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Abstract
This work develops sparse polynomial models for investi-
gating the response of electromagnetic filtering structures,
when the design of the latter is affected by a number of un-
certain variables. The proposed approach describes an im-
proved implementation framework for contemporary Com-
pressed Sensing techniques, which are known for their ca-
pacity to reconstruct sparse signals with a limited number
of samples. Unlike typical implementations, the required
set of basis functions is formulated after performing an ini-
tial estimation of partial variances that, despite being com-
putationally cheap, provides sufficient information for the
impact of each variable on the output. A number of numer-
ical tests on different filter configurations verify the reliabil-
ity of the presented methodology, display its efficiency, and
unveil the performance of the considered structures, when
operated under uncertainty.

1. Introduction
Electromagnetic (EM) filtering structures appear in nu-
merous classic and modern applications spanning diverse
parts of the spectrum, including the radio- [1], microwave-
[2,3], millimeter- [4], THz- [5] and optical- [6,7] frequency
bands, to name a few representative instances. In most
cases, the consistent operation of such configurations re-
quires the compliance with specific – and, at t he same time,
probably firm – design guidelines, and deviations from the
latter are likely to cause undesirable performance degrada-
tion or even failures. Consequently, the ability to predict the
response of filtering structures under uncertainty conditions
appears to be a matter of importance, due to the necessity
for assessing key features, such as their functionality sensi-
tivity on potential manufacturing flaws.

Given the aforementioned framework, the computation
of generalized polynomial-chaos (PC) expansions [8] of
stochastic quantities of interest (QoIs) is considered an at-
tractive solution, as these are used extensively in the con-
struction of surrogate models for problems with uncertain-
ties. When a QoI depends on a small or moderate number
of random variables, PC approaches are proven to perform
more efficiently than traditional methodologies, among
which Monte-Carlo (MC) techniques [9] constitute com-
mon choices. On the other hand, these high-performance

levels of the PC expansions are not always guaranteed and
their computation may require more advanced approaches,
in case of several random inputs or expensive determinis-
tic models. This stems from the fact that the computational
cost for the determination of the pertinent expansion coef-
ficients is directly related to the number of basis functions
incorporated in the PC formulae. In general, finding effi-
cient solutions for multi-dimensional stochastic problems is
a non-trivial, but of crucial importance, issue and a number
of different solutions have been proposed, including sparse
grids [10], alternative construction methodologies for the
basis sets [11], adaptive schemes [12], etc.

Regarding the development of sparse PC models (i.e.
with a low number of non-zero terms), Compressed Sens-
ing (CS) is known to be more cost-effective than stan-
dard methodologies (e.g. least-squares techniques), pro-
vided that the PC coefficients form a sufficiently sparse vec-
tor [13]. The efficiency of CS stems from the fact that the
reconstruction of sparse vectors is possible using a limited
number of samples, which can be smaller than the num-
ber of unknowns. As regression methodologies commonly
require increased amounts of samples (two to three times
the number of unknowns) for the formulation of an over-
determined system, one easily recognizes the advantages
that CS has to offer. These capabilities have been recently
exploited with success in the context of PC methodologies
[14–16], and will be also used extensively in the present
work.

Due to constantly increasing interest, ongoing research
efforts continue to produce novel or improved solutions
for challenging problems with uncertainties. For instance,
various modern approaches for stochastic problems with
several dimensions are presented in [17]. These method-
ologies include collocation schemes that exploit Leja se-
quences with dimension-adaptive characteristics, the con-
struction of PC models with two levels of adaptivity, and the
cost-effective computation of statistical moments via low-
rank tensor decompositions. In cases with random input
variables of unknown type, [18] suggests the approxima-
tion of the output probability-density function (PDF) using
the generalized lambda distribution. The involved param-
eters are related to the inputs via PC expansions, and ac-
curate surrogate models are developed using optimization-



