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Abstract 

With increasing complexity of EM problems, 1D and 2D 
axisymmetric approximations in z,  plane are sometimes 

necessary to quickly solve difficult symmetric problems 
using limited data storage and within shortest possible time. 
Inhomogeneous EM problems frequently occur in cases 
where two or more dielectric media, separated by an 
interface, exist and could pose challenges in complex EM 
problems. Simple, fast and efficient numerical techniques 
are constantly desired. This paper presents the application 
of simple and efficient Markov Chain Monte Carlo 
(MCMC) to EM inhomogeneous axisymmetric Laplace’s 
equations. Two cases are considered based on constant and 
mixed boundary potentials and MCMC solutions are found 
to be in close agreement with the finite difference solutions.              

1. Introduction 

Homogeneous and inhomogeneous Laplace’s equations with 
Dirichlet boundary conditions in Cartesian coordinates have 
been extensively studied using the MCMC method [1]-[6]. 
However, with increasing complexity of electromagnetic 
(EM) problems, 1D and 2D axisymmetric approximations in 

z, plane are sometimes necessary to quickly solve 

difficult symmetric problems using limited data storage 
resources and within shortest possible time. Inhomogeneous 
EM problems frequently occur in cases where two or more 
different dielectric media separated by an interface exist and 
could pose challenges in complex EM problems. The 
knowledge of electric field and potential distributions in 
electronic and high voltage components, with multi-
dielectric interfaces, is often required to ensure accurate 
prediction of components practical performance [7]. So 
simple numerical techniques are constantly sought and 
desired especially in solution of problems with discrete 
inhomogeneities.   
     Ever since the Monte Carlo method was first introduced 
by J. von Neumann and S. M. Ulam, various kinds of Monte 
Carlo methods such as fixed random walk, floating random 
walk and Exodus methods have evolved. These Monte Carlo 
methods have generously been applied in broad areas of 
engineering including semiconductors, heat conduction, 
power engineering, electrostatics, waveguide analysis, and 
antennas [8]-[15]. Classical Monte Carlo methods like the 
fixed random walk, floating random walk, Exodus method 
have all been used successfully as numerical techniques for 
field computation in spite of their major limitation that they 

only allow single point calculations. Later, the shrinking 
boundary and inscribed figure methods were proposed for 
whole-field calculation but they still offered no significant 
advantage over the conventional Monte Carlo techniques 
[16]-[17]. Andrey Markov proposed the Markov Chains 
method that proved to be more efficient than shrinking 
boundary and inscribed figure methods for whole field 
computations [18]-[19]. The method is simple, accurate and 
robust in terms of implementation. The Markov Chain 
Monte Carlo (MCMC) method involves no use of random 
number generator and thus not subject to randomness and 
the approach is potentially accurate [19]. Hence, the MCMC 
method is generally preferred for whole field computation.           
     Some reported works in the literature on axisymmetric 
electrostatic problems with the Monte Carlo methods are 
presented in [20]-[21]. Solutions of axisymmetric problems 
by other methods are presented in [22]-[33]. However, in 
this paper, we propose the application of simple and 
efficient MCMC method to the solution of axisymmetric 
inhomogeneous Laplace’s equations. To the best of the 
authors’ knowledge, solution of axisymmetric 
inhomogeneous Laplace’s equations with the MCMC is rare 
or not yet reported in the literature.  

2. Inhomogeneous Media 

Media Inhomogeneity occurs when two or more media have 
dielectric permittivity difference. The system is anisotropic 
across the two media but isotropic within each medium. 
Such a system is represented in the Figure 1.    
 
 

	

	

  
 
 
 
 

 
 
 
 
 
 

Figure 1. Interface between media of dielectric permittivity  

1  and 2 [34]. 
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The Figure 1 shows the interface between two media of 

dielectric permittivities 1  and 2 .  
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The transition probabilities at the interface are determined as 
[21], [34]:  
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For the   = constant interface, the n2n1 DD   or  
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However, zp and zp  remain the same as in the equations 

(3).  
  

3. Inhomogeneous Boundary Conditions 

The inhomogeneous boundary conditions are presented in 
this section. In general, we have [34]-[35], 
 

 Dirichlet boundary condition: 
 

     ,)( rprV   r on S    (6) 
 

 Neumann boundary condition: 
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The normal directive of V vanishes on S . 
 

 Mixed boundary condition: 
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where    ,, rqrp  and  rw  are explicitly known functions 

on the boundary S . 

 

 

 

 
	
 
 
 
 
 

 
 
 
 

 
 
 
 

 
Figure 2. Inhomogeneous Cylindrical Geometry. 

