivalences into (27),

εr
E0

t0
2 Ẽ
′′ +

σ

ε0

E0

t0
Ẽ′ + ω2εrE0Ẽ = 0

(
ωε

σ
)2Ẽ′′ + Ẽ′ + Ẽ = 0

(28)

Defining (ωεσ )2 as new perturbation parameter;

ε̃r = (
ωε

σ
)2 = (

ωε0
σ

)2ε2r (29)

With this choice of perturbation in (29), Electric field wave
equation is more simplified:

ε̃rẼ
′′ + Ẽ′ + Ẽ = 0 (30)

As mentioned in section (II-E), this new perturbation param-
eter, ε̃r includes (ω, σ) parameters. Thus any "slight" or
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relative change on these parameters can also be treated as
perturbation. Also 1st derivative initial condition for unitless
variable turns out to be;

∂Ẽ′

∂τ

∣∣∣
τ=0

=
1

ε̃r
(31)

which is also unitless.

F. SOLUTIONS FOR THE UNITLESS EQUATION
In this section, unitless forms of the wave equation will be
solved conventionally for a second order ODE, and then
will be compared with the equation, solved without any
unit conversion with the same method. Solutions will be
compared and visualised on plots.
Unit transformation in (i) was shown to be fully consistent
with the original solution. Below, this and an additional
transformation (ii)will be shown to have the same result:

i) t0 = σ
ω2ε ; E0 = ε0C

σ Transformation:
Has the same propagation attenuation and phase constants
with the original equations. Analysis for these unitless pa-
rameters are given in (25) to (30). In Fig.3 solution plots for
the original case and unitless versions are illustrated as to
be the same, which validates the transformations for Electric
field and time.

ii) t0 = 1
ω ; E0 = C

ωεr
Transformation:

In this transformation, method is the same, reference values
that are used to non-dimensionalize the variables have the
same units (which is [s] for t, [V/m] for Eβ) but the combi-
nation of natural variables to obtain these units are different.
Same strategy, same units but choosing reference values for
t and E different, following wave equation solution obtained
and shown to be completely matching with traditional solu-
tion of the initial equation. Reference values for t nd Eβ are
calculated and suitable values are found after some trial and
error sessions. Results, without going into detail are given in
32. It should be noted that this process is applied to the wave
equation which is space-transformed in Section 2.2.

Using the reference for t and Eβ as follows, gives (30) :

t0 = 1
ω , τ = ω; E0 = C

ωεr
, Ẽ = ω

εr
CẼ

εrẼ
′′ +

σ

ωε0
Ẽ′ + εrẼ = 0

Ẽ(0) = 0; Ẽ′(0) = 1
(32)

In Fig. 3, unitless solution and reference solutions are
plotted to be compared. They perfectly match on each other,
proving usage of different references, for unitless solutions.
With this conclusion, it is important to emphasize that mak-
ing parameters unitless is not a unique process but has to be
done properly in order to make overall equation and initial
conditions simpler to be solved. Besides, this process enables
to expand any complex equation into series, like Taylor or
asymptotic series which are used in many different methods.

FIGURE 3. Verification for Unitless Lossy wave equation solution with different
reference parameters

In the next section, method will be offered in order to solve
the equation by perturbation series approach.

III. PERTURBATION METHOD SOLUTION
Our main goal was to find an approximate approach to the
Electromagnetic differential equation to gain insight of the
propagation behaviour inside ENZ material, especially for
the small values of the permittivity. Due to the nonlinear
nature of the problem, this analytic process can not be easily
solved. One of the most important tool in approximating
functions in some small neighbourhood is the Taylor’s the-
orem. In general, Taylor theorem approaches the problem as;
Given a certain tolerance "ε = |x − x0| > 0" how many
terms should we include in the Taylor polynomial to achieve
that accuracy?.
However, asymptotic approximation approaches the problem
differently :
Given fixed number of terms N, how accurate is the asymp-
totic approximation as "ε→ 0?" [5]
This approach gives the perturbation method the advantage
of converging the result much faster than Taylor series,
with less number of terms [2]. This is the inherent nature
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of asymptotic series, which has another big advantage to
provide approximation even for divergent regions that can
not be handled with Taylor series approach. As mentioned in
Sect.1.3, perturbation theory deals with a set of different type
of equations, in many different disciplines. [1], [4]. In this
study, perturbation theory on a lossy electromagnetic wave is
handled. As a starting point, general wave equation was given
in (4),(5). A specific case of the wave equation, lossy electric
field wave equation was considered (9).
First, Electric field (Ex) component is space transformed
to (Eβ) and then the units of the equation variables
”V/m” for (E)" and ”s” for (t) are cleared off by
non-dimensionalization process. This operation requires new
variables to be defined as ; t↔ τ and E ↔ E0 :
Substitution of the variable equivalences with some algebraic
operations, yields the simplified equation in (33):

