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Abstract

The behavior of the superconducting fault current limiters
SFCL used in Electrical Network is largely determined by
the geometry properties and the type of the bulk
superconductors used. In this work we present a numerical
analysis of the electromagnetic and the thermal behavior of
the SFCL and the influence of geometrical properties of the
bulk superconductors of rectangular shape used in an
electrical network The results are obtained from a three-
dimensional computation code, developed and implemented
under MATLAB environment where the formulation in
magnetic vector potentials A and electrical scalar potential
V are adopted to solve the electromagnetic problem and the
heat diffusion formulation is also adopted to solve the
thermal problem. The coupling is ensured by an alternating
algorithm and the numerical resolution of the problem is
ensured by the method of the finite volumes in its three-
dimensional version in order to avoid certain problems of
numerical convergence linked to the strongly nonlinear
character of the problem to be solved.

1. Introduction

The use of fault current limiters designed from
superconducting materials of high critical temperature has
made it possible to limit the fault currents in the electrical
networks. In the event of a short circuit, the latter must not
only be able to withstand this fault regime and act as natural
current regulators, but also reduce the mechanical and
thermal stresses experienced by the network [1].

These limiters offer the advantage on the one hand, to be
invisible in the rated or rated speed and to be able to limit
the fault currents in a very short response time compared to
conventional current limiters or conventional circuit
breakers [2]. These advantages, which are specifically
offered by current limiters designed from high critical
temperature superconductors, have led to their insertion with
large suctions in medium and high voltage power grids [3].
It is not possible during a test to try all the possible
configurations of short-circuit on a network, according to the
type of network (overhead or underground), according to the
impedance of the fault, and according to the power of the
network. It is therefore interesting to have modeling tools to
simulate the behavior of a superconducting current limiter

and to extrapolate the results obtained to other short-circuit
configurations and to other network voltage levels. In this
context, several simulation works have been proposed. In
some of these works, the behavior of the superconductor is
simulated as a vary-resistance [2], [5-6] where the
superconducting material changes from non-dissipative state
characterized by zero resistance in the rated regime of the
network to a non-dissipative state. Very dissipative state
characterized by a high resistance in the case of faults that
can appear during the operation of the electrical network
[15-16-17]. These simple models developed do not
satisfactorily reflect the actual behavior of the
superconductor in its intermediate state, particularly the
FLUX-FLOW and FLUX CREEP regimes. For this, other
microscopic models have been proposed in order to
satisfactorily describe the FLUX-FLOW and FLUX CREEP
regimes [4], [9]. In these models, the Maxwell equations are
adopted and coupled to the heat diffusion equation, however
the electromagnetic and thermal problems are solved in the
case of one-dimensional [7] see bi-dimensional [8]. These
models cannot properly simulate superconducting current
limiters, typically of type IL.
For this, we propose in this paper a three-dimensional
mathematical-numerical model dedicated mainly to the
modeling of fault current limiters. This model presents the
results of the simulations of the magnetic and thermal
behavior of the superconducting current limiter before and
during the process of limitation.

2. Formulation

To model the magnetic behavior of the presented problem,
we adopted the formulation in magnetic vector potentials A
and in electric scalar potential V, this one is described by
the formulation below.

Vx(viA)—V(vV-A)+0(E,T)(2—[?+VV)=Js

V.{—a(E,T)(aA+VV)}:0



v and o represent respectively the magnetic reluctivity and

the electrical conductivity of the superconductor.
Concerning the apparent electrical conductivity of the
superconducting material, in its non-dissipative state, it is
defined by the ratio of J on E [11] and [12], this ratio is
deduced from the characteristic E-J of the superconductor
given by the relation.

1

Gs(E,D =J:W(E]n(T)
E EC Ec
2
With (1_T£)
JC(T) = JcO ¢
(1—5)
T

c

This relation reflects the superconductors Flux-Flow and
Flux-Creep regimes that is to say if the superconductor is in
a non-dissipative state, to complete the expression of the
electrical conductivity of the superconductor in the
dissipative regime. Add an additional term ¢, which
translates the increase in the resistance of the
superconductor. Thus, the apparent electrical conductivity of
the superconductor is deduced by the relation.

o(E,T)=0o (E,T)+0c,(T) 3)

Where Jc and Ec respectively represent the density of the
critical current and the critical electric field. According to
relation (3), the apparent conductivity of the superconductor
depends on the electric field E and the temperature T
reached within the material. The electric field E will be
determined from the resolution of the electromagnetic
problem described by the partial differential equation
presented by the formulation (1). The temperature will be
determined from the resolution of the heat diffusion
problem presented by

pcp(T)%f ~V((T)VT)=W “4)

Where A(T), p, Cp(T) are respectively the thermal
conductivity in (W / K/ m), the density in (Kg/ m3) and the
specific heat of the material in (J / K / Kg), W is a power
density in (W / m3), it expresses all the losses generated in
the superconducting current limiter expressed by

W=EJ (5

In the results of the simulations presented, the thermal
and the electrical properties depend on the temperature as
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mentioned in the equations (1), (2), (3), (4). The Models
describing this dependence are presented in [14].

