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Abstract

An efficient mode-matching manner involving physical optics
approximation is planned for scattering from a large Isosceles
Right Triangular Groove (IRTG) in an infinite Perfect Electric
Conductor (PEC) plane. By considering two synthetic PEC
walls over the groove, the tangential fields inside and outside
the groove are expanded as the sums of infinite harmonics
modes. These modes are matched over the IRTG and
consequently, a system of linear equations is constructed for
the expansion coefficients. The examination of the results
shows that this method is not appropriate for grooves with a
width smaller than the wavelength. Instead, for a large IRTG,
it can reduce simulation time considerably and is in good
agreement with time-consuming numerical methods such as the
Finite Element Method (FEM) and the Method of Moment
(MoM). The effects of the angle of incidence and the groove
width on the scattering signature are investigated, too.

1. Introduction

The evaluating of scattered waves from cavities is a primary
subject in many applications such as Radar Cross Section
(RCS) reduction and Non-Destructive Testing (NDT).
Generally, radar cross-sectional studies on different open
cavities provide valuable information that can be used for
target classification and identification. Also, scattering by
electrically large components with different and periodic
shape is becoming increasingly important due to their high
application in optics, light scattering, nanofabrication-based
terahertz  technology, microwave diffraction and
spectroscopy [1-4].

A lot of research has been done on scattering from open
cavities in the last decade [5-14]. Most of them have been
tried to obtain scattered waves from a rectangular groove by
using different methods. New techniques have been
developed to compensate for the inefficiency and
inaccuracy of general full-wave solvers. Accuracy and time
efficiency are significant subjects in recent studies. In the
literature [8], a reduction in computation time was achieved
by using a hybrid technique. In [9], a direct integral
equation solver (DIES) has been proposed for scattering by
an arbitrary rectangular crack. Their approach solves a
hyper singular integral equation quickly and accurately by a
collocation method based on Chebyshev polynomials. In
[10], the overlapping T-block method has been used to
obtain an accurate closed-form expression for far-field
scattered waves from a rectangular groove.  Fourier

transform technique for scattering from a large rectangular
crack has also been reported in the literature [11].

There are few reports that have been tried to obtain the
scattered fields by triangular grooves [12-14]. For TM-
backscattering by an IRTG, The Fourier transform
technique has been proposed in [12]. They obtained a
closed-form equation to compute unknown series
coefficients by residue calculus theorem. In [13], an
efficient method for a general-shaped open cavity has been
projected to analyze scattered waves in TM mode. Their
method consists of dividing an open cavity into L number
of layers, expanding the fields in the spectral domain, and
matching on the adjacent layers. Ramahi and Alavikia
suggested a numerical solution to compute scattered waves
from an arbitrary cavity for both TM and TE polarization
[14]. Their technique combines finite-element and the
surface integral equation methods to reduce simulation
time.

However, when the width of a groove is comparable to the
wavelength of the incident waves or larger, numerical
methods that mesh the object surface are often time-
consuming and inefficient. In these types of numerical
methods, when the width and depth of a groove increase,
the computational time increases dramatically and thus,
more memory requirements. In literature [11] and [8], two
efficient methods based on Fourier transform and modal
techniques have been projected to solve this problem for
large rectangular grooves. In fact, there are basically two
types of approach to solve the scattering problem for large
cavities. The first type applies the high-frequency
asymptotic techniques (for example physical optics
approximation and shooting and bouncing rays method).
Another type of method is known as the modal technique.
In this paper, without using complex mathematical
concepts, an efficient solution for TE and TM-scattering
from a 2-D large IRTG in an infinite PEC plane is
suggested utilizing mode-matching and physical optics
techniques. First, we replace the half-space above the IRTG
with two parallel artificial PEC walls that make a semi-
infinite waveguide [8]. Replacing the upper half-space with
a parallel waveguide leads a proper physical approximation
and considerably simplifies calculations. A comparison of
results obtained by different methods demonstrates that this
approximation has no significant effect on the accuracy of
the results. To use the Mode-Matching technique, the
tangential fields inside and outside the IRTG are expanded



using half range Fourier series. Mode-by-Mode fields
matching across the groove leads to a system of linear
equations that its coefficients can be calculated analytically.
The linear system can be stated in matrix form and solved
by finding the inverse of an NN matrix that can be a time-
consuming process. Finally, some examples are presented
and their results are compared with usual numerical
methods such as MoM and FEM. we use this approach to
investigate the effects of the width of IRTG and the angle of
incidence on two-dimensional scattering patterns.

