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Abstract 

 An efficient mode-matching manner involving physical optics 
approximation is planned for scattering from a large Isosceles 
Right Triangular Groove (IRTG) in an infinite Perfect Electric 
Conductor (PEC) plane. By considering two synthetic PEC 
walls over the groove, the tangential fields inside and outside 
the groove are expanded as the sums of infinite harmonics 
modes. These modes are matched over the IRTG and 
consequently, a system of linear equations is constructed for 
the expansion coefficients. The examination of the results 
shows that this method is not appropriate for grooves with a 
width smaller than the wavelength. Instead, for a large IRTG, 
it can reduce simulation time considerably and is in good 
agreement with time-consuming numerical methods such as the 
Finite Element Method (FEM) and the Method of Moment 
(MoM). The effects of the angle of incidence and the groove 
width on the scattering signature are investigated, too. 

1. Introduction 
The evaluating of scattered waves from cavities is a primary 
subject in many applications such as Radar Cross Section 
(RCS) reduction and Non-Destructive Testing (NDT). 
Generally, radar cross-sectional studies on different open 
cavities provide valuable information that can be used for 
target classification and identification. Also, scattering by 
electrically large components with different and periodic 
shape is becoming increasingly important due to their high 
application in optics, light scattering, nanofabrication-based 
terahertz technology, microwave diffraction and 
spectroscopy [1-4]. 
A lot of research has been done on scattering from open 
cavities in the last decade [5-14]. Most of them have been 
tried to obtain scattered waves from a rectangular groove by 
using different methods. New techniques have been 
developed to compensate for the inefficiency and 
inaccuracy of general full-wave solvers. Accuracy and time 
efficiency are significant subjects in recent studies. In the 
literature [8], a reduction in computation time was achieved 
by using a hybrid technique. In [9], a direct integral 
equation solver (DIES) has been proposed for scattering by 
an arbitrary rectangular crack. Their approach solves a 
hyper singular integral equation quickly and accurately by a 
collocation method based on Chebyshev polynomials. In 
[10], the overlapping T-block method has been used to 
obtain an accurate closed-form expression for far-field 
scattered waves from a rectangular groove.  Fourier 

transform technique for scattering from a large rectangular 
crack has also been reported in the literature [11]. 
There are few reports that have been tried to obtain the 
scattered fields by triangular grooves [12-14]. For TM-
backscattering by an IRTG, The Fourier transform 
technique has been proposed in [12]. They obtained a 
closed-form equation to compute unknown series 
coefficients by residue calculus theorem. In [13], an 
efficient method for a general-shaped open cavity has been 
projected to analyze scattered waves in TM mode. Their 
method consists of dividing an open cavity into L number 
of layers, expanding the fields in the spectral domain, and 
matching on the adjacent layers. Ramahi and Alavikia 
suggested a numerical solution to compute scattered waves 
from an arbitrary cavity for both TM and TE polarization 
[14]. Their technique combines finite-element and the 
surface integral equation methods to reduce simulation 
time.  
However, when the width of a groove is comparable to the 
wavelength of the incident waves or larger, numerical 
methods that mesh the object  surface are often time-
consuming and inefficient. In these types of numerical 
methods, when the width and depth of a groove increase, 
the computational time increases dramatically and thus, 
more memory requirements. In literature [11] and [8], two 
efficient methods based on Fourier transform and modal 
techniques have been projected to solve this problem for 
large rectangular grooves. In fact, there are basically two 
types of approach to solve the scattering problem for large 
cavities. The first type applies the high-frequency 
asymptotic techniques (for example physical optics 
approximation and shooting and bouncing rays method). 
Another type of method is known as the modal technique.  
In this paper, without using complex mathematical 
concepts, an efficient solution for TE and TM-scattering 
from a 2-D large IRTG in an infinite PEC plane is 
suggested utilizing mode-matching and physical optics 
techniques. First, we replace the half-space above the IRTG 
with two parallel artificial PEC walls that make a semi-
infinite waveguide [8]. Replacing the upper half-space with 
a parallel waveguide leads a proper physical approximation 
and considerably simplifies calculations. A comparison of 
results obtained by different methods demonstrates that this 
approximation has no significant effect on the accuracy of 
the results. To use the Mode-Matching technique, the 
tangential fields inside and outside the IRTG are expanded 
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using half range Fourier series. Mode-by-Mode fields 
matching across the groove leads to a system of linear 
equations that its coefficients can be calculated analytically. 
The linear system can be stated in matrix form and solved 
by finding the inverse of an N×N matrix that can be a time-
consuming process. Finally, some examples are presented 
and their results are compared with usual numerical 
methods such as MoM and FEM. we use this approach to 
investigate the effects of the width of IRTG and the angle of 
incidence on two-dimensional scattering patterns. 