	
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Figure 3. Inhomogeneous Axisymmetric Solution Region 
 

4. Inhomogeneous Axisymmetric Problem 
Formulation 

Suppose an inhomogeneous cylindrical coordinate system is 
as shown in the Figure 2 and the corresponding 
axisymmetric approximation in z,  plane is as shown in 

the Figure 3. In the Figure 2, the boundary conditions and 
source terms 0V , 1V  and 2V  are symmetric around the 

cylinder’s axis and thus, axisymmetric approximation can be 
deployed. The approximation reduces the complexity of the 
system, saves time and reduces possibility of errors.      
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It is apparent that the cylinder in the Figure 2 presents 
inhomogeneous problems at the interface of the two media. 
The medium 1 consists of air while medium 2 consists of a 
certain dielectric material. The MCMC procedures for 
inhomogeneous problems are essentially the same as for the 
homogeneous problems. However, at the interface between 
the two media of dielectric permittivity 1  and 2 , the 

transition probabilities are determined differently. 
 
In the axisymmetric solution region R, we have 
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with the corresponding finite difference approximation 
given in the equation (24), for square grid,   z  
[21], [34], 
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At 0 , the finite difference equation (23) becomes [21], 

[34], 
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The transition probabilities of the random walking particles 
at the interface of the two media 1  and 2 , assuming z = 

constant interface,  are determined from Equations (1) – (3). 
In the section 6 of this paper, simulations are presented for 
inhomogeneous axisymmetric problems. Two cases are 
considered based on the choice of the boundary conditions 
and the prescribed potentials. 
  

5. Markov Chain Monte Carlo 

A Markov chain is a sequence of random variables 
      ,nX,...,X,X 10 where the probability distribution of 
 nX  is determined by the probability distribution  1nX

[34]-[38]. The process is random, memoryless, evolving in 
time and thus, remembers only the most recent past. The 
conditional probability distributions of the Markov chains 
are time invariant. Markov chains are mathematical models 
represented by this kind of process. The Markov chains of 
interest are discrete-state and discrete-time Markov chains. 
In the present work, the Markov chain is the random walk, 
and the states are the grid nodes. The transition probability 

ijP  is the probability that a random-walking particle at node 

i moves to node j and it is expressed by, 
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 The transition probabilities which correspond to the random 
walks of the random walking particles and form the 
cornerstone of the MCMC method are derived from the 
finite difference equations. 
 
The Markov chain is characterized by its transition 
probability P defined by 
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P is a stochastic matrix given by, 
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Suppose there are 

fn free (or non-absorbing) nodes and 
pn

fixed (absorbing) nodes, the size of the transition matrix P is 
n, where 
          

pf nnn           (16) 

 
If the absorbing nodes are numbered first and the non-
absorbing states are numbered last, the nn   transition 

matrix becomes 
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where  

pf nn  matrix R represents the probabilities of moving 

from non-absorbing nodes to absorbing ones;  

pf nn  matrix Q represents the probabilities of moving 

from one non-absorbing node to another;  
I  is the identity matrix representing transitions between the 
absorbing nodes  ;PandP ijii 01    

0 is the null matrix showing that there are no transitions 
from absorbing to non-absorbing nodes.   
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From equation 11, Matrix Q for axisymmetric region is 
summarily given as 	
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Similarly, from equation 13, matrix Q, at the line of 
Symmetry, is summarily defined as 
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The same applies to ijR  except that j is an absorbing node. 

For any absorbing Markov chain, QI   has an inverse 
called the fundamental matrix 

                   1 )( QIN                 (20) 

where 
ijN is the average number of times the random-

walking particle starting from node i passes through node j  

before being absorbed. The absorption probability matrix B 
is 

                    RNB      (21) 

where ijR is the probability that a random-walking particle 

originating from a non-absorbing node i will end up at the 
absorbing node  j. B is an pf nn   matrix and is stochastic, 

similar to the transition probability matrix,  
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where iV  is the potential at any free node i . Unlike 

Equation (23) and Equation (24) that provide solution at all 
the free nodes at once, an alternative way to obtain the 
solution in Equation (24) is to exploit a property of the 
transition probability matrix P. When P is multiplied 
repeatedly by itself a large number of times, we obtain 
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Though Equation (26) can be used to find 

fV
 
but Equation 

(23) is more efficient and accurate. However, if N is 
accurately calculated in Equation (23) or Equation (26), the 
solution should be “exact.” 
 

6. Simulation Results 

In this section, simulation results for inhomogeneous 
axisymmetric problems with MCMC methods are presented 
for two cases. These include inhomogeneous axisymmetric 
problem with constant boundary potentials and that with 
mixed inhomogeneous boundary potentials. Simulation 
results are reported for both cases.  
  

Table 1: Parameters for Case I. 
  

Parameter 
 

Value 
 

1V  
 

100V 

 
a 

 
1m 

 
L 

         

          1 	
									

         2  

 
2m 

 

0  
	

0252 .  
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Case I: Axisymmetric Inhomogeneous Problem with 
Constant Boundary Potential 

 
In this case, axisymmetric inhomogeneous problem given in 
the Figure 3 is considered with constant boundary potentials. 
The voltage 1V  is as given in the Table 1 while 0V and 2V  

are grounded respectively. The permittivity for medium 1 
and medium 2 are given in the Table 1. With the MCMC 
procedure given below, simulations are carried out on 
MATLAB and the results are presented in the Figures 4 and 
5. The results for the potential distributions along 

,mz,m. 2050  mz, 200  (symmetry line) 

and mz,m. 2090  are reported in the Figure 4. In 

the Figure 5, the potential distribution along 
m,z 101   (media interface) is reported. The surface 

plot and the contour plot for all the grid nodes are also 
presented in the Figure 5. In the Table 2, the MCMC results 
for selected grid points are compared with the finite 
difference solution and they are very close.  
 
