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Abstract 
The behavior of the superconducting fault current limiters 
SFCL used in Electrical Network is largely determined by 
the geometry properties and the type of the bulk 
superconductors used. In this work we present a numerical 
analysis of the electromagnetic and the thermal behavior of 
the SFCL and the influence of geometrical properties of the 
bulk superconductors of rectangular shape used in an 
electrical network The results are obtained from a three-
dimensional computation code, developed and implemented 
under MATLAB environment where the formulation in 
magnetic vector potentials A and electrical scalar potential 
V are adopted to solve the electromagnetic problem and the 
heat diffusion formulation is also adopted to solve the 
thermal problem. The coupling is ensured by an alternating 
algorithm and the numerical resolution of the problem is 
ensured by the method of the finite volumes in its three-
dimensional version in order to avoid certain problems of 
numerical convergence linked to the strongly nonlinear 
character of the problem to be solved. 

1. Introduction 
     The use of fault current limiters designed from 
superconducting materials of high critical temperature has 
made it possible to limit the fault currents in the electrical 
networks. In the event of a short circuit, the latter must not 
only be able to withstand this fault regime and act as natural 
current regulators, but also reduce the mechanical and 
thermal stresses experienced by the network [1]. 
     These limiters offer the advantage on the one hand, to be 
invisible in the rated or rated speed and to be able to limit 
the fault currents in a very short response time compared to 
conventional current limiters or conventional circuit 
breakers [2]. These advantages, which are specifically 
offered by current limiters designed from high critical 
temperature superconductors, have led to their insertion with 
large suctions in medium and high voltage power grids [3]. 
It is not possible during a test to try all the possible 
configurations of short-circuit on a network, according to the 
type of network (overhead or underground), according to the 
impedance of the fault, and according to the power of the 
network. It is therefore interesting to have modeling tools to 
simulate the behavior of a superconducting current limiter 

and to extrapolate the results obtained to other short-circuit 
configurations and to other network voltage levels. In this 
context, several simulation works have been proposed. In 
some of these works, the behavior of the superconductor is 
simulated as a vary-resistance [2], [5-6] where the 
superconducting material changes from non-dissipative state 
characterized by zero resistance in the rated regime of the 
network to a non-dissipative state. Very dissipative state 
characterized by a high resistance in the case of faults that 
can appear during the operation of the electrical network 
[15-16-17]. These simple models developed do not 
satisfactorily reflect the actual behavior of the 
superconductor in its intermediate state, particularly the 
FLUX-FLOW and FLUX CREEP regimes. For this, other 
microscopic models have been proposed in order to 
satisfactorily describe the FLUX-FLOW and FLUX CREEP 
regimes [4], [9]. In these models, the Maxwell equations are 
adopted and coupled to the heat diffusion equation, however 
the electromagnetic and thermal problems are solved in the 
case of one-dimensional [7] see bi-dimensional [8]. These 
models cannot properly simulate superconducting current 
limiters, typically of type II.  
For this, we propose in this paper a three-dimensional 
mathematical-numerical model dedicated mainly to the 
modeling of fault current limiters. This model presents the 
results of the simulations of the magnetic and thermal 
behavior of the superconducting current limiter before and 
during the process of limitation. 
 
 

2. Formulation 
To model the magnetic behavior of the presented problem, 
we adopted the formulation in magnetic vector potentials A 
and in electric scalar potential V, this one is described by 
the formulation below. 
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  and  represent respectively the magnetic reluctivity and 
the electrical conductivity of the superconductor. 
Concerning the apparent electrical conductivity of the 
superconducting material, in its non-dissipative state, it is 
defined by the ratio of J on E [11] and [12], this ratio is 
deduced from the characteristic E-J of the superconductor 
given by the relation. 

With
                         (2) 

This relation reflects the superconductors Flux-Flow and 
Flux-Creep regimes that is to say if the superconductor is in 
a non-dissipative state, to complete the expression of the 
electrical conductivity of the superconductor in the 
dissipative regime. Add an additional term  which 
translates the increase in the resistance of the 
superconductor. Thus, the apparent electrical conductivity of 
the superconductor is deduced by the relation. 
 

                (3) 

Where JC and EC respectively represent the density of the 
critical current and the critical electric field. According to 
relation (3), the apparent conductivity of the superconductor 
depends on the electric field E and the temperature T 
reached within the material. The electric field E will be 
determined from the resolution of the electromagnetic 
problem described by the partial differential equation 
presented by the formulation (1). The temperature will be 
determined from the resolution of the heat diffusion 
problem presented by 
 
 

                 (4) 

 

Where λ(T), ρ, Cp(T) are respectively the thermal 
conductivity in (W / K / m), the density in (Kg / m3) and the 
specific heat of the material in (J / K / Kg), W is a power 
density in (W / m3), it expresses all the losses generated in 
the superconducting current limiter expressed by 

W = E.J                      (5) 