2. Problem description

Assume a plane wave with arbitrary polarisation illuminates
a 2-D large IRTG filled with €, and u, as shown in Fig.1
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where k; , ¢, and W are the free space propagation
constant , the angle of incidence and the width of the
groove, respectively. The transverse electric field ERTand
magnetic field HXRT in a isosceles right triangular
waveguide can be obtained as the sum of all possible
propagation waves [15], i.e.,

HiFT BT = 230 ey Ey Hyng 740807 @
Where M and I are the number of modes and the total
number of wave vectors, respectively, 7 = xX + (y + W)Y
and k; is the incident unit wave vector. For the IRTG
shown in Fig.l, /=8 and transverse wave propagation
vectors are determined as following [15]
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Fig.1. The geometry of 2-D IRTG filled with a material
€212

Where a and B are the propagation constant in the direction
of the two coordinate axes x and y. Thus HRT and EZRT for
TE and TM polarizations are given as:
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We apply the following the boundary conditions to the
IRTG shown in Fig.1,

38

EIRT =0, onx=0and y=x—W

aHIRT
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dx
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and then the mode functions for TE and TM modes are
obtained as:

EIFT = " B} [sin(a ) sin(B(y + W)

—sin(B,x) sin(a, (y + W))], TM Mode (5)
and

HIFT = )" Hi[cos(ax) cos(Bu(y + W) +
cos(B, 1) cos(a, (y + W))]. TE Mode ©6)

Where k, =+/aZ+ B2, and E. and H}, are unknown
coefficients. The equations (5) and (6) are valid for all
values a,, and [, [12]. Thus, the eigenvalues a,, and §3,, can
be selected similar to an isosceles right triangular

Vk5 —a2.

To obtain mode functions in the half-space above the
IRTG, we replace the upper half-space with two parallel
PEC walls, as shown in Fig. 2 [8]. This approximation
allows us to find simpler expressions for scattering from a
large groove while the accuracy of the results does not
change that much.

The electromagnetic fields in the artificial waveguide
outside the groove vanish along the axis of y (+y direction).
Therefore, the transverse magnetic HZU Pand electric field
EJ? in the artificial waveguide can be expanded as:

. . nm
waveguide i.e., a, = W and §,, =

EZUP — ZJ?:I E‘rllj Sin(anx)e_yny TM Mode (7)
and
qup - Z;?:l H‘rllj COS(anx)e_yny TE Mode (8)

where v, =+/B2—k3 and EY , HY are unknown
coefficients that should be calculated. We suppose that the
width of the groove is large enough to use high-frequency
asymptotic techniques like physical optics approximation.
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Fig.2. Substituting upper half-space above a 2-D large
IRTG with two parallel PEC walls



Given the structure of the problem shown in Fig.2, the
physical optic current fop can be expressed as fop =

29 X Hl,,. Where ﬁtian denotes to the incidence tangential
magnetic field over an open cavity. Due to the continuity of
the tangential fields on the IRTG, the boundary conditions
aty =0 are given by

A — HiGE = Jops Eten —Elfh =0,  y=0 )
Where

P {Hx, TM Mode JB = {Ex, TE Mode

tan [ TE Mode "¢ “tan = E_ TM Mode

3. Appling Mode-Matching method

In section 2, the tangential fields inside and outside the
IRTG were represented as a sum of infinite harmonic
modes. Mode-by-Mode tangential fields matching across
the IRTG leads to an infinite system of linear equations for
each polarization.

3.1. TM-Polarization

The x-components of the magnetic field inside the groove

(HIRTY and the artificial waveguide outside the IRTG (H.")
can be written as:
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and

(11)
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moreover, the x-component of the incident plane wave is
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where 1 = 1207 is the free space impedance. We apply
boundary conditions (9) to tangential fields at y=0 and
construct two independent equations as follows:

j;i Z E}, [By sin(a,x) cos(B,W)

—a,sin(B,x) cos(a,W)] — LZ EVy,sin(a,x)

=2 sin @o ejh(x—%) cos @g

(13)

and
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Yin=0 Em sin(anx) sin(B,W) = Xy Ep, sin(ay,x)

(14)

To utilize the Mode-Matching technique, the functions
sin(B,x) and exp (jk; (x —%) cos @, in equation (13)
should be expanded using half range Fourier sine series
(basis function sin(a,x)) as:

Sin(ﬁnx) = Z:ri:l Amn Sin(amx) (15)
and
200y keI C0S00 = F© p sin (e, x) (16)

n

The coefficients a,, and b,, in (15) and (16) can be easily
calculated analytically:

Ay, = %fow sin(a,,x) sin(B,x)dx =
sin(mm—BrW) _ sin(mm+B,W)
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and
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After replacing (15) and (16) in (13), the modes in the
equations (13) and (14) are matched and two linear
equations are constructed for unknown parameters E} and
EY as follows:

E} sin(B,W) = EV (19)
and
j [ee]
(,()_ [ﬁn COS(ﬁnW)E,Il - E;nanmamcos(amw)]
Uz . —
JYnEn _
— L =, (20)

We substitute E sin(8,W) in (19) for EY in the equation
(20) to obtain the following equation as:

jB N
cos(B,W)El ——
Wi Bn n Wy

2
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The infinite sum in (13) and (21) can be truncated atm =
n = M and consequently, a system of linear equations in M
unknowns is constructed. We represent it in the following
matrix form as:
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where the matrix elements K,,,,, are calculated analytically
as:

Jbhm JYm _.
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Jammm _
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(23)
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3.2. TE-Polarization

We can repeat the above procedure for TM polarization.
Therefore, First, the boundary conditions (9) are applied to
the tangential fields EIRT, HIRT EU and HY over the IRTG
at y=0 to construct two following equations as:

Z H} [cos(a,x) cos(B,W) + cos(B,x) cos(a,W)]

. w.
— Y HY cos(a,x) = 2102 05 %o (24)
and
1 © ,
- Z HLB, cos(a,,x) sin(B,W)
Jwé
n=0
= —— %o HY ¥y cos(a,x) (25)

jwey

Now, the functions cos(,x) and exp (jk; (x - %) CoS @)

in (24) are expanded using the base function cos(a,x).
Thus we take:

COS(Bat) = £ Gy €O (@) 20
and
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Where the expansion coefficients a,,,, and b,, are given by
Apn = S—me cos(a,x) cos(B,x)dx =
mn w Jo m n

sin(mr—BW) | sin(mn+pW)
mmn—BuW mm+BpW
sin(ﬁnW)’ m=0
BnW

,m#*0
(28)
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and
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where €, = 1if n = 0 otherwise &, = 2. After substituting
(26)-(27) in (24), for each mode, we can obtain two
independent equations as follow:

Bn

Jwéz

sin(B,W)H., =X~ HU
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(30)

and
COS(.BnW) H111 - Z:ri:l H1In COS((XmW) Apm — HTll] = bn(31)
By substituting the equations (30) for HY in the equation

(31), an infinite system of linear equations is constructed for
the unknown coefficients H, as:

e
cos(B, W) HL — %H{l - Z H. cos(a,,W) a,,, = b,
ne2 m=1

(32)
We truncate the infinite sums at m=n=M. Finally, the matrix
form of equation (32) is given below

bo Loo Lox Lom Hy
1
bll — Ly : Ly Ll:M I-{l (33)
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where the matrix elements L,,,,, are computed as:
an =
cos(B,W) — % —cos(a W)aum m=n
me2
(34)

—cos(amW) apm, m#n

3.3. 2-D RCS calculation

The coefficients H, (TE case) and E, (TM case) are
obtained by finding the inverse of the square matrixes in
(22) and (33) and then coefficients HY and EY can be
determined certainly. Now, we can compute the far-field HJ
and E; easily by knowing the tangential fields over the
groove(y=0) as [9]:

HS = —f(p)y, [} Ex(x',y' = 0)efesx'cos@ody’  (35)
and

s _ § ; w 1Al — jkix' cos ’
E; = f(p)sing [ E,(x',y" = 0)e/*s #o dx (36)
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By replacing (7) and (8) in (34) and (35) we have:
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HS = —f(p)y1 Xom=1 HY, foW Cos(“mx)ejklx’ cos®o dx' (38)

and

ES = f(p)sing Tinet B [, sin(apx)el™s*’ 090 dx' (39)

The integrals in (38) and (39) have an analytic solution like
the formulas (18) and (29). Finally, the 2-D radar cross-

section is computed as follow:

. |HZ >
oig = gl_l;lc’)lo 2mp |Hzi|2 (40)
and
2D _ li |EZ| 41
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z

4. Results

In this section, some comparisons are presented to show the
validity and accuracy of the proposed method. The method
is verified by comparison with Finite Element Method
(FEM) and Method of Moment (MoM) solutions obtained
using commercial software FEKO and HFSS respectively
and then used to investigate the effects of the problem
parameters on the scattering patterns.