entailing algorithms. Regarding the sensitivity analysis
of time-dependent stochastic systems, [19] calculates the
Sobol indices over extended time periods, rather than in a
pointwise fashion, so that the least important input variables
are identified reliably and set to their deterministic nominal
values. In this context, surrogate modelling via PC expan-
sions and utilization of either spectral projection or CS may
provide a sufficient framework for computing the Sobol in-
dices. The possibility of consistently reconstructing sparse
signals using fewer samples than standard methodologies
is demonstrated in [20], by learning the measurement ma-
trix in a data-driven fashion that identifies structures other
than sparsity in the unknown vectors. A mixed ℓ1-ℓ2 reg-
ularization technique is used in [21] for the computation
of the PC coefficients, combined with a re-ordering proce-
dure for the basis function that aims to select the elements
of the basis set with the highest PC coefficients. Numeri-
cal results reveal improved convergence rates, compared to
typical sparse methods, especially for problems with high
dimensionality.

In this paper, we adopt a CS approach for the study of
stochastic problems involving filters, considering that their
responses are commonly affected by several EM or geomet-
ric factors. We propose the incorporation of an extra stage
before the computation of the PC expansion coefficients,
within which an approximate variance analysis can be con-
ducted in a cost-effective fashion. Thus, an initial estima-
tion of the importance of each input is formed, according to
which unnecessary basis functions may be dropped without
accuracy compromise, improving eventually the overall ef-
ficiency. Until today, only a limited number of works have
given attention to the truncation scheme of the PC expan-
sions, in the context of CS techniques (for instance, [16]
develops an adaptive basis-selection methodology that can
be used in conjunction with ℓ1-minimization). A number
of numerical tests display the reliability of the suggested
approach for the development of sparse PC models, when
filtering configurations operate under uncertain conditions,
and useful statistics characterizing their stochastic behavior
are computed.

2. Methodology
2.1. Polynomial-Chaos Expansions

Suppose that the QoI y is a function of d independent ran-
dom variables ξ = [ξ1 . . . ξd]

T of known type, as well as
of some deterministic variables represented by ζ (e.g. fre-
quency). A truncated PC representation of y has the form

y(ζ; ξ) ≃ ŷ(ζ; ξ) =
∑
α∈A

cα(ζ)Ψα(ξ) (1)

where α = (α1, . . . , αd) ∈ Nd
0 is a multi-index, cα are

the expansion coefficients, Ψα are the basis functions, and
A is the set of basis indices [8]. The basis functions are
constructed via

Ψα(ξ) =
d∏

i=1

ψαi
(ξi) (2)

where ψαi
is a univariate polynomial of degree αi, selected

according to the Askey scheme [8], which matches the ba-
sis functions with the distribution of the input variables for
optimum performance. In this work, we consider uniformly
distributed random variables, and the suitable choice in this
case corresponds to Legendre polynomials. The basis func-
tions are orthogonal with respect to the joint PDF,

f(ξ) =
d∏

i=1

fi(ξi) (3)

where fi(ξi) is the PDF of the i-th variable. Consequently,
it is

〈
Ψαi(ξ),Ψαj (ξ)

〉
= ∥Ψαi(ξ)∥

2
δαiαj , where

〈
Ψαi

(ξ),Ψαj
(ξ)

〉
=

∫
Ω

Ψαi
(ξ)Ψαj

(ξ)f(ξ) dξ (4)

∥Ψαi
(ξ)∥2 = ⟨Ψαi

(ξ),Ψαi
(ξ)⟩, δαiαj

= 1 if αi = αj

and δαiαj
= 0 in any other case, and Ω is the d-dimensional

random space.
Furthermore, A is constructed according to a certain

truncation rule. For example, a general and widely used
choice is described by

Aq = {α ∈ Nd
0 : ∥α∥q ≤ p} (5)

where p is the selected polynomial order and

∥α∥q = (αq
1 + . . . αq

d)
1/q (6)

with q ≤ 1. The cardinality N + 1 of A1 (q = 1) in (5),
which corresponds to the total-degree rule, is

N + 1 =
(p+ d)!