2. Problem description 
Assume a plane wave with arbitrary polarisation illuminates 
a 2-D large IRTG filled with	𝜀# and	𝜇# as shown in Fig.1   
 
𝐻&' , 𝐸&' = 𝑧̂𝑒./0((23

4
5 ) 789:;<= 9>?:;)   𝜑A ∈ (0, 𝜋).            (1) 

 
where 	𝑘F  , 	𝜑A  and 𝑊  are the free space propagation 
constant , the angle of incidence and  the width of the 
groove, respectively. The transverse electric field 𝐸&HIJand 
magnetic field 𝐻&HIJ  in a isosceles right triangular 
waveguide can be obtained as the sum of all possible 
propagation waves [15], i.e., 
 
𝐻&HIJ, 𝐸&HIJ = 𝑧̂ ∑ ∑ 𝐸L', 𝐻L'H

'MF 𝑒3./;/N O.Q⃗S
LMA                     (2) 

 
Where M and I are the number of modes and the total 
number of wave vectors, respectively,	𝑟̂ = 𝑥𝑋N + (𝑦 +𝑊)𝑌N  
and  𝑘N'  is the incident unit wave vector. For the IRTG 
shown in Fig.1, I=8 and transverse wave propagation 
vectors are determined as following [15] 
 
𝑘N'MF,#,…[ = ∓𝛼𝑋N ∓ 𝛽𝑌N                                                        (3) 
 
 
 
 
 
 
 
 
 
 
Fig.1. The geometry of 2-D IRTG filled with a material  
ε#, µ# 
 
Where α and β are the propagation constant in the direction 
of the two coordinate axes x and y. Thus 𝐻&HIJ and 𝐸&HIJ for 
TE and TM polarizations are given as: 
 
𝐻&HIJ, 𝐸&HIJ = 𝑧∑ ∑ 𝐸L', 𝐻L'[

'MF 𝑒./;(∓a2∓b(=<c))S
LMA       (4) 

 
We apply the following the boundary conditions to the 
IRTG shown in Fig.1, 
 

⎩
⎪
⎨

⎪
⎧ 𝐸&HIJ = 0, 𝑜𝑛	𝑥 = 0	𝑎𝑛𝑑		𝑦 = 𝑥 −𝑊

𝜕𝐻&HIJ

𝜕𝑥 = 0		𝑜𝑛	𝑥 = 0	

𝜕𝐻&HIJ

𝜕𝑦 =
𝜕𝐻&HIJ

𝜕𝑥 		𝑜𝑛			𝑦 = 𝑥 −𝑊

 

 
and then the mode functions for TE and TM modes are 
obtained as: 
 

𝐸&HIJ = n𝐸oH [sin(𝛼o𝑥)
t

oMA

sin(𝛽o(𝑦 +𝑊)) 

−sin(𝛽o𝑥) sin(𝛼o(𝑦 +𝑊))],               TM Mode            (5) 
 
and 

𝐻&HIJ = n𝐻oH [cos(𝛼o𝑥)
t

oMA

cos(𝛽o(𝑦 +𝑊)) + 

cos(𝛽o𝑥) cos(𝛼o(𝑦 +𝑊))],                 TE Mode            (6) 
 