Fig. 3 illustrates variations of the tangential electric fields
E, and E, for TE and TM polarizations respectively, when
x-position changes at y=0 for an IRTG (Fig.1) of W = 44
filled with a dielectric &, =2.5—;0.2 and p,, = 1.8 —
j0.1. Also, the angles of incidence for TE and TM modes
@o = 60°and ¢, = 90° have been selected respectively.
These results are obtained by truncating the infinite series at
M=16 in equations (21) and (31). More experiments show

that the results converge fast when N > % l&ra o] [8].

Here, we select N = int] leratt2|] +1 to get better

2w
Ao
accuracy. Where int[.] denotes the integer part of the
argument. As shown in Fig. 3, the results are in good
agreement with the numerical solutions of FEM and MoM.

The effect of the width of the IRTG on the echowidth at the
normal incidence angle is shown in Figs. 4(a) and 4(b). In
this example, the specification of the IRTG is similar to the
previous example. Taking the FEM and MoM as the
reference, it can be deduced from the results shown in Fig. 4
that the proposed procedure is just accurate for a wide
IRTG. These results become invalid for an IRTG that its
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width is smaller than the wavelength of a plane wave (W <
A). However, we can say that these results are acceptable
for W = A and as the groove widens, the results become
more accurate. When the width of IRTG increases, the
echowidth increases as well.
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(a) For TE mode at ¢, = 60°
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Fig.3. The distribution of the electric fields E,, and E, over a
filled IRTG at y=0 (¢, = 2.5 —j0.2, y,, = 1.8 — j0.1 and
&1 = &, U1 = Yo ) with W =44. (a) TE mode, (b) TM
mode.

As mentioned, the numerical methods that use meshing
techniques are generally very time-consuming for large
grooves. In such structures, the use of the suggested method
can increase the computational speed significantly. To study
the computational efficiency of the suggested method, we
have measured the simulation time of each method used in
Fig. 3. The simulation times for this method, MoM and
FEM are measured about 100ms, 14min, and 23 min,
respectively. As expected, there is a significant difference
between the simulation times of this meshless method and
the other numerical methods that mesh the surface of an
object, including MoM and FEM. Consequently, while
using this method is not suitable for a small groove, it can
be reduced the simulation time for a large groove with the
desired accuracy.

To determine the 2-D scattering signature of a large IRTG,
we have plotted bistatic echowidth for various observation
angles in the polar coordinate when W = 24, 34,44 and 54
at normal the incidence of angle ( ¢, = 90°) for TE and
TM modes. Figs. 5 shows, how the bistatic echowidth
patterns change when the width of IRTG increases.



It is noting that the solution described in this paper can be
utilized to predict the scattering signature by variant
electrically large structures.
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Fig.4. The echowidth of a dielectric-filled IRTG (¢, =
25—-j02 , u, =18—j0.1 and & =&y, = o ) at
normal incidence angle for various groove widths. (a) TE
mode, (b) TM mode.

An inspection of the results in Figs. 5 demonstrates that for
TE and TM polarizations when the groove width increases,
the side lobes increase and the width of the main lobes
decreases while little energy is inserted to the main lobe.
There is a direct relation between the width of an IRTG and
the number of the side lobes. The number of side lobes for a
groove width with an integer number of wavelengths W =
NA, equals 2N —2. At the normal incidence angle, the
bistatic echowidth patterns for both modes are nearly
symmetrical and the maximum scattering cross-section is
observed in the vertical direction.

To examine the effect of the angle of incidence on scattering
patterns, we have calculated the bistatic echowidth as shown
in Fig. 6 for TM and TE modes. These results are obtained

for a filled IRTG when W =447 and ¢, = 2.5—j0.2 ,
Uy = 1.8 —j0.1 at the incidence angles
@y = 30°, o = 45°, ¢, = 60° and ¢, = 90°. As can be
seen in these figures, the maximum scattering happens in the
incidence wave direction and the scattered power density on
the side of the incidence angle is greater than the opposite. A
study on the results shown in Figs. 5 and 6 demonstrates that
the scattering signature directly related to the width of IRTG
and the angle of incidence. At oblique incidence, the side
lobes that are below the incidence angle (¢ < ¢,) are
broader than other side lobes. However, the side lobes
become weaker and wider when the observation angle gets
close to the groove surface.

@, = 90° TE mode TM mode

W= 22 . N
0 ’ 180 0

W =31

W = 42 150 30
180 0

W =521 150 a0

Fig.5. Bistatic echowidth patterns at ¢, = 90° and ¢, =
60° for the various IRTG widths W = A, 24, 31, and4A1
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Fig.6. Bistatic echowidth patterns for W = 44 at various the
angles of incidence ¢, = 30°,45°,60°and 90°.