p!d!
(7)

and attains large values in case of stochastic problems with
several dimensions. The reduction of the number of ba-
sis function is possible by resorting to hyperbolic index-
ing [11], which amounts to selecting q < 1 in (5). In
this way, functions describing complex contributions are
excluded from the basis set. Furthermore, anisotropic index
sets may be constructed by enforcing a different maximum
polynomial order (p1, . . . , pd) for each variable. Such an
approach can be proven useful, when information about the
impact of each input on the QoI is already available [22]. It
is noted that the anisotropic and hyperbolic truncation rules
can be easily combined and adapted to a problem’s specific
requirements. Some representative examples of the afore-
mentioned truncation schemes when d = 3 can be found in
Fig. 1.

Finally, the availability of a PC expansion enables the
direct computation of fundamental statistics, such as the ex-
pected value and the variance of y, according to

E{y} = cα0
(8)

σ2{y} =
∑

α∈A\{α0}

c2α(ζ)∥Ψα(ξ)∥2 (9)

respectively, where α0 = (0, 0, . . . , 0).
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Figure 1: Index sets for different truncation schemes when
d = 3: (a) isotropic truncation with p = 10 and q = 1
(286 functions), (b) isotropic truncation with p = 10 and
q = 0.7 (120 functions), (c) anisotropic truncation with
p1 = 10, p2 = 8, p3 = 6 and q = 1 (139 functions), and
(d) anisotropic truncation with p1 = 10, p2 = 8, p3 = 6
and q = 0.7 (72 functions).

2.2. Compressed Sensing

The computation of the expansion coefficients appearing in
a PC series necessitates the availability of a number of de-
terministic samples yi, i = 1, . . . , Nt, for which an equal
number of input vectors ξ(i) needs to be selected. Using
(1), a system of the form

Ψc = y (10)

is derived, where

Ψ =


Ψα0

(ξ(1)) Ψα1
(ξ(1)) . . . ΨαN

(ξ(1))
Ψα0(ξ

(2)) Ψα1(ξ
(2)) . . . ΨαN

(ξ(2))
...

...
. . .

...
Ψα0

(ξ(Nt)) Ψα1
(ξ(Nt)) . . . ΨαN

(ξ(Nt))


(11)

c is the vector of expansion coefficients,
α0, . . . ,αN are the N + 1 elements of A, and
y = [y(ζ; ξ(1)) y(ζ; ξ(2)) . . . y(ζ; ξ(Nt))]T is the
vector of the output samples. In a standard line of
work, the system (10) is overdetermined by selecting
Nt = (2 ∼ 3) × (N + 1), and a typical least-squares
approach can be applied. Evidently, the computational cost
involved in the construction of y may become undesirably
large, in case of several random dimensions and/or com-
putationally expensive deterministic models. On the other
hand, CS can be selected if under-determined systems
(Nt < N + 1) are considered, as long as the vector c is

sparse (i.e. only a few elements are non-zero). Naturally,
PC expansions are rarely sparse, yet they feature expansion
coefficients with rapidly decaying magnitude in most cases.
Thus, the information regarding the stochastic properties
of a QoI is concentrated in a limited number of terms, and
a sparse formula can be deemed sufficient.

Specifically, CS approaches determine the PC coeffi-
cients by solving the ℓ0-minimization problem

ĉ = argmin
c

∥c∥0 subject to Ψc = y (12)

where ∥.∥0 is the number of non-zero elements contained
in the argument. Given that (12) is an NP-hard prob-
lem, a direct solution is not realistic. On the other hand,
an approximate solution can be found with the Orthogo-
nal Matching Pursuit (OMP), which is a greedy algorithm.
OMP features an iterative procedure, according to which
a set of active-column indices B(i) (initially, B(0) = ∅)
is enriched after the i-th iteration has been performed, un-
til the required number of non-zero coefficients is reached,
or when the residual r(i) satisfies a specific criterion (ini-
tially, r(0) = y). In more detail, the column v of Ψ that is
most correlated with the current residual, excluding those
columns whose indices are already in B(i−1), is selected at
each iteration. The index j∗ of the most suitable column is
identified via

j∗ = argmax
j /∈B(i−1)