     In the results of the simulations presented, the thermal 
and the electrical properties depend on the temperature as 

mentioned in the equations (1), (2), (3), (4). The Models 
describing this dependence are presented in [14]. 
The resolution of the system of equations 1 and 4 solves 
electromagnetic and thermal problems. These are defined by 
strongly nonlinear equations. To solve such a problem, 
several methods have been used mainly finite element 
method [4-9], it can not ensure the convergence of the 
problem to be solved especially during the presence of a 
superconducting material where have used a power type law 
to define electrical conductivity (Equation 2). To avoid this 
type of problem we used the finite volume method in its 
three-dimensional version. [13][14]. the adopted mesh is of 
Cartesian or structured type, it consists of elementary 
volumes of hexahedral or cubic form. For each volume Dp 
of hexahedral shape, we associate a so-called main node P 
and six facets: e and w in the direction x, n and s in the 
direction y, t and b in the z direction (Fig.2).  
The neighboring volumes of Dp are represented by their 
close neighboring nodes: E and W along the x, N and S axis 
along the y, T and B axis along the z axis [13, 14]. 
 

 
 

Figure 1: Elementary finished volume 
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(7) 

    To calculate the derivative terms in (6) and (7), we 
consider in our study a linear variation of the magnetic 
potential and the temperature across the integration facets of 
the finite volume. After integration, we arrive at a system of 
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algebraic equation below that will be solved by an algebraic 
method such as the Gauss-Seidel method that will be 
adopted in our problem. The integral of equations (6) and 
(7) leads to the following algebraic equations [13-14]:  
 

(8) 

(9) 

       (10)

 

         (11)
      

The electromagnetic and thermal coupling is ensured by the 

alternating coupling model.   
  

3. Presentation of simulation parameters 
 
The basic principle of the current limiter involves the 
properties of YBaCuO [10-11] which vary considerably 
depending on the temperature. YBaCuO is a superconductor 
having a critical temperature TC of the order of 92 K. 
This part sets up the choices made on the materials and 
properties that will be used for the simulations that will 
follow. Figure 2 shows the description of the pellet model. 
 
 

 
 
 
 
 
 
 
 

 
 

Figure 2: The description of the pellet model.  

 
The following tables gather the geometrical parameters and 
characteristics of the material studied YBCO by our 
simulation code. 
 

Table 1: Geometrical properties of bulk superconductors 
used in our simulations. 

Size of the bulk 
superconductors 

Lx 
[mm] 

Ly 
[mm] 

 Lz 
[mm] 

 

Type A 4 4  4  
Type B 6 6  6  
Type C 8 8  8  
Type D 10     10  10  

 
 

Table 2: Parameters of the YBaCuO bulk. 
Symbol Quantity value 

Tc Critical 
temperature 

 

92K 

T0 

 
Ec 

Coolant 
temperature 

 
Critical electric 

field 

77 K 
 

1×10-4V/m 

Jc Critical current 
density at 92 K 

5×107A/m2 

 
n0 

 

 
Exponent n at 

77 K under 
zero field 

 

 
20 
 

Icc Maximum 
short-circuit 

current 

16KA 

 

 
 

4. Numerical results and discussion 
 
In this first simulation part, it is considered that the current 
limiter is essentially formed by different superconducting 
pellets, it is the transition by overflow of the critical current 
that initiates the transition that must be fast enough to 
effectively limit the current and be homogeneous so as not 
to damage the pellet. 
 
 

 
 

Figure 3: Waveform of the applied short-circuits current. 
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4.1. Spatial distribution of the density of the current J 
within the superconducting pellets 

 

 
Figure 4: Current density distribution of the J in the pellet A at 

t=0.06 S. 
 
 

 
(a) 

 

 
(b) 

 

 
 

(c) 
 

 
Figures 5: Current density distribution of the J at t=0.06 S 
               (a) Pellet B, (b) Pellet C and (c) Pellet D. 

 

Figures 4, (a), (b) and (c) illustrate the spatial distribution of 
the currents in the superconducting pellets at time t = 0.06 s, 
given that their critical current density is considered Jc = 5 
× 107 A / m2. It appears from these results, that the current 
density reaches its maximum with a high concentration in 
the center of the pellets A, B and C, in contrast in the pellet 
D the phenomenon is not identical, the current density is 
concentrated stronger in the peripheries of the latter, this is 
explained by the fact of its size. 
The choice of the value of the critical density Jc of the 
superconducting pellets has a decisive influence on the 
temporal variation of the current density in the latter. 
For this reason, we have shown in Figure 6 the results of 
simulation of the variation of the ratio J / Jc as a function of 
time for different values of Jc, respectively for Jc = ( 
5,6,7,8,9) × 107 A / m2 in the pellet A. 
 

 
 

Figure 6: The variation of the ratio J / Jc of the pellet A for 
different values of Jc as a function of time. 

