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Abstract

The advent of the Monte Carlo methods to the field of EM
have seen floating random walk, fixed random walk and
Exodus methods deployed to solve Poisson’s equation in
rectangular coordinate and axisymmetric solution regions.
However, when considering large EM domains, classical
Monte Carlo methods could be time-consuming because
they calculate potential one point at a time. Thus, Markov
Chain Monte Carlo (MCMC) is generally preferred to other
Monte Carlo methods when considering whole-field
computation. In this paper, MCMC has been applied to solve
Poisson’s equation in homogeneous and inhomogeneous
axisymmetric regions. The MCMC results are compared
with the analytical and finite difference solutions.

Index Terms — Poisson’s equations, axisymmetric problem,
inhomogeneous media, homogeneous medium, Markov
Chain Monte Carlo (MCMC)

| Introduction

Poisson’s equation is an elliptic partial differential
equation that frequently appears in many scientific problems
such as electrostatics, surface reconstruction, gravitational
problems, and semiconductors [1]-[2]. Due to its
convenience, Poisson’s equation in rectangular coordinate
has been extensively studied using different numerical
methods [3]-[5].

Stochastic methods such as the Monte Carlo techniques
are nondeterministic numerical methods unlike the
deterministic numerical methods such as finite difference,
finite elements and moment methods used in solving
mathematical and physical problems [6]. So Monte Carlo
methods such as Floating random walk, Fixed random walk
and Exodus methods have been used for solution of
Poisson’s equation in rectangular and axisymmetric regions
[7]-[12]. With advancement in memory technology, MCMC
method can handle EM problems in large solution domains
within shortest possible time while serving as a viable
alternative to other numerical methods.

In this paper, the solutions of axisymmetric Poisson’s
equations with the Markov Chain Monte Carlo are
presented. Cases of homogencous and inhomogeneous
axisymmetric Poisson’s equations are discussed. Simulation
results are reported and they are compared with the finite

difference method and analytical solutions. The solutions are
found to be in close agreement.

IL. Poisson’s Equation

The Poisson’s equation in solution region R subject to
Dirichlet boundary condition is given as

V2V=—g(p,z) = _P?S (1)

where pg is the surface charge; & =absolute permittivity

and V = Vp on Boundary B.

Assuming a square grid, the step size is given as
Ap=Az=A. Thus the finite difference equivalent of

equation (1) is given as [13]

Vip.2) = paVlp+4,2) +p, Vip-4,.2)
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If p=id and z= jA, the transition probabilities, p,,,
Pz— Pp+ and p p— for axisymmetric homogeneous

domains are given as [14]
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The term 4g is the source term that must be recorded at

each step of the random walk.

The system is stochastic, thus
Pz+ T Pz—+Ppr+Pp- =1 )

At p =0, the finite difference equivalence of equation (2)
becomes [14]

V(0,2)=p, V(4,2)+p. V(0,z+4)+ p. V(0,2-4)
)
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where Po+ =g > Pp- =0, Py =P, =7

6



V L.

)

V4

Figure 1. Interface between media of dielectric permittivity

gpand ¢, [7].

I11. Inhomogeneous Media

Inhomogeneous media occur when two or more media have
variations in dielectric permittivity. The Figure 1 shows
transition probabilities at a node at the interface between two
dielectric permittivity &jand &, .

. oV oV

For the z=constant interface, &, —- =g, —2, and the
z 0z

transition probabilities at the interface are determined as

[14]:
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Similarly, for p =constant interface, £ % _&2 %

pop p op’
and the transition probabilities are given as [15]:
& A
=—|1+— (7a)
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g, Y|
=2 |I-= (7b)
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1
pz+:pz—:Z' (7C)
In this paper, z=constant interface is used for the

inhomogeneous problem discussed in the section V.
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IV. Markov Chain Monte Carlo

Given a sequence of random variables X (0 ),X (1>X (n)
with probability distribution of x () determined by the
probability distribution of X ") [16]-[22]. The sequence is
referred to as a Markov Chain with time-invariant
conditional probability distributions. Markov chains are
mathematical models that remember only the most recent
past. In this paper, the Markov chain is the random walk
while the discrete states are the grid nodes. The transition
probability P, is defined as the probability that a randomly

walking particle at node i will move to node jand it is
expressed as,

P, = P(xn+l =J| X0 X1 Xy ): (8)
P(x,., =jlx,) jeX,n=012,..

The transition probabilities are derived from the finite

difference equivalence equation and they correspond to the

random walks that form the background to the MCMC

method.