ΨT
j r

(i−1)

∥Ψj∥2
(13)

and the active column-index set is updated by adding the
aforementioned element:

B(i) = B(i−1) ∪ {j∗} (14)

The coefficients are updated via

c(i) = argmin
∥∥∥y −Ψ(i)c

∥∥∥
2

(15)

where Ψ(i) comprises only the columns of Ψ described by
B(i). The solution of (15) is computed via least-squares.
In the final step of the iterative procedure, the residual is
updated:

r(i) = y −Ψ(i)c(i) (16)

As several studies have shown, the most significant features
of OMP are its simplicity and rapid implementation.

Alternatively, the ℓ1-minimization problem can be
solved,

ĉ = argmin
c

∥c∥1 subject to Ψc = y (17)

where ∥α∥1 =
∑d

i=1 |αi| (this problem is commonly re-
ferred to as Basis Pursuit). In case of non-exact representa-
tions, a non-zero error threshold ϵ can be defined (in order
to avoid the strict condition Ψc = y) and the minimization
problem is formulated as

ĉ = argmin
c

∥c∥1 subject to ∥Ψc− y∥2 ≤ ϵ (18)
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This is known as Basis Pursuit Denoising. In the present
study, we use the SPGL1 package [23] for performing ℓ1-
minimization, which is based on the Spectral Projected Gra-
dient algorithm [24], and has been already utilized and
tested in several pertinent publications [14, 15, 25].

2.3. Basis Selection via Variance Analysis

Typical PC approaches involve the a priori selection of the
basis set, according e.g. to the total-degree rule or a hy-
perbolic truncation scheme. Instead of choosing the basis
functions in this manner, we propose performing a prelimi-
nary screening of the input variables, so that their potential
impact on the QoI is assessed, at least in an approximate
fashion. Towards this goal, one may consider computing
the first-order Sobol indices Si, i = 1, . . . , d, as proposed
in other similar strategies [26], before proceeding to the fi-
nal calculation of the PC expansion. It is reminded that
the Sobol indices constitute a standard measure for global
sensitivity analysis. If a PC representation of the QoI y is
available, then the Sobol index that corresponds to the i-th
variable is computed via

Si =

∑
α∈Ai

c2α∥Ψα∥2

σ2{y}
(19)

where Ai = {α ∈ A : αi ̸= 0, αj ̸=i = 0}. The numerator
in (19) corresponds to the conditional variance due to the ξi
variable only, without taking into account combined inter-
actions of ξi with other variables. Evidently, computing the
variance in the denominator of (19) requires the availability
of all but one PC coefficients. To enable a more practical
solution, we assume a sparse initial PC approximation that
comprises only univariate polynomials:

A∗ = {α ∈ Nd
0 : ∥α∥0 ≤ 1, αi ≤ p} (20)

where the cardinality of A∗ is (p × d + 1), which is quite
small compared to (7). As we need the Si values just for
screening purposes, only the conditional variances in the
numerator of (19) affect the ordering (according to their sig-
nificance) of the input variables. In this way, it is possible
to identify the least significant variables at a small com-
putational cost. These variables can be safely assigned to
lower polynomial degrees, or even be treated as determin-
istic, thus reducing the cardinality of the basis set.