Where 𝑘# = w𝛼o# + 𝛽o# , and 	𝐸LH and 𝐻LH  are unknown 
coefficients. The equations (5) and (6) are valid for all 
values 𝛼o and 𝛽o [12]. Thus, the eigenvalues 𝛼o and 𝛽o can 
be selected similar to an isosceles right triangular 
waveguide i.e., 𝛼o =

ox
c

 and	𝛽o = w𝑘## − 𝛼o#. 
 To obtain mode functions in the half-space above the 
IRTG, we replace the upper half-space with two parallel 
PEC walls, as shown in Fig. 2 [8]. This approximation 
allows us to find simpler expressions for scattering from a 
large groove while the accuracy of the results does not 
change that much.  
The electromagnetic fields in the artificial waveguide 
outside the groove vanish along the axis of y (+y direction). 
Therefore, the transverse magnetic 𝐻&

yz and electric field 
𝐸&
yz in the artificial waveguide can be expanded as: 

 
𝐸&
yz = ∑ 𝐸oyt

oMF 𝑠𝑖𝑛(𝛼o𝑥)𝑒3}~=        TM Mode                (7) 
 
and 
 
𝐻&
yz = ∑ 𝐻oyt

oMF 𝑐𝑜𝑠(𝛼o𝑥)𝑒3}~=       TE Mode                (8) 
 
where  𝛾o = w𝛽o# − 𝑘##  and 𝐸Ly , 	𝐻Ly  are unknown 
coefficients that should be calculated. We suppose that the 
width of the groove is large enough to use high-frequency 
asymptotic techniques like physical optics approximation.  
 
 
 
 
 
 
 
 
 
Fig.2. Substituting upper half-space above a 2-D large 
IRTG with two parallel PEC walls  
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Given the structure of the problem shown in Fig.2, the 
physical optic current 𝐽��z  can be expressed as 	𝐽��z =
2𝑦� × 𝐻���o' . Where 𝐻��⃗ ��o'  denotes to the incidence tangential 
magnetic field over an open cavity. Due to the continuity of 
the tangential fields on the IRTG, the boundary conditions 
at y = 0 are given by  
 
𝐻���oy − 𝐻���oHIJ = 𝐽��z,  𝐸N��oy − 𝐸N��oHIJ = 0	,										𝑦 = 0           (9)   
 
Where 
 

  𝐻���o = �𝐻2, TM	Mode𝐻&, TE	Mode
 and  𝐸N��o = �𝐸2, TE	Mode𝐸&, TM	Mode

 

 

3. Appling Mode-Matching method 
In section 2, the tangential fields inside and outside the 
IRTG were represented as a sum of infinite harmonic 
modes. Mode-by-Mode tangential fields matching across 
the IRTG leads to an infinite system of linear equations for 
each polarization. 

3.1. TM-Polarization 

The x-components of the magnetic field inside the groove 
(𝐻2HIJ) and the artificial waveguide outside the IRTG (𝐻2

yz) 
can be written as: 
 

𝐻2HIJ(𝑥, 𝑦) =
−1
𝑗𝜔𝜇#

𝜕𝐸&HIJ(𝑥, 𝑦)
𝜕𝑦 = 

−1
𝑗𝜔𝜇#

n𝐸oH [𝛽o sin(𝛼o𝑥)
t

oMF

cos(𝛽o(𝑦 +𝑊)) 

−𝛼osin(𝛽o𝑥) cos(𝛼o(𝑦 +𝑊))]                                     (10) 
 
and 
 
𝐻2
yz = .