ε̃rẼ
′′ + Ẽ′ + Ẽ = 0

Ẽ(0) = 0,
∂Ẽ′

∂τ

∣∣∣
τ=0

=
1

ε̃r

(33)

where the unitless quantities (E0, t0 and the "super" pertur-
bation parameter ε̃0 were found to be;

ε̃r = (
ωε

σ
)2; t0 =

σ

ω2ε
; E0 =

ε0C

σ
(34)

Eqn.(33) is a quadratic Ordinary Differential Equation
(ODE) that was solved conventionally in the first part. In
order to show and analyse the effect of the perturbation
parameter better, it will be solved by perturbation methods.
Before representing function in perturbation theory, a short
description about asymptotic analysis will be given. Com-
prehensive information about Perturbation methods can be
found in, [2], [17], [18], [19]. To have an idea about "what
is happening with the function as the perturbation parameter
approaches 0", asymptotic analysis has to be carried. In this
work, perturbation parameter is the permittivity, εr and as a
specific application, this permittivity has a value between [0-
1], which is a subject of a popular concept, Epsilon Near Zero
(ENZ). The usefulness of an asymptotic expansion arises
from the fact that only a few terms of the series are required
to give a good approximation to the function, whereas with a
Taylor series expansion many terms are required for equiva-
lent accuracy [20], [21]. Note that from the definition of an
asymptotic expansion, the remainder after N terms is much
smaller than the last term retained as x → x0. Generally,
perturbation problems are grouped in two classes:
• Regular Perturbation Problems,
• Singular Perturbation Problems

Below, due to the scope of this work, singular type of pertur-
bation problems will be detailed.

A. SINGULAR PERTURBATION PROBLEMS
In singular perturbation problems, there exists a small param-
eter (ε) which changes the order or degree of the problem so
as to introduce a new class of solutions which is different
from unperturbed problem. Thus, if the character of the

problem changes discontinuously for ε = 0, in any region
of the solution domain, than the problem is singular.
In this study, perturbation parameter impacts the term with
the highest order; (ε̃rẼ′′+ Ẽ′+ Ẽ = 0) and in unperturbed
case i.e. when (ε̃ = 0) highest order term disappears. This
is an irregularity case and shall be treated differently. This
is because the equation changes completely, decreases its
order of derivation from ”2” to ”1”. As a another definition,
this irregularity is called as "Singularity". Singular behaviour
forces the function to change rapidly, and has to be expanded
in that region to analyse the big effect of the parameter in
detail. In that sense, these rapid transition problems can be
grouped as, Initial layer,boundary layer,Internal layer prob-
lems. In this study, the problem investigated is an initial layer
type, in which the solution makes an immediate jump at
the beginning, than, continue to smooth solution outside this
"fast changing" region. That is the reason (E(0), E’(0)) will
be used to solve the problem. The method used to solve such
problems is basically to remove the singularity and to expand
the interval where the perturbation parameter is dominant
in asymptotic sense. That is a good coincidence to explain
Dominant Balance Method for the study.

B. SOLUTION BY DOMINANT BALANCE METHOD
Dominant Balance Method; is a technique in perturbation
theory, used to find a ‘leading order’ approximation y0(x; ε)
for a singular equation, which asymptotically approaches the
true solution y(x) as ε → 0 [14]. By Dominant Balance
technique a scaling factor for the boundary value of the
solution domain is introduced. This parameter "stretches"
the variable among the boundary region, allowing to find a
leading order term even for ε→ 0 This "stretching variable"
can be defined as a function of ε as δ(ε) and in this work
as perturbation parameter defined, ε̃ → δ(ε̃). ε̃ represents
"super perturbation parameter, defined in (29).
Since this technique solves the equation for a sufficiently
short initial interval, which is inside the boundary layer,
Electric field wrt. this scaled time variable called as "inner"
and depicted as Ei. Rest of the solution function is called
outer region, hence the result is E0. A new time variable
which is the stretched form of the original variable defined
as "τ̃" below in (35) as;
τ̃ = τ