The resolution of the system of equations 1 and 4 solves
electromagnetic and thermal problems. These are defined by
strongly nonlinear equations. To solve such a problem,
several methods have been used mainly finite element
method [4-9], it can not ensure the convergence of the
problem to be solved especially during the presence of a
superconducting material where have used a power type law
to define electrical conductivity (Equation 2). To avoid this
type of problem we used the finite volume method in its
three-dimensional version. [13][14]. the adopted mesh is of
Cartesian or structured type, it consists of elementary
volumes of hexahedral or cubic form. For each volume Dp
of hexahedral shape, we associate a so-called main node P
and six facets: e and w in the direction x, n and s in the
direction y, t and b in the z direction (Fig.2).
The neighboring volumes of Dp are represented by their
close neighboring nodes: E and W along the x, N and S axis
along the y, T and B axis along the z axis [13, 14].
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To calculate the derivative terms in (6) and (7), we
consider in our study a linear variation of the magnetic
potential and the temperature across the integration facets of
the finite volume. After integration, we arrive at a system of



algebraic equation below that will be solved by an algebraic
method such as the Gauss-Seidel method that will be
adopted in our problem. The integral of equations (6) and
(7) leads to the following algebraic equations [13-14]:
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The electromagnetic and thermal coupling is ensured by the

alternating coupling model.

3. Presentation of simulation parameters

The basic principle of the current limiter involves the
properties of YBaCuO [10-11] which vary considerably
depending on the temperature. YBaCuO is a superconductor
having a critical temperature Tc of the order of 92 K.

This part sets up the choices made on the materials and
properties that will be used for the simulations that will
follow. Figure 2 shows the description of the pellet model.
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Figure 2: The description of the pellet model.
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The following tables gather the geometrical parameters and
characteristics of the material studied YBCO by our
simulation code.

Table 1: Geometrical properties of bulk superconductors
used in our simulations.

Size of the bulk Lx Ly Lz

superconductors [mm] [mm] [mm]
Type A 4 4 4
Type B 6 6 6
Type C 8 8 8
Type D 10 10 10
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Table 2: Parameters of the YBaCuO bulk.

Symbol Quantity value
Tc Critical 92K
temperature
To Coolant 77K
temperature
Ec 1x10*V/m
Critical electric
field
Jc Critical current 5x107A/m?
density at 92 K
no Exponent n at 20
77 K under
zero field
Icc Maximum 16KA
short-circuit
current

4. Numerical results and discussion

In this first simulation part, it is considered that the current
limiter is essentially formed by different superconducting
pellets, it is the transition by overflow of the critical current
that initiates the transition that must be fast enough to
effectively limit the current and be homogeneous so as not
to damage the pellet.
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Figure 3: Waveform of the applied short-circuits current.



4.1. Spatial distribution of the density of the current J
within the superconducting pellets
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Figure 4: Current density distribution of the J in the pellet A at
t=0.06 S.
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Figures 5: Current density distribution of the J at t=0.06 S
(a) Pellet B, (b) Pellet C and (c) Pellet D.
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Figures 4, (a), (b) and (c) illustrate the spatial distribution of
the currents in the superconducting pellets at time t = 0.06 s,
given that their critical current density is considered Jc = 5
x 107 A / m2. It appears from these results, that the current
density reaches its maximum with a high concentration in
the center of the pellets A, B and C, in contrast in the pellet
D the phenomenon is not identical, the current density is
concentrated stronger in the peripheries of the latter, this is
explained by the fact of its size.

The choice of the value of the critical density Jc of the
superconducting pellets has a decisive influence on the
temporal variation of the current density in the latter.

For this reason, we have shown in Figure 6 the results of
simulation of the variation of the ratio J / Jc as a function of
time for different values of Jc, respectively for Je = (
5,6,7,8,9) x 107 A/ m2 in the pellet A.
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Figure 6: The variation of the ratio J / Jc of the pellet A for
different values of Jc as a function of time.
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There are significant differences in the variation of this ratio
as a function of time [10].