��0
∑ 𝐸oyt
oMF 𝛾o𝑠𝑖𝑛(𝛼o𝑥)𝑒3}~=                           (11) 

 
moreover, the x-component of the incident plane wave is 
 
𝐻2' =

9>?:;
�

𝑒./0((23
4
5 ) 789:;<= 9>?:;)                              (12) 

 
where 𝜂 = 120𝜋  is the free space impedance. We apply 
boundary conditions (9) to tangential fields at y=0 and 
construct two independent equations as follows: 
 
−1
𝑗𝜔𝜇#

n𝐸o	H [𝛽o sin(𝛼o𝑥)
t

oMF

cos(𝛽o𝑊) 

−𝛼osin(𝛽o𝑥) cos(𝛼o𝑊)] −
𝑗

𝜔𝜇F
n𝐸oy
t

oMF

𝛾o𝑠𝑖𝑛(𝛼o𝑥) 

= 2 9>?:;
�

𝑒./0(23
4
5 ) 789:;                                                 (13) 

  
and 

 
∑ 𝐸LH sin(𝛼o𝑥)t
LMA sin(𝛽o𝑊) = ∑ 𝐸Lyt

oMF 𝑠𝑖𝑛(𝛼o𝑥)      (14) 
 
To utilize the Mode-Matching technique, the functions 
sin(𝛽o𝑥)  and exp	(𝑗𝑘F  𝑥 −

c
#
¡ cos𝜑A  in equation (13) 

should be expanded using half range Fourier sine series 
(basis function 𝑠𝑖𝑛(𝛼o𝑥)) as: 
 
sin(𝛽o𝑥) = ∑ 𝑎Lot

LMF 	𝑠𝑖𝑛(𝛼L𝑥)                                   (15) 
 
and 
 
#9>?:;

�
𝑒./0(23

4
5 ) 789:; = ∑ 𝑏ot

oMF 	𝑠𝑖𝑛(𝛼o𝑥)                   (16) 
 
The coefficients	𝑎L and 𝑏L	in (15) and (16) can be easily 
calculated analytically: 
 
 𝑎Lo =

#
c∫ 𝑠𝑖𝑛(𝛼L𝑥)

c
A sin(𝛽o𝑥)𝑑𝑥 =   

¤'o(Lx3b~c)
Lx3b~c

− ¤'o(Lx<b~c)
Lx<b~c

                                             (17) 
 
and 

𝑏o =
4sin𝜑A
𝜂𝑊 ¥ 𝑠𝑖𝑛(𝛼o𝑥)

c

A

𝑒./0(23
c
# ) 789:;𝑑𝑥 = 

2𝑛𝜋𝑠𝑖𝑛𝜑A
¦§¨

©04
5 ª«¬­;3(3F)~¦¨

©04
5 ª«¬­;

(ox)5<(./0c 789:;)5
                         (18) 

 
After replacing (15) and (16) in (13), the modes in the 
equations (13) and (14) are matched and two linear 
equations are constructed for unknown parameters 𝐸oH  and 
𝐸oy as follows: 
 
𝐸oH sin(𝛽o𝑊) = 𝐸oy                                                         (19) 
 
and 
 
𝑗

𝜔𝜇#
[𝛽o cos(𝛽o𝑊)𝐸oH − n 𝐸LH 𝑎oL𝛼L𝑐𝑜𝑠(𝛼L𝑊)

t

LMF

] 

−.}~®~¯

��0
= 𝑏o                                                                   (20) 

 
We substitute 𝐸oH sin(𝛽o𝑊) in (19) for 𝐸oy  in the equation 
(20) to obtain the following equation as: 
 
𝑗𝛽o
𝜔𝜇#

cos(𝛽o𝑊)𝐸oH −
𝑗

𝜔𝜇#
n 𝑎oL𝛼L𝑐𝑜𝑠(𝛼L𝑊)
t

LMF

𝐸LH  

− .}~
��0

sin(𝛽o𝑊)𝐸oH = 𝑏o                                                 (21) 
 