δ(ε̃) .
Using chain rule and for simplicity, δ instead of δ(ε̃):

Ẽ′ =
1

δ

Ê

τ̃
=

1

δ
Ê′, Ẽ′′ =

1

δ2
Ê′′

ε̃

δ2
Ê′′ +

1

δ
Ê′ + Ê = 0

(35)

Taking the coefficients of the resultant equation, binary
combinations will be asymptotically equalized and searched
if they are much greater than (dominant to) the third com-
ponent. Since there are three coefficients, 3 such pairs are
possible to find. Below, the good working pair is presented
only:
Coefficients of (35) : ε̃

δ2 ,
1
δ , 1.
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Choosing first two as coefficient as dominant balance pair :

ε̃

δ2
∼

1

δ
, δ = ε̃

Thus,
1

ε̃
∼

1

δ
� 1,which is acceptable.

(36)

Electric field with this new scaled variable is :

Ê′′ + Ê′ + ε̃Ê = 0,

with Ê(0) = 0; Ê′(0) = 1
(37)

Equation(37) is now in a regular format that can be
solved with regular perturbation techniques. But the range of
validity for this equation is limited to perturbation parameter
scale, which is a very short interval. That is the reason,
solution which is valid for this transform or stretched variable
is called "inner" solution, that makes a sudden jump inside a
very short distance. In fact this initial part of the function is
very interesting and behaviour of the function in this region
worth to be analysed and emphasized.
Rest of the solution is called "outer solution" for which there
are a variety of techniques to solve this part, basically due to
lack of initial conditions of the outer part. Below, 2 different
techniques for outer solutions will be used. For both inner and
outer solutions, asymptotic expansions upto first rank will be
used in the calculations below:

i) Inner solution
Let inner solution of the Electric "field to be; Êi and outer

to be Êo. For the sake of simplicity, "ˆ " is dropped for inner
and outer calculations.

Ei = Ei0 + ε̃Ei1 +O(ε̃2) (38)

Substituting (37) to (38) and grouping similar terms as co-
efficients of perturbation parameter, one obtains 2 sets of
equations for Ei0 and E

i
1 :

∂2Ei0
∂τ̃2

+
∂Ei0
∂τ̃

= 0,

Ei0(0) = 0; E′i0 (0) = 1

(39)

and
∂2Ei1
∂τ̃2

+
∂Ei1
∂τ̃

= −Ei0,

Ei1(0) = 0; E′i1 (0) = 0

(40)

Solution to (39) is; Ei0 = 1− e−τ̃ . Putting this to inhomoge-
nous differential equation (40) with initial conditions, gives
the result as Ei1 = 2− τ̃ − (2 + τ̃)e−τ̃ .
Combining Ei0 and E

i
1 into (41) gives the result for inner

solution:

Ei(τ̃ , ε̃) = (1− e−τ̃ ) + ε̃[(2− τ̃)− (2 + τ̃)e−τ̃ ] (41)

ii) Outer solution
Main challenge for the outer solution that it does not satisfy

boundary conditions, since it starts away from the initial
point. Also due to perturbation parameter multiplying highest
order term, its order is dropped for the first term (or, leading
order term). Good news is, this reduced equation still valid
due to slow variations and provides a good approximation to
the original solution, as long as the inner and outer solutions
are matched. This matching process is done in a variety of
ways. Once again using asymptotic series expansion for outer
part:

Eo = Eo0 + ε̃Eo1 +O(ε̃2) (42)

and organizing the equation similar to inner solution, follow-
ing equation set for zeroth order (ε0 → leadingterm;Eo0 )
and 1st order (ε1 →; Eo1 )term obtained:

∂Eo0
∂τ

+ Eo0 = 0 (43)

General solution to leading order (43) isEo0 = Ae−τ . For 1st

order term; following equation can be written:

∂Eo1
∂τ

+ Eo1 = −∂
2Eo0
∂τ2

(44)

Substituting Eo0 from (43) yields solution for this non homo-
geneous differential equation; (−Aτ +B)e−τ .
Summing up leading order and 1st order terms, according to
(42) gives the following result for outer solution:

Eo(τ, ε̃) = Ae−τ + ε̃(−Aτ +B)e−τ (45)

For outer solution, time variable is not converted to τ̃ . Since
there is no valid initial condition for this equation it will be
solved parametrically and these unknowns will be calculated
by matching inner and outer solutions at the interception
region. In this study, unknown "A" and "B" are found para-
metrically by using "patching" and "Van Dyke" methods.
Both of them have their advantages and disadvantages and
details of these solutions can be found comprehensively in
the literature. [2], [12], [9].
By equating inner solution (39) and outer solution (43) at the
boundary layer, and equating time scale which is done for
the inner solution-dominant balance τ̃ = τ

ε̃ ; a solution for
the unknown parameters and resultant outer solution found
as :

A = 1; B = 2; for ε̃� τ � ε̃1/2

Eo(τ, ε̃) = e−τ + ε̃(τ + 2)e−τ
(46)

Perturbation solution is the superposition of the inner and
outer solutions:

Ê(τ, ε̃) =

{
1− t− (1 + t)e

−τ
ε̃ + 2ε̃(1− e−τ

ε̃ ); 0 ≤ τ ≤ η(ε)
e−t + ε̃(−τ + 2)e−τ for 1 ≤ t ≤ 3

(47)
Solutions for this equation with different parameters are

given in Fig. 5, Fig. 6, Fig. 7.
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FIGURE 4. Flow diagram of the Study

IV. CONCLUSIONS
In this study, time domain response of an Epsilon Near Zero
type material to a single frequency electromagnetic plane
wave has been investigated by using perturbation methods. A
general work flowdown and a list of transformation applied
are given in Fig.4. Frequency domain analysis regarding the
reflection characteristics of such materials at the vicinity
of the resonance frequencies has been extensively analysed
in the literature. On the other hand, time domain analysis
regarding the behaviour of penetrating wave inside these
materials is relatively quite rare. In this study, behaviour of
the wave inside the material has been zoomed out by the
powerful mathematical capabilities of Perturbation Analysis,
which is a time domain method. Due to the nature of the prob-
lem and conductive behaviour of the material, plane wave
fades out to zero in a very short time of order nanoseconds.
Thus, detailed analysis have been carried for a very short time
interval.
Three different intra-transformations that serve for the Per-
turbation solution result have been applied to a lossy plane
wave equation:
• Spatial transform,
• Unitless transform,
• Dominant Balance (inner perturbation solution) trans-

form.
For each transformation, transformed equation is solved with
either conventional or novel methods, and compared with the
original, conventional solution.

Effect of the parameters to the solution are investigated
Fig. 5, Fig. 6, Fig. 7. In Fig. 5, εr increased in graphs (a),
(b), (c) and seen that perturbation theory solution for the
wave equation is a good approximation for small values
of εr. This is good for the study, since the philosophy of
Perturbation theory and Epsilon Near Zero Concept, both

requires or “promotes” a relative permittivity which is close
to zero. Thus decreasing the perturbation parameter towards
zero, optimizes Perturbation solutions also.
There is another parameter that changes oscillation charac-
teristics; Conductivity (σ). In Fig.6, conductivity constant,
σ is changed while εr is kept constant. In (a), when the
conductivity increased 10 times (σ = 0.2); it is observed that
the results worse in the outer region. In (b) σ = 0.1 which
is 5 times increased is also satisfactory. As the conductivity
decreased, σ = 0.004) equation becomes oscillatory, which
degrades the success of perturbation solution approximation
In (c). Thus there is an optimum interval for the conductivity.
Effect of the frequency is analysed in Fig.7. In these plots,
operating frequency increased from 100 Mhz to 10 Ghz while
εr = 0.1 and σ = 0.02 are kept constant. It is observed that
when the frequency is low (100 Mhz), perturbation approach
solution is not satisfactory (a). In (b), original case where
the analysis carried are presented, and the result is quite
satisfactory from perturbation approach point of view. In
(c), frequency increased 10 times more and system starts to
oscillate. This fact, as in the other cases, negatively affects
perturbation solution which is clearly seen in (c).