3. Numerical Results
We first examine a periodic-grating optical structure [27],
which is designed to produced flat, high-efficiency and
broad reflection spectra. The geometry of the considered
filter is shown in Fig. 2, and its nominal geometric param-
eters are: f1 = f3 = 0.283, f2 = 1, Λ = 846.4 nm,
d1 = d3 = 375 nm, and d2 = 175 nm [27]. We are in-
terested in investigating the properties of the reflectance for
normal incidence, as a function of the wavelength, when the
aforementioned variables are treated as stochastic. Specifi-
cally, this problem features 7 geometric random inputs with

Si

SiO2

d2

d3

Λ

f3Λ

f1Λ

f2Λ

T

Rd1

Figure 2: Geometry of the periodic-grating optical fil-
ter, depicting the geometric parameters that are considered
stochastic.

uniform distributions, in the range within ±1% of the cor-
responding mean (nominal) values. The computation of
the structure’s reflectance is performed with the Rigorous
Coupled Wave Analysis [28], a frequency-domain conver-
gent solver that has become a standard tool for problems
with periodic-grating configurations. As described earlier,
the proposed methodology features a two-stage implemen-
tation. For the initial step, the 1-D basis functions of a total-
degree PC expansion with p = 4 are selected, whose overall
number is 4 × 7 + 1 = 29 basis functions. By performing
only 27 simulations and implementing CS, an estimation of
the Sobol indices at every wavelength is derived, based on
which the selection of the three most important variables is
carried out. Next, a new, total-degree truncation set is con-
structed, considering only the dominant factors. The new
set comprises 35 basis functions, and the corresponding co-
efficients are recovered by CS and another 27 deterministic
samples. Consequently, a total of only 27 + 27 = 54 simu-
lations are performed.

Fig. 3 plots the mean value and the standard deviation
of the reflectance, when computed with a standard MC ap-
proach and two CS methodologies. The MC curves are ob-
tained after 10, 000 simulations and used as the reference
data. The comparison clearly verifies that the sparse solu-
tions provide credible statistics for the QoI, despite using
only a small number of deterministic samples. The results
also prove that, for the considered level of uncertainty, the
flatness of the reflectance is maintained to a high degree,
and the most notable variability is noted at the two ends
of the spectrum, where the transition of the reflectance be-
tween high and low values takes place. In addition, we com-
pute the PDF of the reflectance at the wavelength where
the highest standard deviation is observed (around 1.328
µm). The comparison of the different curves (computed via
kernel-density estimation [29]) is shown in Fig. 4, and good
agreement of the sparse models with the reference solution
can be noted again.

A dielectric-stack filter is examined next, which con-
sists of 10 lossless slabs, each one with a mean relative per-
mittivity ϵr = 3.5, and width equal to 1.2 cm (Fig. 5).
The slabs are placed apart, at a distance of 3.6 cm. We ex-
amine the transmission coefficient upon normal incidence,
when the ϵr of each slab varies within ±10% of the mean
value. Now, the deterministic solver is based on the finite-
difference time-domain method [30]. We select p = 3 for
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Figure 3: (a) Mean value and (b) standard deviation of the
reflectance of the periodic-grating optical filter of Fig. 2 for
normal incidence.

the initial basis set, which comprises 286 functions. The
first step of the proposed procedure enables the compu-
tation of the partial variances of all variables throughout
the considered frequency band. This action requires a ba-
sis set with only 3 × 10 + 1 = 31 functions. Unlike the
first problem, we implement a least-squares approach, and
then average the partial variances over all frequencies. In
this way, we determine each variable’s importance consid-
ering the average values, and the same reduced basis set is
used at every frequency point. In fact, we choose to con-
struct an anisotropic basis set (instead of simply rejecting
the weaker variables), where the order p is set to 3 for the
4 most important variables, to 2 for other 4 variables, and
to only 1 for the least influential factors. The resulting ba-
sis set comprises 67 elements, and the amount of random
samples is selected equal to 50 for both the OMP and the
ℓ1-minimization approaches.