The infinite sum in (13) and (21) can be truncated at	𝑚 =
𝑛 = 𝑀 and consequently, a system of linear equations in 𝑀 
unknowns is constructed. We represent it in the following 
matrix form as: 
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⎣
⎢
⎢
⎡
𝑏A
𝑏F.
.
𝑏S⎦
⎥
⎥
⎤
= ¸

𝐾AA 𝐾AF
𝐾FA 𝐾FF

⋯ 𝐾AS
𝐾FS

⋮ ⋱ ⋮
𝐾SA 𝐾SF ⋯ 𝐾SS

½

⎣
⎢
⎢
⎢
⎡𝐸A

H

𝐸FH.
.
𝐸SH ⎦
⎥
⎥
⎥
⎤
                           (22) 

 
where the matrix elements 𝐾oL  are calculated analytically 
as: 
 
𝐾oL 		= 

⎩
⎪
⎪
⎨

⎪
⎪
⎧

.b¾
��5

cos(𝛽L𝑊) −
.}¾
��0

sin(𝛽L𝑊)

− .�¾¾a¾
��5

𝑐𝑜𝑠(𝛼L𝑊),																																				𝑚 = 𝑛

− .�~¾a¾
��5

𝑐𝑜𝑠(𝛼L𝑊),																																										𝑚 ≠ 𝑛

   (23) 

3.2.  TE-Polarization 

We can repeat the above procedure for TM polarization. 
Therefore, First, the boundary conditions (9) are applied to 
the tangential fields	𝐸2HIJ,	𝐻&HIJ,	𝐸2y  and 𝐻&y	 over the IRTG 
at y=0 to construct two  following equations as: 
 

n𝐻oH [cos(𝛼o𝑥)
t

oMA

cos(𝛽o𝑊) + cos(𝛽o𝑥) cos(𝛼o𝑊)] 

−∑ 𝐻oyt
oMF 𝑐𝑜𝑠(𝛼o𝑥) = 2𝑒./0(23

4
5 ) 789:;                       (24)  

 
and 
 
1

𝑗𝜔𝜀#
n𝐻oH𝛽o cos(𝛼o𝑥)
t

oMA

sin(𝛽o𝑊) 

 
= F

.�À0
∑ 𝐻oy𝛾o cos(𝛼o𝑥)t
oMA                                            (25) 

 
Now, the functions cos(𝛽o𝑥) and exp	(𝑗𝑘F  𝑥 −

c
#
¡ cos𝜑A) 

in (24) are expanded using the base function 	cos(𝛼o𝑥) . 
Thus we take: 
 
cos(𝛽o𝑥) = ∑ 𝑎Lot

LMA 	𝑐𝑜𝑠(𝛼L𝑥)                                 (26) 
 
and  
  
2𝑒./0(23

4
5 ) 789:; = ∑ 𝑏ot

oMA 𝑐𝑜𝑠(𝛼o𝑥)                          (27) 
 
Where the expansion coefficients 𝑎Lo and	𝑏o are given by 
 
𝑎Lo =

À¾
c ∫ 𝑐𝑜𝑠(𝛼L𝑥)

c
A cos(𝛽o𝑥)𝑑𝑥 =                       

                                            

Á
¤'o(Lx3b~c)
Lx3b~c

+ ¤'o(Lx<b~c)
Lx<b~c

, 𝑚 ≠ 0
¤'o(b~c)
b~c

, 𝑚 = 0
                           (28) 

 

and 
 
𝑏o =

#À~
c ∫ 𝑐𝑜𝑠(𝛼o𝑥)

c
A 𝑒./0(23

4
5 ) 789:;𝑑𝑥 =                   

𝑗𝑘F𝑊 cos𝜑A𝜀o
¦§¨

©04
5 ª«¬­;3(3F)~¦¨

©04
5 ª«¬­;

