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Abstract

With increasing complexity of EM problems, 1D and 2D
axisymmetric approximations in p, Z plane are sometimes

necessary to quickly solve difficult symmetric problems
using limited data storage and within shortest possible time.
Inhomogeneous EM problems frequently occur in cases
where two or more dielectric media, separated by an
interface, exist and could pose challenges in complex EM
problems. Simple, fast and efficient numerical techniques
are constantly desired. This paper presents the application
of simple and efficient Markov Chain Monte Carlo
(MCMC) to EM inhomogeneous axisymmetric Laplace’s
equations. Two cases are considered based on constant and
mixed boundary potentials and MCMC solutions are found
to be in close agreement with the finite difference solutions.

1. Introduction

Homogeneous and inhomogeneous Laplace’s equations with
Dirichlet boundary conditions in Cartesian coordinates have
been extensively studied using the MCMC method [1]-[6].
However, with increasing complexity of electromagnetic
(EM) problems, 1D and 2D axisymmetric approximations in
p,Z plane are sometimes necessary to quickly solve

difficult symmetric problems using limited data storage
resources and within shortest possible time. Inhomogeneous
EM problems frequently occur in cases where two or more
different dielectric media separated by an interface exist and
could pose challenges in complex EM problems. The
knowledge of electric field and potential distributions in
electronic and high voltage components, with multi-
dielectric interfaces, is often required to ensure accurate
prediction of components practical performance [7]. So
simple numerical techniques are constantly sought and
desired especially in solution of problems with discrete
inhomogeneities.

Ever since the Monte Carlo method was first introduced
by J. von Neumann and S. M. Ulam, various kinds of Monte
Carlo methods such as fixed random walk, floating random
walk and Exodus methods have evolved. These Monte Carlo
methods have generously been applied in broad areas of
engineering including semiconductors, heat conduction,
power engineering, electrostatics, waveguide analysis, and
antennas [8]-[15]. Classical Monte Carlo methods like the
fixed random walk, floating random walk, Exodus method
have all been used successfully as numerical techniques for
field computation in spite of their major limitation that they

only allow single point calculations. Later, the shrinking
boundary and inscribed figure methods were proposed for
whole-field calculation but they still offered no significant
advantage over the conventional Monte Carlo techniques
[16]-[17]. Andrey Markov proposed the Markov Chains
method that proved to be more efficient than shrinking
boundary and inscribed figure methods for whole field
computations [18]-[19]. The method is simple, accurate and
robust in terms of implementation. The Markov Chain
Monte Carlo (MCMC) method involves no use of random
number generator and thus not subject to randomness and
the approach is potentially accurate [19]. Hence, the MCMC
method is generally preferred for whole field computation.

Some reported works in the literature on axisymmetric
electrostatic problems with the Monte Carlo methods are
presented in [20]-[21]. Solutions of axisymmetric problems
by other methods are presented in [22]-[33]. However, in
this paper, we propose the application of simple and
efficient MCMC method to the solution of axisymmetric
inhomogeneous Laplace’s equations. To the best of the
authors’ knowledge, solution  of  axisymmetric
inhomogeneous Laplace’s equations with the MCMC is rare
or not yet reported in the literature.

2. Inhomogeneous Media

Media Inhomogeneity occurs when two or more media have
dielectric permittivity difference. The system is anisotropic
across the two media but isotropic within each medium.
Such a system is represented in the Figure 1.
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Figure 1. Interface between media of dielectric permittivity
&, and ¢, [34].



The Figure 1 shows the interface between two media of
dielectric permittivities €, and €, .
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The transition probabilities at the interface are determined as
[21], [34]:
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However, p,, and p,_ remain the same as in the equations

3).

3. Inhomogeneous Boundary Conditions

The inhomogeneous boundary conditions are presented in
this section. In general, we have [34]-[35],

e  Dirichlet boundary condition:
V(r)= p(r), Fon S (©6)
e Neumann boundary condition:

v (r)
on

= q(r), Fon S (7

The normal directive of V vanisheson S .

e  Mixed boundary condition:

8\g£r) +h(rV(r)=wi(r), ron S ®

where p(r), q(r), and W(r) are explicitly known functions
on the boundary S .
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Figure 2. Inhomogeneous Cylindrical Geometry.

Figure 3. Inhomogeneous Axisymmetric Solution Region

4. Inhomogeneous Axisymmetric Problem
Formulation

Suppose an inhomogeneous cylindrical coordinate system is
as shown in the Figure 2 and the -corresponding
axisymmetric approximation in p,Z plane is as shown in
the Figure 3. In the Figure 2, the boundary conditions and
source terms V, , V| and V, are symmetric around the
cylinder’s axis and thus, axisymmetric approximation can be

deployed. The approximation reduces the complexity of the
system, saves time and reduces possibility of errors.