Before proceeding with some numerical results for the
configuration of Fig. 5, we pay attention to the reliability
of the first stage of the proposed technique. Table I com-
pares the average partial variances, when obtained via full
total-degree PC expansions with p = 3, or the suggested
line of work. In essence, the former are used as a reference
for assessing the reliability of the latter. As the approxima-
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Figure 4: Probability-density function of the reflectance at
the wavelength of maximum variance (approximately 1.328
µm).
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Figure 5: Geometry of the dielectric-stack filter, comprising
10 slabs with stochastic electric permittivities.

tion of the partial variances is conducted using a basis set
of 31 basis functions, 62 simulations are required for the
calculation of the expansion coefficients, in the context of a
least-squares approach. For this problem, we compute the
partial variance vari(f) for the i-th variable, i = 1, . . . , 10
as a function of frequency, and then obtain the correspond-
ing averages over all frequencies f ∈ [fmin fmax], via

⟨vari⟩ =
1

fmax − fmin

∫ fmax

fmin

vari(f) df (21)

As the comparison in Table I verifies, the computation of
the partial variances with the reduced basis set can be con-
sidered reliable, in the sense that it can be used for ordering
the random variables according to their significance, de-
spite some discrepancies with the actual values, obtained
with the full PC expansion.

The mean value and the standard deviation of the trans-
mission coefficient T are shown in Fig. 6, where satisfac-
tory matching with the reference data, based on 30, 000 MC
simulations, is evident. This accuracy comes at a much
lower computational cost, since the derivation of the sparse
solution requires 50 + 62 = 112 simulations, whereas the
full PC expansion necessitates at least 2× 286 = 572 sam-
ples. It can be noted that, similarly to the previous prob-
lem, the highest variability is observed at the transition area
of the transmission coefficient, while the flatness is main-
tained in the band 2.2 − 3 GHz, as practically no vari-
ability is encountered therein. An illustration of the PC
coefficients, computed by the OMP algorithm and the ℓ1-
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Table 1: Estimated average partial variances (×1000) for
the stack-dielectric problem.

Significance Variable Full PC PC (1D bases)

1 ϵr6 5.42 6.76

2 ϵr5 5.37 6.04

3 ϵr4 3.61 4.37

4 ϵr7 3.57 4.17

5 ϵr3 2.75 3.58

6 ϵr8 2.74 3.24

7 ϵr9 1.65 2.10

8 ϵr2 1.64 1.62

9 ϵr10 0.35 0.57

10 ϵr1 0.35 0.33

minimization approach, is given in Fig. 7. It can be de-
duced that the sparse solutions maintain, to a satisfactory
degree, the most important elements of the total-degree PC
expansion, and neglect several terms of low significance at
the same time. It can be also noted that the OMP solution is
sparser than the corresponding one of the ℓ1-minimization
technique.

We also calculate the distribution of the 6-dB roll-off
frequency, whose value is affected by the uncertainty in
the electric parameters of the stack filter (Fig. 8 depicts
a fraction of different transmission-coefficient curves, com-
puted by the MC method, and illustrates this phenomenon).
A comparison of the PDFs computed via MC, OMP, and
ℓ1-minimization is depicted in Fig. 9. Although some de-
viations may be observed, compared to the results of the
previous example (probably due to the higher dimensional-
ity and stronger input variability), it appears that the sparse
polynomial surrogates correctly incorporate the most fun-
damental statistical properties of the physical QoI. Thus,
they can be safely utilized, without resorting to alternatives
with higher computational cost. It is interesting to notice
that the considered levels of uncertainty in the values of the
dielectric constants results in randomness in the 6-dB roll-
off frequencies that span a band of almost 100 MHz.

4. Conclusion
This paper has focused on developing sparse PC models
for the investigation of stochastic problems involving EM
filters with various uncertain parameters. The implemen-
tation of known CS solvers has been further facilitated by
a variance analysis at an early stage, which provides suf-
ficient information regarding the influence of each input
and enables a more consistent choice of the basis set, un-
like standard methodologies. A number of numerical ex-
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Figure 6: (a) Mean value and (b) standard deviation of the
transmission coefficient T of the dielectric-stack filter of
Fig. 5 for normal incidence.

periments have verified the validity of the proposed line of
work and exemplified its efficiency. Finally, the impact of
uncertainty on the performance of the examined filtering
structures has been assessed, and it has been deduced than
non-trivial variability may emerge, even in the presence of
weak uncertainties.
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