 
 
 

 
 
 
 
 
 
 
 
 
 
 
 
 
  

 
 

Table 2: Results Comparison between FDM and MCMC for 
Axisymmetric Inhomogeneous Problem with Constant 

Boundary Potential.    
   

( z, ) 
 

FDM 
 

MCMC 

(5, 6) 1.1005 1.1409 

(7, 30) 36.5980 36.6260 

(10, 21) 7.5901 7.5801 

(12, 32) 36.1631 36.1738 

(16, 12) 0.8485 0.8618 

 
 

 
       (a) 
 

 
       (b) 
 

 
       (c) 

 

Figure 4. Potential Distribution along 
(a) m2z0m50  ,.  (b) m2z00  , (line of 

symmetry) (c) m2z0m90  ,. for Axisymmetric 

Inhomogeneous Problem with constant boundary potentials. 
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1. Determine the domain from the given dimensions 

2.  … the  matrix  based on the Equation (18) – (19) 

3. … interface transition probabilities from Equation (1)-(3) 

4. … the  matrix  based on the Equation (18) – (19) 

5. Compute the fundamental matrix  from Equation (20) 

6. Determine the  matrix  on the Equation (21) 

7. Compute the prescribed potentials , .    

8. Compute the free node potentials, . 

9. Plot the results 

MCMC Procedure 
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      (a) 

 
   (b) 
 

 
             (c) 
 
Figure 5. Potential Distribution along (a) m101z  ,

(media interface), (b) Surface Plot (c) Contour Plot for 
Axisymmetric Inhomogeneous Problem with constant 
boundary potentials. 
  
 

Table 3: Parameters for Case II. 
 

Parameter 
 

Value 
 

1V  
 

50V 

 
a 

 
1m 

 
L 

          1 	

         2  

 
2m 

0  

0252 .  

  
Case II: Axisymmetric Inhomogeneous Problem with Mixed 

Boundary Potentials 
 
Suppose the axisymmetric problem given in the Figure (3) 
has its ends 0z  and Lz   held at zero potential and 50V 
respectively. If voltage,  zaV ,  is given as [34]:  
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In this section, axisymmetric inhomogeneous problem with 
constant and inhomogeneous potentials is presented. The 
voltage 0V , is defined as in the equation (28), 1V  is fixed at 

50V as given in the Table 3 and the cylinder is grounded at 
voltage 2V . The permittivity for medium 1 and the medium 

2 are given respectively as in the Table 3. The MCMC 
procedures used for case I are repeated and the simulations 
are carried out on MATLAB. The simulation results are 
reported in the Figures 6. The potential distribution along 

,mz,m. 2050  mz, 200   (symmetry line),

mz,m. 2090  , m,z 101   (media interface), 

surface plot and the contour plot for all the grid nodes are 
reported in the Figure 6. In the Table 4, the MCMC results 
for selected grid points are compared with the finite 
difference solution. The results are very close.  
 

Table 4: Results Comparison between FDM and 
MCMC for Problems with Mixed Boundary Potentials. 

 ( z, )  
 

FDM MCMC 

(5, 6) 11.2701 11.3465 

(7, 30) 35.8286 35.7711 

(10, 21) 31.5857 31.2791 

(12, 32) 34.2649 34.2102 

(16, 12) 26.7636 26.7633 
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            (a)                                      (b)      

                   
 

  
           (c)                                       (d)                             
     

         

              
   (e)                     (f) 
 
 

Figure 6. Potential Distribution along (a) m2z0m50  ,. ; (b) m2z00  ,  (line of symmetry) (c)

m2z0m90  ,.  (d) m101z  , (media interface), (e) Surface Plot (f) Contour Plot for Axisymmetric 

Inhomogeneous Problem with mixed boundary potentials.  
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7. Conclusion 

     With growing cost of data storage and increasing 
complexity of electromagnetic problems facing device 
designers today, opportunity frequently exists to 
approximate problem domains to reduce problem sizes and 
resultant data storage requirements during implementation. 
Most numerical methods available nowadays involve huge 
iterative procedures often with large data storage 
requirements. The Markov Chain Monte Carlo (MCMC) 
solutions presented in this paper is fast and efficient in 
implementation once matrices Q and R are accurately 
calculated. In the paper, inhomogeneous axisymmetric 
problems are considered. Specifically, Laplace’s equations 
in inhomogeneous cylindrical system are solved using 
axisymmetric approximations. Two cases of the problem 
based on constant and mixed boundary potentials are 
considered. The MCMC solutions presented in this paper 
agree well with the finite difference method while using less 
computational resources as the method requires no 
iterations.    
     The MCMC method presented in this paper can be 
extended to homogeneous and inhomogeneous axisymmetric 
Poisson’s equations as well as axisymmetric problems in 
spherical coordinates.       
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