It is apparent that the cylinder in the Figure 2 presents
inhomogeneous problems at the interface of the two media.
The medium 1 consists of air while medium 2 consists of a
certain dielectric material. The MCMC procedures for
inhomogeneous problems are essentially the same as for the
homogeneous problems. However, at the interface between
the two media of dielectric permittivity &, and &, , the

transition probabilities are determined differently.

In the axisymmetric solution region R, we have
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with the corresponding finite difference approximation
given in the equation (24), for square grid, dAp=Az=A
[21], [34],

Vip,2) = p,V(p+4,2) + p,V(p-4,2)
+ pz+V(p'Z+A) + pz—V(p!Z_A)

(10)
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At p =0, the finite difference equation (23) becomes [21],
[34],

V(0,2)=p,V(4,2)+ p,V(0,2+4)

12
+p, V(0,z2-4) (12)
where  p,, :%
p,- =0 (13)
1
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The transition probabilities of the random walking particles
at the interface of the two media ¢, and &, , assuming Z =

constant interface, are determined from Equations (1) — (3).
In the section 6 of this paper, simulations are presented for
inhomogeneous axisymmetric problems. Two cases are
considered based on the choice of the boundary conditions
and the prescribed potentials.

5. Markov Chain Monte Carlo

A Markov chain is a sequence of random variables
X (0 ) X (VI x (0 ), where the probability distribution of

X () is determined by the probability distribution X ")

52

[34]-[38]. The process is random, memoryless, evolving in
time and thus, remembers only the most recent past. The
conditional probability distributions of the Markov chains
are time invariant. Markov chains are mathematical models
represented by this kind of process. The Markov chains of
interest are discrete-state and discrete-time Markov chains.
In the present work, the Markov chain is the random walk,
and the states are the grid nodes. The transition probability
P is the probability that a random-walking particle at node

i moves to node | and it is expressed by,

Pij = P(Xn+1 = leO,le"'vxn)= (9)
P(Xper = 1% ) j€X,n=0,1,2,..

The transition probabilities which correspond to the random

walks of the random walking particles and form the

cornerstone of the MCMC method are derived from the

finite difference equations.

The Markov chain is characterized by its transition
probability P defined by

Poo Por Po
P P P

p| 0 Fi (14)
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P is a stochastic matrix given by,

PI] = 1, | e X
jeX

(15)

Suppose there are n, free (or non-absorbing) nodes and n o

fixed (absorbing) nodes, the size of the transition matrix P is
n, where

(16)

n=n,+n,

If the absorbing nodes are numbered first and the non-
absorbing states are numbered last, the N X N transition

matrix becomes

I 0
P:
& o
where

ny xn, matrix R represents the probabilities of moving

(17

from non-absorbing nodes to absorbing ones;
ny xn, matrix Q represents the probabilities of moving

from one non-absorbing node to another;
I is the identity matrix representing transitions between the
absorbing nodes (p; =1and P; = 0)

0 is the null matrix showing that there are no transitions
from absorbing to non-absorbing nodes.



From equation 11, Matrix Q for axisymmetric region is
summarily given as

%, if i isdirectly connected to j
(%) if i isdirectly connected to i+1
i
h (18)
(?] if i isdirectly connectedtoi—1
i
0, ifi=joriisnotdirectlyconnected to j

Similarly, from equation 13, matrix Q, at the line of
Symmetry, is summarily defined as

%, if i=0 and is directly connected

tojand j—1
4 . -
Qi = o if i=0 and is directly connected (19)
toi+l

0, ifi=j or i isnotdirectly connected
to j

The same applies to R;; except that jis an absorbing node.

For any absorbing Markov chain, I-Q has an inverse
called the fundamental matrix

N=(I-Q)" (20)

where N i is the average number of times the random-

walking particle starting from node i passes through node J

before being absorbed. The absorption probability matrix B
is

B=NR @1

where Rj is the probability that a random-walking particle

originating from a non-absorbing node i will end up at the
absorbing node j. Bisan n, x n, matrix and is stochastic,

similar to the transition probability matrix,

Np

ZB” =1, i=1,2,...n; (22)

=l
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If v and v, contain potentials at the free and fixed nodes,

respectively, then

Vi =BY, (23)
In terms of the prescribed potentials V,,V, ver Vg s used in
Equation (23) becomes
Np
Vi =Y ByVy,i=12,..n, (24)
j=1
where V; is the potential at any free node i . Unlike

Equation (23) and Equation (24) that provide solution at all
the free nodes at once, an alternative way to obtain the
solution in Equation (24) is to exploit a property of the
transition probability matrix P. When P is multiplied
repeatedly by itself a large number of times, we obtain

n—o B 0

e [Volpa[ Vo] _[1 0TV y
Sy T v |TIB o vy (26)

Though Equation (26) can be used to find V, but Equation

el
limP" = (25)

(23) is more efficient and accurate. However, if N is
accurately calculated in Equation (23) or Equation (26), the
solution should be “exact.”