(ox)5<(./0c 789:;)5
                  (29) 

 
where 𝜀o = 1	if 𝑛 = 0 otherwise	𝜀o = 2. After substituting 
(26)-(27) in (24), for each mode, we can obtain two 
independent equations as follow: 
 
b~
.�À5

sin(𝛽o𝑊)𝐻oH =
}~
.�À0

𝐻oy                                          (30) 
 
and 
 
cos(𝛽o𝑊)𝐻oH − ∑ 𝐻LH cos(𝛼L𝑊)𝑎oLt

LMF − 𝐻oy = 𝑏o(31)  
 
By substituting the equations (30) for  𝐻oy in the equation 
(31), an infinite system of linear equations is constructed for 
the unknown coefficients 𝐻LH  as: 
 

cos(𝛽o𝑊)𝐻oH −
𝛽o𝜀F
𝛾o𝜀#

𝐻oH − n 𝐻LH cos(𝛼L𝑊)𝑎oL

t

LMF

= 𝑏o 

                                                                                         (32)   
We truncate the infinite sums at m=n=M. Finally, the matrix 
form of equation (32) is given below 
 

⎣
⎢
⎢
⎡
𝑏A
𝑏F.
.
𝑏S⎦
⎥
⎥
⎤
= ¸

𝐿AA 𝐿AF
𝐿FA 𝐿FF

⋯ 𝐿AS
𝐿FS

⋮ ⋱ ⋮
𝐿SA 𝐿SF ⋯ 𝐿SS

½

⎣
⎢
⎢
⎢
⎡𝐻A

H

𝐻FH.
.
𝐻SH ⎦

⎥
⎥
⎥
⎤
                           (33) 

 
where the matrix elements 𝐿oL are computed as: 
 
𝐿oL 		= 

⎩
⎪
⎨

⎪
⎧ cos(𝛽L𝑊) −

b¾À0
}¾À5

− cos(𝛼L𝑊)𝑎LL, 𝑚 = 𝑛

			
− cos(𝛼L𝑊)𝑎oL,																																										𝑚 ≠ 𝑛

         (34) 

 

3.3. 2-D RCS calculation 

The coefficients 𝐻oH  (TE case) and 𝐸oH  (TM case) are 
obtained by finding the inverse of the square matrixes in 
(22) and (33) and then coefficients 	𝐻oy  and 𝐸oy  can be 
determined certainly. Now, we can compute the far-field 𝐻&¤ 
and 𝐸&¤  easily by knowing the tangential fields over the 
groove(y=0) as [9]: 
 
𝐻&¤ = −𝑓�(𝜌)𝑦F ∫ 𝐸2(𝑥Å, 𝑦Å = 0)𝑒./02Æ 789:;c

A 𝑑𝑥′        (35) 
 
and 
 
𝐸&¤ = 𝑓�(𝜌)sin𝜑 ∫ 𝐸&(𝑥Å, 𝑦Å = 0)𝑒./02Æ 789:;c

A 𝑑𝑥′        (36) 
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Where 

 
𝑓�(𝜌) = 𝑧̂𝑒3./;È𝑒.

É
ÊË /0

#xÈ
                                                (37) 

 
By replacing (7) and (8) in (34) and (35) we have: 
 
𝐻&¤ = −𝑓�(𝜌)𝑦F ∑ 𝐻Ly ∫ 𝑐𝑜𝑠(𝛼L𝑥)𝑒./02

Æ 789:;c
A 𝑑𝑥′t

LMF  (38) 

and 
 
𝐸&¤ = 𝑓�(𝜌)sin𝜑∑ 𝐸Ly ∫ 𝑠𝑖𝑛(𝛼L𝑥)𝑒./02

Æ 789:;c
A 𝑑𝑥′t

LMF  (39) 

 
The integrals in (38) and (39) have an analytic solution like 
the formulas (18) and (29). Finally, the 2-D radar cross-
section is computed as follow: 
 