5. Conclusion

Scattering by a large IRTG in an infinite PEC plane was
investigated using a simple yet effective method that is a
combination of the mode-matching and physical optics
techniques. The solution consists of replacing half-space
above IRTG with two PEC walls, expanding the tangential
fields inside and outside IRTG, matching modes over the
groove and determining the coefficients of expansion via
solving a system of linear equations. The suggested manner
was verified by comparison with FEM and MoM solutions.
The time-consuming and the limitation of the method and




the effects of the angle of incidence and the groove width
on the scattering signatures of a large IRTG were examined.
This method is not suitable for a groove width smaller than
the wavelength. The simulation time of this method is
considerably low and it can be utilized for scattering studies
on electrically large structures that are important in many
design analyses for such fields as light scattering, optical
device, terahertz technology, sensing, and nano-technology.

References

[1] Alnaiemy, T. A. Elwi, N. Lajos, and T. Zwick, “A
Systematic Analysis and Design of a High Gain
Microstrip Antenna based on a Single EBG Layer,”
IEEE INFOCOMMUNICATIONS JOURNAL, volume
10, pp. 1-9, December, 2018,
A. Elwi and Y. Alnaiemy, “Nano-Scale Vee Yagi-Uda
Antenna based Nano Shell-Silver Coated Silica for
Tunable Solid State Laser Applications”, Diyala Journal
of Engineering Sciences, volume 12, no. 1, pp: 85-93,
January 2019,
A. Elwi, “Toward Plasmonic UC-PBG Structures based
SWCNTs for Optoelectronics Applications”, Diyala
Journal for Pure Science, volume 14, issue 1, part 1,
April 2018
Palmer, C., Diffraction Grating Handbook, Newport
Corporation, Rochester, NY (2004)
K. Barkashli and J. L. Volakis, "TE scattering by a two-
dimensional groove in a ground plane using higher-
order boundary conditions, "IEEE Trans. Antennas
Propag., vol. AP-38, no. 10, pp. 1421-1428, Sep. 1990.
Park, T. J., H. J. Eom, and K. Yoshitomi, “An analysis
of transverse electric scattering from a rectangular
channel in a conducting plane,” Radio Science, Vol. 28,
663-673, 1993.
Y. Shifman, and Y. Leviatan, "Scattering by a groove in
a conducting plane a PO-MoM hybrid formulation and
wavelet analysis," IEEE Trans. Antennas Propag., vol.
49, no. 12, pp. 130-136, Dec. 2001
M. A. Morgan, “Mode expansion solution for scattering
by a material filled rectangular groove,” Progr.
Electromagn.Res., vol. PIER 18, 1998
M. Bozorgi, A. Tavakoli, G. Monegato, S. H.H.
Sadeghi, and R. Moini, “Backscattering from a Two
Dimensional Rectangular Crack Using FIE,” IEEE
Trans. Antennas Propagat., vol. 58, no. 2, pp. 552-564,
Feb. 2010
[10]Cho, Y. H., "TM plane-wave scattering from finite
rectangular grooves in a conducting plane using
overlapping T-block method," IEEE Trans. Antennas
Propagat., Vol. 54, No. 2, 746-749, 2006
[11]G. Bao, W. Sun, "A fast algorithm for the
electromagnetic scattering from a large cavity,” SIAM
J. Sci. Comput., vol. 27, No. 2, pp. 553-574, 2005.
[12]M. A. Basha, S. K. Chaudhuri, S. Safavi-Naein “A
Fourier Expansion Solution to Plane Wave Scattering
from Multiple Isosceles Right Triangle Grooves in
Perfect Conducting Plane,” Photonic Applications in
Devices and Communication Systems, Vol. 5970, Oct.
2005.

(2]

(3]

(4]
(5]

(6]

(7]

(8]

[9]

43

[13]M. A. Basha, S. K. Chaudhuri, S. Safavi-Naeini, and H.
J. Eom, "Rigorous formulation for electromagnetic
plane-wave scattering from a general-shaped groove in
a perfectly conducting plane," J. Opt. Soc. Am. A Vol.
24, No. 6, 1647-1655, 2007.

[14]B. Alavikia, OM. Ramabhi, "Finite-element solution of
the problem of scattering from cavities in metallic
screens using the surface integral equation as a
boundary constraint,” Journal of the Optical Society of
America. Vol. 26 No. 9, 1915-1925, 2009.

[15]P.L. Overfelt, D.J. White, "TE and TM modes of some
triangular cross-section waveguides using superposition
of plane waves,” IEEE Trans Microwave Theory Tech.
Vol. 34, pp. 161-167, Jan. 1986.