The transition probability P is defined as

Py Py Py
p— Py Py Py )
Py Py Py
P is stochastic and it is given by,
ZPU- =1, ieX (10)

jeX

If n foare free (non-absorbing) nodes and n p are fixed

(absorbing) nodes, the size of P is n X 7 given as
n=ng +np (11)

Also, n p are numbered first and »n f are numbered last,

then 7 X n transition matrix, P becomes
I 0
P=
R Q
where

nygxnp R matrix is the probabilities of moving from non-

(12)

absorbing nodes to absorbing ones;
ngxng Q matrix is the probabilities of moving from one

non-absorbing node to another;



I'matrix is the identity matrix representing

the

Ny >xng

transitions between absorbing nodes

(B =1and B; =0)
n,xn /.0 matrix is the null matrix indicating no transitions
from absorbing to non-absorbing nodes.

From equation 3, the elements of matrix Q at nodes in the
p # 0 region are obtained summarily as

1 .
e if i is directly connected to j

(2184'-1]’ if i is directly connected to i+1
i

(13)

2i—1
( 18' j if i is directly connected toi—1
i

0, ifi=j oriisnotdirectly connected to j

Similarly, from equation 5, the elements of matrix Q for
nodes at the line of Symmetry, p =0, are obtained as

%, if i=0 and is directly connected
to jand j—1
4 .. o
0, = rt if i=0 and is directly connected (14)

toi+1

0, ifi=j or i isnotdirectly connected

toj

The elements of matrix Rij are obtained in the same manner

from equations (13) and (14) except that j is an absorbing
node.

The fundamental matrix, N for any absorbing Markov chain
is given as,

N=(I-Q)" (15)

where N ij is the average number of times that the randomly

walking particle starting at node 7 will pass through node j
before being absorbed.

The absorption probability matrix B is thus
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B=NR (16)

where n £Xnp B; matrix is the probability of moving

from non-absorbing node i to absorbing node ;. The B
matrix is stochastic and it is given as

"p
D By=1 i=12.,n, (17)
J=1

Thus,

(18)

where V 1 and V p are the free and fixed nodes potentials

respectively.

2
The term Gf: ATg (p,z) is the vector of interior point

contributions to be recorded at every step of the random
walk [13]. The first term in RHS of equation (18), BVp is

used to evaluate the Laplace’s equation. The second term,
NGy in equation (18) is used for the analysis of Poisson’s
equation provided that Vp =(0. Otherwise, the equation

(18) is used for analysis of Poisson’s equation for prescribed
potential, Vp #0.

V , the first

np’
term in the RHS of equation (18), Vf = BVp becomes

In terms of the prescribed potentials ¥}, V,,...,

V=3BV, i=1,2,..n, (19)
j=1

where V; is the potential at any free node i. The Equation

(19) provides solution at all the free nodes at once.

In this paper, Poisson’s equation in homogeneous and
inhomogeneous axisymmetric domains is presented where
the boundary (prescribed) potentials are zeros, that is,
\% p= 0. So the equation (18) reduces to

Ve = NG (20)

where V [ are the free nodes potentials;

N is the fundamental matrix;
G f is the vector of the contributions of interior

points.
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Figure 2. Axisymmetric Homogeneous Domain Approximation of a
cylindrical tank of radius a and height 4.

V.

A.  Simulation Results for Axisymmetric Homogeneous
Poisson’s Equation

Simulation Results

Poisson’s equation in axisymmetric homogeneous domain is

given as:
ii(p 8_VJ+
pop\’ op

Subject to boundary conditions:

o )
~ . (22)
Z

V(a,z)=0; V(a,h)=0; V(a,0)=0and
Z—::Oat p=0.

Suppose the axisymmetric domain of an earthed metal
cylindrical tank of radius @ and height & shown in the Figure
2 is completely filled with a charged liquid such as
hydrocarbon. The Neumann boundary condition is imposed
at the line of symmetry while the Dirichlet boundary
conditions are imposed on the remaining three boundaries
with zero potential. The analytical solution to the problem is
presented in [8] as:

1 - cosh (/1,1 z)

sinh(/in z)
sinh (2, h)

2pg g Jy (inp)

gpéra n=l /13Jl (/’tna) +

Vp.z)= [cosh (2,h) 1]
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Table 1. Parameters for Poisson’s Equation in Axisymmetric
Homogeneous Domain.