As a general fact, the system oscillates if the propagation
term

β̃ =

√(
σ
ε0

)2
− 4εr2ω2

2εr
(48)

is imaginary, i.e. if it satisfies the following oscillation con-
dition:

εr >
σ

2ε0ω
(49)

Due to (48), (49) oscillation starts for increasing εr, fre-
quency (ω), and decreasing σ. These facts are illustrated
in Fig.5, Fig. 6, Fig. 7. In this work, oscillation effects
negatively the accuracy of the perturbation theory due to
the methods used so far. Epsilon Near Zero (ENZ) concepts
depends on the permittivity behaviours of the of the materials
depending on frequency. Mathematical models for dispersion
of the materials are given by Lorentz Classical Theory (1878)
and Drude Dispersion Model (1900). [4], [10]. In these
models, especially around the plasma frequency of different
materials, where the real part of the effective permittivity
value of the material is approximately zero (50).

ωp =

√
Ne2

mε0
(50)

Increasing plasma frequency, Real[ε(ω)] and Imaginary[ε(ω)]
increases, too. Thus, investigation of frequency dependence
of the perturbation theory solution in Epsilon Near Zero
Materials might constitute an interesting future work. Plasma
frequency behaviour of different materials (Ag, Al, NiFe,
etc) forces the solution to be carried on different frequencies.
[3]. In this study, constant frequency wave penetration into
a metamaterial has been investigated.As mentioned above,
simultaneous injection of different frequency signals to a
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FIGURE 5. Effect of decrease in Perturbation parameter to the solutions when σ = 0.02, f=1 Ghz

FIGURE 6. Effect of Conductivity parameter to the solutions when ε = 0.1, f=1 Ghz

FIGURE 7. Effect of Frequency change to the solutions when ε = 0.1; σ = 0.02

metamaterial, interaction of these signal with each other to
form harmonic signals in accordance with the dispersion
characteristics, is left for a future work.

As another future work, more detailed solutions including
higher order terms can be included to asymptotic series
expansion and error behaviour may be investigated. Pertur-
bation techniques to include periodic solution perturbations
like Multi Scale can be applied for the oscillating cases.
Other matching techniques like initial correction or WKB
/(Wentzel-Kramers-Brillouin) techniques are also interesting
topics to be studied. [21], [22]
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[10] İ.E.Çolak, "Waveguiding of electromagnetic waves and investigation of
negative phase velocity in photonic crystals and metamaterials", Diss.
Bilkent University. 2012.

[11] K. B. Alıcı, "The left hand of electromagnetism: Metamaterials," 2010.
[12] R.C., Rumpf, et al. "Spatially variant periodic structures in electromag-

netics," Philosophical Transactions of the Royal Society A: Mathemati-
cal, Physical and Engineering Sciences, vol. 373, no. 2049, 2015. DOI:
10.1098/rsta.2014.0359..

[13] W. Paulsen, "Asymptotic analysis and perturbation theory", CRC Press,
2013, DOI: 10.1201/b15165.

[14] W. R. Young, "Part A: Perturbation Theory", University of California at
San Diego, La Jolla 1-9, 2017.

[15] D. K. Cheng, "Fundamentals of engineering electromagnetics," 1993.
[16] S.J. Orfanidis, "Maxwell’s Equations","Pulse Propagation in Dispersive

Media," in ‘Electromagnetic Waves and Antennas, Rutgers University, Ch.
1, pp. 21-45; Ch. 3, pp. 103-122, 2016.

[17] C. Bretherton, "Singular Perturbation Theory", University of Washington,
Lecture Notes AMath 568, 2015

[18] J. K. Hunter, "Asymptotic analysis and singular perturbation theory,"
Department of Mathematics, University of California at Davis, 1-3, 2004.

[19] M.Kumar, "Methods for solving singular perturbation problems arising in
science and engineering," Mathematical and Computer Modelling vol. 54,
no. 1-2, pp. 556–575, 2011. DOI: 10.1016/j.mcm.2011.02.045

[20] K. Hyungjon, and T. Chee-Han, “Asymptotic and Perturbation Methods,”
University of UTAH, Lecture Notes Math 6730, pp. 5-34, 2018.

[21] E. Yang, "Analogy to numerical solution of wave propagation in an
inhomogeneous medium with gain or loss variations," Proceedings of the
IEEE, vol. 69, no. 12, pp. 1574-1575, 1981.

[22] S. G. Johnson, et al. "Perturbation theory for Maxwell’s equations with
shifting material boundaries." Physical review E vol. 65, no. 1, p. 066611,
2002.

40 VOL. 11, NO. 1, MARCH 2022