𝜎 #Í
J® = lim

È→t
2𝜋𝜌	 |ÒÓ

Ô|5

ÕÒÓOÕ
5                                                 (40) 

 
and  
 
𝜎 #Í
JS = lim

È→t
2𝜋𝜌	 |®Ó

Ô|5

Õ®ÓOÕ
5                                                 (41) 

  

4. Results 

In this section, some comparisons are presented to show the 
validity and accuracy of the proposed method. The method 
is verified by comparison with Finite Element Method 
(FEM) and Method of Moment (MoM) solutions obtained 
using commercial software FEKO and HFSS respectively 
and then used to investigate the effects of the problem 
parameters on the scattering patterns. 
 Fig. 3 illustrates variations of the tangential electric fields  
𝐸2 and 𝐸& for TE and TM polarizations respectively, when 
x-position changes at y=0 for an IRTG (Fig.1) of 𝑊 = 4𝜆 
filled with a dielectric  𝜀Q# = 2.5 − 𝑗0.2 and 𝜇Q# = 1.8 −
𝑗0.1	. Also, the angles of incidence for TE and TM modes 
𝜑A = 60� and 𝜑A = 90�  have been selected respectively. 
These results are obtained by truncating the infinite series at 
M=16 in equations (21) and (31). More experiments show 
that the results converge fast when 𝑁 > #c

Ü;
w|𝜀Q#𝜇Q#| [8]. 

Here, we select 𝑁 = 𝑖𝑛𝑡[#c
Ü;
w|𝜀Q#𝜇Q#|] + 1  to get better 

accuracy. Where 𝑖𝑛𝑡[. ]  denotes the integer part of the 
argument. As shown in Fig. 3, the results are in good 
agreement with the numerical solutions of FEM and MoM. 
The effect of the width of the IRTG on the echowidth at the 
normal incidence angle is shown in Figs. 4(a) and 4(b). In 
this example, the specification of the IRTG is similar to the 
previous example. Taking the FEM and MoM as the 
reference, it can be deduced from the results shown in Fig. 4 
that the proposed procedure is just accurate for a wide 
IRTG. These results become invalid for an IRTG that its 

width is smaller than the wavelength of a plane wave (𝑊 <
𝜆). However, we can say that these results are acceptable 
for  𝑊 = 𝜆 and as the groove widens, the results become 
more accurate. When the width of IRTG increases, the 
echowidth increases as well.  
 

 
(a)   For TE mode at 𝜑A = 60� 

 

 
(b)   For TM mode at 𝜑A = 90� 

 
Fig.3. The distribution of the electric fields 𝐸2 and 𝐸& over a 
filled IRTG at y=0 (𝜀Q# = 2.5 − 𝑗0.2 , 𝜇Q# = 1.8 − 𝑗0.1	and 
𝜀F = 𝜀A	, 𝜇F = 𝜇A	 ) with 𝑊 = 4𝜆 . (a) TE mode, (b) TM 
mode. 
 
As mentioned, the numerical methods that use meshing 
techniques are generally very time-consuming for large 
grooves. In such structures, the use of the suggested method 
can increase the computational speed significantly. To study 
the computational efficiency of the suggested method, we 
have measured the simulation time of each method used in 
Fig. 3. The simulation times for this method, MoM and 
FEM are measured about 100ms, 14min, and 23 min, 
respectively. As expected, there is a significant difference 
between the simulation times of this meshless method and 
the other numerical methods that mesh the surface of an 
object, including MoM and FEM. Consequently, while 
using this method is not suitable for a small groove, it can 
be reduced the simulation time for a large groove with the 
desired accuracy.  
To determine the 2-D scattering signature of a large IRTG, 
we have plotted bistatic echowidth for various observation 
angles in the polar coordinate when 𝑊 = 2𝜆, 3𝜆, 4𝜆	 and 5𝜆 
at normal the incidence of angle (	𝜑A = 90�) for TE and 
TM modes. Figs. 5 shows, how the bistatic echowidth 
patterns change when the width of IRTG increases. 
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(a) TE mode 
 

 
 

(b) TM mode 
 
Fig.4. The echowidth of a dielectric-filled IRTG (𝜀Q# =
2.5 − 𝑗0.2  , 𝜇Q# = 1.8 − 𝑗0.1	 and 𝜀F = 𝜀A	, 𝜇F = 𝜇A ) at 
normal incidence angle for various groove widths. (a) TE 
mode, (b) TM mode. 
 
