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Abstract

Modal analysis for the directional coupler is presented in
this paper. The analysis is based on the mode-matching
technique. The theory is verified by Ansoft HFSS software
at a directional coupler with standard X-band (WR 90)
rectangular waveguide ports. Element values of equivalent
circuit model are computed by using the S-parameters
obtained from the presented method in this paper. In
addition, this paper has corrected two formulations used in
two previous works which have been published.

1. Introduction

Duo to its equal power splitting, high isolation, low
VSWR and accurate 90 phasing, the directional coupler [1]
is a very attractive microwave circuit element for many
applications such as in the duplexer, balance mixers, broad
band-band switches, and H-plane magic tee[2,3].

The structure of a narrow wall directional coupler is shown
in Fig. 1, the two waveguides are coupled through the slot
in the narrow wall. The key to designing the coupler is to
obtain the width of the slot and the width of the coupling
region [4, 5], so a large number of directional coupler
simulated to find out the best one which realizes a -3dB
coupler. This process is a time-consuming course. Therefore
fast computing method is needed to analyze the
transmission characteristic of the directional coupler. This
paper uses the mode-matching technique directly to design
the directional coupler. The design method is based on the
field expansion into the normalized incident and scattered
waves [6]-[9]. The theory yields the modal S-matrix of the
directional coupler directly.

There are a few works which have obtained equivalent
circuit of the waveguide directional coupler with a large
aperture. Hirako et al. proposed a new approach which uses
a transformer to the equivalent circuit for this structure [10],
but in this paper, capacity and inductor are used instead of
the transformer. In this paper is presented an accurate
circuit model for the structure. The topology of the model is
the same as that introduced by Marcuvitz [11]. This method
calculates the admittance matrix of the directional coupler
from its scattering matrix that is obtained by the mode-
matching technique.

2. Design of the directional coupler

2.1. Modal analysis

The geometry of the narrow wall directional coupler is
shown in Fig. 1, the two waveguides are coupled through
the slot in the narrow wall.

The directional coupler is decomposed into five regions
(Fig. 1(b)), and discontinuity change only in waveguide
width. The total scattering matrix of the directional coupler
is formulated by suitable direct combination of the related
individual modal scattering matrices.
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Figure 1: Configuration of the directional coupler.

Because there is no y wvariation introduced by this
discontinuity, a TEZ, wave incident in the main waveguide
lexcites only TEZ, waves. Therefore, for each subregion v=
I 1L, ITL, IV, and V, the fields [12]:
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AL, DI and ALY are the unknown amplitude coefficient of

the reflected TE7, modes in waveguides 1, 2, and 4,
respectively. Also, A4l CII and AY, are the unknown
amplitude coefficient of the transmitted TEZ, modes in
waveguides 3, 2, and 5, respectively.

In the references [8] and [9], authors have used negative
coefficient for % in (2-a, ¢) and (1-a) in the cases p=Il and V,
respectively. By using formulations, boundary conditions at
x = —%and x = —a, would not be satisfied. In this paper,
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has shown in the equations (2-d) and (2-e), coefficient of %

has been changed from negative to positive.
The field expansion equations obtained from (1) and (2) in
subregions 1, 2 and 4 are:
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Matching of the tangential field components at z=z) are:
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Multiply (6-a) with sin (znTn (x + a,)) integrate the equation
1
over (-ai,a1), we get(for simplify z=z1=0):
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Multiply (6-b) with sin ("= (x +3)) and sin (%= (x — )
integrate the equation over (_‘11'_%) and (%,al) ,

respectively we get:
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When the same procedure is done at z=z», equations (10)-
(12) will be obtain:
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In all of the above relations, n=1, 2, ...N.

By solving equations (7)-(12) for N=K=L using Matlab
software, the amplitudes of modes are obtained. Scattering
matrix S° can be obtained by using the method proposed in
[8] according to the amplitude of modes. Then the overall
scattering matrix can be obtained by the direct combination
of all the local scattering matrixes S¢ and S¥. Where SV is
the scattering matrix of waveguide I, III, IV and V, and can
be written as:

S¥ = Diag[e o] (13)
where L is the distance of discontinuity to the port of
waveguide.

2.2. Numerical results

For the verification of the theory, the scattering parameters
of the directional coupler with the parameters of a=22.9mm,
t=1mm, and z2-z1=36mm are calculated and compared with
Ansoft HFSS software (Fig. 2). The results agree well with
that obtained by MMM (mode-matching method) in this
paper. According to the obtained results, there is a good
convergence for N=4 with 0.3 percent error. Phase
characteristic of the directional coupler is shown in Fig. 3
that confirm the precise of 90° phasing.

3. Equivalent circuit

The circuit model of the directional coupler with admittance
parameters is shown in Fig. 4. For deriving an equivalent-
circuit representation, the admittance matrix (Y) of the
structure under consideration is computed by:

[Y] = [Yo]l/2 'I:?:HYO ]1/2
with the normalized admittance matrix:

(14)
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Figure 2. Magnitude of the scattering coefficients directional
coupler.
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Figure 3. Phase characteristic of the designed directional

coupler.

S -1
[¥]=(-[sDx([1]+[s) (15)
[S] is the related scattering matrix of the directional coupler
computed by the MMM [I] is the unit matrix; and [Yo] is a
square block diagonal matrix:

9.98 9.99

Y, 0 0 0
0 YY" 0 o0
[Yo]= ° (16)
%4
0 0 Y, 0
0 0 0 Yy

where the elements of the Y{ (i=I, III, V ,IV) diagonal
matrices are:
. . p

Yo(nn) =Y, =—>

op
The element values of the equivalent circuit in Fig. 4 are:
Y, =2(Y); = Y1) = 2(Yy5 — i) (a7)
Yy =2(Y2 = Y13) = 2(Y34 — Yi3) (18)
Fig. 5 indicates the circuit element values obtained from the
MM solutions, while at Fig. 5: G==Real(Y.), Ba=Image(Ya),
Gv=Real(Yv), and Bv=Image(Ys).
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Figure 4. The equivalent circuit for the directional coupler
with admittance parameters
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Figure 5. The equivalent circuit parameters for directional
coupler with a=22.9mm, t=Imm and z2-z;=36mm.

The circuit model of the directional coupler with lumped
elements is shown in Fig. 6. Magnitudes of the elements
have been shown in Figures 7 and 8.
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Figure 6. The equivalent circuit for the directional coupler
with lumped elements
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Figure 7. The equivalent inductance of the directional
coupler
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Figure 8. The equivalent Capacities of the directional

coupler

4. Conclusion

A mode-matching method is presented to the modal analysis
of the directional coupler. The explained theory is confirmed
at scattering parameters of the directional coupler by HFSS
software. Furthermore, in this paper, a novel equivalent
circuit was presented that its element values are computed
by using the S-parameters obtained from the presented
method in this paper.
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