The figure 7 shows the variation of the J / Jc ratio for the
different superconducting pellets A, B, C and D as a
function of time with Jc =9 x 107 A/ m2. It is clear that for
this rate of Je, the superconducting limiter intervenes faster
in a very short time even before the short circuit current
reaches its maximum during the first half cycle. It also
appears that the chip A is more advantageous and has given
more performance of a desired superconducting limiter. The
advantage of a thin layer is its very fast transition; the
current is limited for a J / Jc ratio generally less than two. It
is thus a very efficient material for the limitation of the short
circuit current.
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Figure 7: The variation of the J / Jc ratio for the different
superconducting pellets A, B, C and D as a function of time
with Jc =9 x 107 A/ m2

There are significant differences in the variation of this ratio
as a function of time this is mainly due to different sizes of
the

significant increase in the temporal variation of the current

selected superconducting pellets. In addition, a
density in the pellets A and B, but with less growth for the
pellets C and D. Which means, that for Jc =9 x 107 A / m2,
the ratio J / Jc increases considerably during the first half of
the value substantially equal to 1.8 to a value of about 3 in
the sixth alternation for the pellet A and 1.7 to 2.8 for the
pellet B, In the pellet C and D, this ratio takes the values of
1.6 to 2.3 and 1.5 to 1.7, respectively, from the first

alternation to the sixth alternation.

4.2. Spatial distribution of temperature T within the
superconducting pellets
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Figure 8: The variation of the temperature in the different
pellets as a function of time.
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Figure 8 shows and summarizes the temporal evolution of
the temperature in the different pellets.
From these results, it can be seen that at time t = 1 ms, the
limiter keeps its superconductive state whatever the pellet
used, because the temperatures recorded are all lower than
Tc. On the other hand, the transition time of the limiter was
carried out respectively at times t = 2,5 ms, t=3,5 ms, t =4,5
ms and t = 11 ms (see Table 3). It is clear that the smaller
the size of the pellet, the shorter the intervention time of the
limiter. It is also noted that the temperature within the
pastille varied not only with time but also with the choice of
the size of the pellet.

Table3: The transition time from the superconducting
state to the normal state for the various superconducting

pellets.
pellets Transition time [ms]
A 2.5
B 3;5
C 4,5
D 11

In order to show the influence of the length Lx of the pellet
on the thermal behavior of a current limiter, we calculated
the spatial distribution of the temperature within the
superconducting pellet for the different values of Lx and for
a Constant Je (Jc =5 x 107 A/ m2) (see Table 4).

Table 4: The different values of Lx

Pellets A B C D
Length 04 06 08 10
06 09 12 15

Lx en (mm) 08 12 16 20
10 15 20 25

4.3. The influence of the geometry of the superconducting
pellet on the thermal behavior of a current limiter
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Figure 9: The variation of the temperature as a function of
time for variable Lx. in the different pellets respectively
(a), pellet A, (b) pellet B, (c) pellet C and (d) pellet D.

We notice the rapid rise in temperature with increasing
length Lx. The maximum of this temperature, which
corresponds to the region where the losses are significant,
varies proportionally from one value of length to another
and from one pellet to another. In addition, the temporal
evolution of these temperatures then makes it possible to
record the moments of intervention of the limiter, that is to
say (the transition from its superconductive state to its
normal state). This transition is caused by exceeding the
critical temperature.
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Figure 10: Losses variation as a function of Lx in the
different pellet respectively (a) pellet A, (b) pellet B, (c)
pellet C and (d) pellet D.

According to the results obtained, there appears to be a
significant increase in these average losses as a function of
the length Lx chosen. This is essentially translated by the
particular geometry of the pellet, with very different
dimensions. In addition, a high energy density that will
dissipate inside the pellet.



5. Conclusions

After several simulations, a study was carried out in terms of
transition time, the distribution of the density of the current
and the temperature in the breasts of the pellets. An
expression of the variation of the SFCL impedance due to
the presence of the short-circuit current has also been
established while explaining the geometric and
electromagnetic characteristics of the SFCL (modification of
the matrix admittance of the system). In order to simulation
an SFCL, it is necessary to understand the transition from
the superconducting state to the normal state. This transition
open the advantage on the one hand, to be invisible in the
rated speed and to be able to limit the fault currents in a very
short response time (under 05 ms) compared to conventional
current limiters or conventional circuit breakers (50 to 80
ms) [10].The simulation results obtained by pellets A, B and
C are very satisfactory.
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