An inspection of the results in Figs. 5 demonstrates that for 
TE and TM polarizations when the groove width increases, 
the side lobes increase and the width of the main lobes 
decreases while little energy is inserted to the main lobe. 
There is a direct relation between the width of an IRTG and 
the number of the side lobes. The number of side lobes for a 
groove width with an integer number of wavelengths	𝑊 =
𝑁𝜆 , equals 2𝑁 − 2 . At the normal incidence angle, the 
bistatic echowidth patterns for both modes are nearly 
symmetrical and the maximum scattering cross-section is 
observed in the vertical direction.  
To examine the effect of the angle of incidence on scattering 
patterns, we have calculated the bistatic echowidth as shown 
in Fig. 6 for TM and TE modes. These results are obtained 
for a filled IRTG when 𝑊 = 4𝜆  and 𝜀Q# = 2.5 − 𝑗0.2  , 
𝜇Q# = 1.8 − 𝑗0.1	  at the incidence angles 	
𝜑A = 30� , 𝜑A = 45� , 𝜑A = 60�  and 𝜑A = 90� . As can be 
seen in these figures, the maximum scattering happens in the 
incidence wave direction and the scattered power density on 
the side of the incidence angle is greater than the opposite. A 
study on the results shown in Figs. 5 and 6 demonstrates that 
the scattering signature directly related to the width of IRTG 
and the angle of incidence. At oblique incidence, the side 
lobes that are below the incidence angle (𝜑 < 𝜑A ) are 
broader than other side lobes. However, the side lobes 
become weaker and wider when the observation angle gets 
close to the groove surface.  

It is noting that the solution described in this paper can be 
utilized to predict the scattering signature by variant 
electrically large structures. 
 
𝜑A = 90� TE mode TM mode 

 
 
𝑊 = 2𝜆 

  
 
 
𝑊 = 3𝜆 

  
 
 
𝑊 = 4𝜆 

  
 
 
𝑊 = 5𝜆 

  
 
Fig.5. Bistatic echowidth patterns at 	𝜑A = 90�  and 	𝜑A =
60� for the various IRTG widths	𝑊 = 𝜆, 2𝜆, 3𝜆, and4𝜆 
 
𝑊 = 4𝜆 TE mode TM mode 

 
 
𝜑A = 30� 

  
 
 
𝜑A = 45� 

  
 
 
𝜑A = 60� 

  
 
 
𝜑A = 90� 

  
 
Fig.6. Bistatic echowidth patterns for	𝑊 = 4𝜆 at various the 
angles of incidence 𝜑A = 30�, 45�, 60�and 90�.  
 

5. Conclusion 
Scattering by a large IRTG in an infinite PEC plane was 
investigated using a simple yet effective method that is a 
combination of the mode-matching and physical optics 
techniques. The solution consists of replacing half-space 
above IRTG with two PEC walls, expanding the tangential 
fields inside and outside IRTG, matching modes over the 
groove and determining the coefficients of expansion via 
solving a system of linear equations. The suggested manner 
was verified by comparison with FEM and MoM solutions. 
The time-consuming and the limitation of the method and 
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the effects of the angle of incidence and the groove width 
on the scattering signatures of a large IRTG were examined. 
This method is not suitable for a groove width smaller than 
the wavelength. The simulation time of this method is 
considerably low and it can be utilized for scattering studies 
on electrically large structures that are important in many 
design analyses for such fields as light scattering, optical 
device, terahertz technology, sensing, and nano-technology. 
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