Parameter Value
Ps 10°¢/m?
a Im
h 2m
3 2.0¢,

where A, are the roots of .J 0 (ﬂna)z 0.
J 0 and J | are Bessel functions of first kind, order

zero and one respectively.

With the background theory of the MCMC method
discussed in the preceding section, all the simulations in this
paper are carried out. Using the parameters in the Table 1,
the results for the potential distributions along
p=05m,0<z<2m, p=0,0<z<2m (line of symmetry)
and that along p=0.9m,0<z<2m, are reported in the

Figures 3(a)—(c). Similarly, the potential distribution along
z=1,0< p<1m, the surface plot and contour plot for all

the grid nodes are presented in the Figure 3(d)—(f).

In the Table 2, the MCMC results for some randomly
selected grid points are compared with the finite difference
solution and analytical solution. The MCMC solution is, as
evident, more accurate than the finite difference solution
even after the step size is reduced from 0.05m to 0.025m as
shown in the Table 2.

However, the number of iterations for the finite
difference method increased from 500 to 5000 with the step
size reduction. For problems with larger domain size, this
could increase the computation time and memory
requirement significantly. The solution to the same problem
using the floating random walk Monte Carlo method with
different domain size is reported in [8].



Table 2. Comparison for Analytical, FDM and MCMC for Poisson’s Equation in
Axisymmetric Homogeneous Domain.

FDM FDM MCMC MCMC
Coordinate Analytical (KV) (KV) KV) KV)
(p, z ) (KV) A=005 A=0.025 A=0.05 A=0.025
Tteration=500 Tteration=5000
(0.25,0.5) 86.870 86.042 86.784 86.486 86.849
(0.5,0.5) 71.730 71.212 71.715 71.409 71.743
(0.75, 0.5) 44.080 43.881 44.130 43.942 44.141
(0.5,0.75) 83.662 83.019 83.643 83.030 83.677
(0.5, 0.25) 46.838 46.543 46.834 46.701 46.851
© Potential Distribution (KV) 120 F“oten!i‘al Dis!‘ribu!i?n (KV) - l?otential Dist‘ributiz‘)n (KV)
80
100
60 80 -
g 50 § s
3 w0l £ e0f ]
% “ — - Analyical Soluion g e :B;"V““As:é”g;g % _ ?gzy»maf:'gtg’{;m
* 2 — — — McMmC: A;?).?)zzx - 40 — — — MeMc: A=002m ¢ ~ T MCMC: A=0025m
10 ol
-100 02 0‘6 ov‘s 1‘ 1.2 1‘4 1‘6 1}8 2 00 o‘z 0‘4 o‘s 0.‘5 112 14 1.‘6 1.‘8 2 750 0‘2 0.‘4 o.‘e o.‘s 1 1.‘2 1.‘4 1.6 1.‘3 2
z(m) z(m) z(m)
@ ) (©)
120 Potential Distribution (KV)
‘ ‘ ‘ ‘ ‘ Potential Distribution (KV) 0
100 4 100
120
g i | 5 o 80
E a0r — %~ Analytical Solution 1 § % 60
" — — — MCMC: A=0025m § "
0 3 2% :Z
20 . . . . . . .

0

0.1

0.3 0.4 0.5 0.6 0.7
rho(m)

(d)

08 09

2 4 6 8 10 12 14 16
Nodes along rho-axis

®

Figure 3. Potential Distribution along (a) p = 0.5m, 0 < z < 2m (b) Line of symmetry, p=0,0<z<2m (¢) p=09m,0<2z<2m (d) z=1,0< p<1lm

(e) Surface plot (f) Contour Plot for Poisson’s equation in Homogeneous Axisymmetric Domain.
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Figure 4. Inhomogeneous Axisymmetric Solution Region.

B. Simulation Results for Axisymmetric
Inhomogeneous Poisson’s Equation

Poisson’s equation in axisymmetric inhomogeneous domain
is given as [14], [23]-[24]:

2
1 0 oV, oV,
——(p—lJ+ 21 __Ps 24)
pop\  op oz 3

2
1 8 v, oV
— 25| 2g =0 (25)
popl  op oz

Subject to boundary conditions (B.C):
V(a.z)=0;V,(a,b+c)=0;¥(a,0)=0;V, =V, z=b;
oV, oY

=g, —,z=band 8—V:O at p=0.
Oz Oz on

Suppose an earthed metal cylindrical tank is partly filled
with a charged liquid such as hydrocarbon as shown in the
Figure 4. The problem is described mathematically in
equations (24) — (25). From the Figure 4, region z>b is
filled with gas, posing Laplace’s equation problem while
z < bregion is filled with charged hydrocarbon, constituting
Poisson’s equation. The analytical solution for the problem
is presented in [14], [23]-[24]:

E 2Ps J (ﬂnp)[cosh(/lnb) - l]sinh[/in (b +c— z)]
n=t Kyl
z>2b
M[cosh(ﬂ b)cosh(/?. c)
V(p.z)= . K, & "
> — s 1o (app) + &y sinh(2,b)sinh(2,c)
P Enfr - cosh(}.n c)] - cosh(ﬂ.nz) +1
z<bh

(26)

where K, = sinh(/inb)cosh(ﬂnc)+ g, cosh(/lnb)sinh(/lnc);
R, = goaliJl (lna); A, are the roots of J (Ana) =0.

J, and J, are Bessel functions of first kind, order zero

and one.

With the parameters in the Table 3, the MCMC in this
section is essentially the same as in the previous section
except that the transition probabilities at the media interface
are described by the equations (6). The potential
distributions along p=0.5m,0<z<2m, p=0,0<z<2m
(line of symmetry) and p =0.9m,0 < z < 2m, are reported in

the Figures 5(a)—(c). Also, the potential distribution at the
media interface, z=1,0< p <1m, surface and contour plots

are presented in the Figure 5(d)—(f). The solution to the same
problem using finite difference method and Exodus method
are presented in [7] and [14].

The MCMC solutions for selected grid points are
compared with the FDM and analytical solution as in the
Table 4. With A=0.05m, the MCMC solution is much

more accurate than the FDM when compared with the
analytical solution. Further reduction in A from 0.05m to
0.005m for the FDM with 700,000 iteration steps gives
accurate solution that agrees with the MCMC and analytical
solutions.

However, the computation time for the FDM increased
from 0.0253seconds to 7mins and 30seconds compared to
MCMC which is 0.06281seconds. The MCMC agrees
perfectly with the analytical solution while the FDM
requires further reduction in step size to converge to the
analytical solution.

Table 3. Parameters for Inhomogeneous
Poisson’s Problem.

Parameter Value
Ps 107°C/ m?
a Im
b=c 1m
4 €0
& 2 2 08 0
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Table 4. Comparison for Analytical, FDM and MCMC for Axisymmetric

Inhomogeneous Problem.

FDM FDM
(KV) (KV) MCMC
Coordinate Analytical 4=0.05m 4=0.005m KV)
(pz) (KV) Iteration=500 Iteration=100,000 A4=0.05m
(0.25, 0.3) 57.8821 56.7096 57.8192 58.0019
(0.35,1.5) 19.3922 17.7028 19.2520 19.7284
(0.5, 1.05) 51.4958 47.3810 51.1197 52.2268
(0.6, 1.6) 9.6358 8.7791 9.5643 9.8021
(0.8, 0.6) 34.8676 34.0749 34.8509 34.8935
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Figure 5. Potential Distribution along (a) p = 0.5m, 0 < z < 2m (b) Line of symmetry, p=0,0<z<2m (¢c) p=09m,0<z<2m

(d) Media interface, z =1, 0 < p < 1m (e) Surface plot (f) Contour Plot for Poisson’s equation in Inhomogeneous Axisymmetric Domain.
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VI. Conclusion

Poisson’s equation has been extensively studied using
different numerical methods and analytical method for few
simple cases. Thus, for complex problems, there is a need
for continuous development of simple and efficient
numerical methods. Since the introduction of probabilistic
method such as Monte Carlo method to the field of
electromagnetics, several Monte Carlo methods developed
such as floating random walk, fixed random walk and
Exodus method have been used to solve Poisson’s equation,
notably in rectangular coordinate and axisymmetric solution
regions. However, these methods calculate potentials one
point at a time and are time-consuming when solving
complex electromagnetic problems. In this paper, the
MCMC method which is an improvement on the classical
Monte Carlo method has been applied to solve Poisson’s
equations in axisymmetric region in homogeneous and
inhomogeneous regions. The MCMC solutions reported in
this paper are compared with analytical and finite difference
method. In the case of homogeneous problem, the MCMC
method agrees with the analytical and the finite difference
method with difference in computation time being only a
fraction of seconds. In the case of inhomogeneous problem,
the MCMC method agrees perfectly with the analytical
solution. However, further reduction in step size is required
for the finite difference solution to converge to the analytical
solution with attendant increase in iteration steps and
computation time.
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