 
There are significant differences in the variation of this ratio 
as a function of time [10]. 
   The figure 7 shows the variation of the J / Jc ratio for the 
different superconducting pellets A, B, C and D as a 
function of time with Jc = 9 × 107 A / m2. It is clear that for 
this rate of Jc, the superconducting limiter intervenes faster 
in a very short time even before the short circuit current 
reaches its maximum during the first half cycle. It also 
appears that the chip A is more advantageous and has given 
more performance of a desired superconducting limiter. The 
advantage of a thin layer is its very fast transition; the 
current is limited for a J / Jc ratio generally less than two. It 
is thus a very efficient material for the limitation of the short 
circuit current. 
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Figure 7: The variation of the J / Jc ratio for the different 

superconducting pellets A, B, C and D as a function of time 
with Jc = 9 × 107 A / m2 

 
There are significant differences in the variation of this ratio 
as a function of time this is mainly due to different sizes of 
the selected superconducting pellets. In addition, a 
significant increase in the temporal variation of the current 
density in the pellets A and B, but with less growth for the 
pellets C and D. Which means, that for Jc = 9 × 107 A / m2, 
the ratio J / Jc increases considerably during the first half of 
the value substantially equal to 1.8 to a value of about 3 in 
the sixth alternation for the pellet A and 1.7 to 2.8 for the 
pellet B, In the pellet C and D, this ratio takes the values of 
1.6 to 2.3 and 1.5 to 1.7, respectively, from the first 
alternation to the sixth alternation. 
 

4.2. Spatial distribution of temperature T within the 
superconducting pellets 

 
 
 
Figure 8: The variation of the temperature in the different 
pellets as a function of time. 

 
 
Figure 8 shows and summarizes the temporal evolution of 
the temperature in the different pellets. 
From these results, it can be seen that at time t = 1 ms, the 
limiter keeps its superconductive state whatever the pellet 
used, because the temperatures recorded are all lower than 
Tc. On the other hand, the transition time of the limiter was 
carried out respectively at times t = 2,5 ms, t=3,5 ms, t = 4,5 
ms and t = 11 ms (see Table 3). It is clear that the smaller 
the size of the pellet, the shorter the intervention time of the 
limiter. It is also noted that the temperature within the 
pastille varied not only with time but also with the choice of 
the size of the pellet. 
 
 

Table3: The transition time from the superconducting 
state to the normal state for the various superconducting 

pellets. 
pellets Transition time [ms]  

A 2.5  
B 3;5  
C 4,5  
D 11  

 

 
 
In order to show the influence of the length Lx of the pellet 
on the thermal behavior of a current limiter, we calculated 
the spatial distribution of the temperature within the 
superconducting pellet for the different values of Lx and for 
a Constant Jc (Jc = 5 × 107 A / m2) (see Table 4). 
 

Table 4: The different values of Lx 
Pellets A B C  D 

Length 

Lx en (mm) 

04 06 08 10 
06 09 12 15 
08 12 16 20 
10 15 20 25 

 

 

4.3. The influence of the geometry of the superconducting 
pellet on the thermal behavior of a current limiter 
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(b) 
 

 
 

(c) 
 
 

 
 

(d) 
 
Figure 9: The variation of the temperature as a function of 
time for variable Lx. in the different pellets respectively 
(a), pellet A, (b) pellet B, (c) pellet C and (d) pellet D. 
 

 
 
We notice the rapid rise in temperature with increasing 
length Lx. The maximum of this temperature, which 
corresponds to the region where the losses are significant, 
varies proportionally from one value of length to another 
and from one pellet to another. In addition, the temporal 
evolution of these temperatures then makes it possible to 
record the moments of intervention of the limiter, that is to 
say (the transition from its superconductive state to its 
normal state). This transition is caused by exceeding the 
critical temperature. 
 
 

 
(a) 

 

 
(b) 

 

 
(c) 

 
(d) 

 
Figure 10: Losses variation as a function of Lx in the 
different pellet respectively (a) pellet A, (b) pellet B, (c) 
pellet C and (d) pellet D. 
 
According to the results obtained, there appears to be a 
significant increase in these average losses as a function of 
the length Lx chosen. This is essentially translated by the 
particular geometry of the pellet, with very different 
dimensions. In addition, a high energy density that will 
dissipate  inside the pellet. 
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5. Conclusions 

After several simulations, a study was carried out in terms of 
transition time, the distribution of the density of the current 
and the temperature in the breasts of the pellets. An 
expression of the variation of the SFCL impedance due to 
the presence of the short-circuit current has also been 
established while explaining the geometric and 
electromagnetic characteristics of the SFCL (modification of 
the matrix admittance of the system). In order to simulation 
an SFCL, it is necessary to understand the transition from 
the superconducting state to the normal state. This transition 
open the advantage on the one hand, to be invisible in the 
rated speed and to be able to limit the fault currents in a very 
short response time (under 05 ms) compared to conventional 
current limiters or conventional circuit breakers (50 to 80 
ms) [10].The simulation results obtained by pellets A, B and 
C are very satisfactory. 
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