6. Simulation Results

In this section, simulation results for inhomogeneous
axisymmetric problems with MCMC methods are presented
for two cases. These include inhomogeneous axisymmetric
problem with constant boundary potentials and that with
mixed inhomogeneous boundary potentials. Simulation
results are reported for both cases.

Table 1: Parameters for Case 1.

Parameter Value
\ 100V
a Im
L 2m
& &
&, 2.25¢,




Case I: Axisymmetric Inhomogeneous Problem with
Constant Boundary Potential

In this case, axisymmetric inhomogeneous problem given in
the Figure 3 is considered with constant boundary potentials.
The voltage V, is as given in the Table 1 while V, and V,

are grounded respectively. The permittivity for medium 1
and medium 2 are given in the Table 1. With the MCMC
procedure given below, simulations are carried out on
MATLAB and the results are presented in the Figures 4 and
5. The results for the potential distributions along
p=05m,0<z2<2m, p=0,0<z<2m (symmetry line)
and p=0.9m, 0< z < 2m are reported in the Figure 4. In
the Figure 5, the potential distribution along
z=1,0< p <1m (media interface) is reported. The surface

plot and the contour plot for all the grid nodes are also
presented in the Figure 5. In the Table 2, the MCMC results
for selected grid points are compared with the finite
difference solution and they are very close.

MCMC Procedure

1. Determine the domain from the given dimensions

2. ... the uf xnf matrix Q based on the Equation (18) — (19)
3. ... interface transition probabilities from Equation (1)-(3)

4. ..them £ XAy matrix R pased on the Equation (18) — (19)
5.

Compute the fundamental matrix N from Equation (20)
Determine the 7 X 22, matrix B on the Equation (21)
7. Compute the prescribed potentials , vp vz»---: vnp .

8. Compute the free node potentials, V_f = BV, .
9.  Plot the results

Table 2: Results Comparison between FDM and MCMC for
Axisymmetric Inhomogeneous Problem with Constant

Boundary Potential.
(p.z) FDM MCMC
(5, 6) 1.1005 1.1409
(7, 30) 36.5980 36.6260
(10, 21) 7.5901 7.5801
(12, 32) 36.1631 36.1738
(16, 12) 0.8485 0.8618
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Figure 4. Potential Distribution along
(A p=05m,0<z<2m (b) p=0,0<z<2m (line of
symmetry) (¢) p=09m,0<z<2m for Axisymmetric

Inhomogeneous Problem with constant boundary potentials.
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Table 3: Parameters for Case II.

Parameter Value
\4 50V
a Im
L 2m
€ €o
&, 2.25¢,

Case Il: Axisymmetric Inhomogeneous Problem with Mixed
Boundary Potentials

Suppose the axisymmetric problem given in the Figure (3)
has its ends z=0 and z =L held at zero potential and S0V
respectively. If voltage, V(a,z) is given as [34]:

L
0<z< —
2

(28)

L
— <z < L
2

In this section, axisymmetric inhomogeneous problem with
constant and inhomogeneous potentials is presented. The
voltage V,, is defined as in the equation (28), V; is fixed at
50V as given in the Table 3 and the cylinder is grounded at
voltage V, . The permittivity for medium 1 and the medium
2 are given respectively as in the Table 3. The MCMC
procedures used for case I are repeated and the simulations
are carried out on MATLAB. The simulation results are
reported in the Figures 6. The potential distribution along
p=05m,0<z<2m, p=0,0<z<2m (symmetry line),
p=09m,0<z<2m, z=1,0< p <1m (media interface),
surface plot and the contour plot for all the grid nodes are
reported in the Figure 6. In the Table 4, the MCMC results
for selected grid points are compared with the finite
difference solution. The results are very close.

Table 4: Results Comparison between FDM and
MCMC for Problems with Mixed Boundary Potentials.

20
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©

Figure 5. Potential Distribution along (a)z=1,0< p<Im
(media interface), (b) Surface Plot (c) Contour Plot for
Axisymmetric Inhomogeneous Problem with constant
boundary potentials.
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(p.2) FDM MCMC
(5, 6) 11.2701 11.3465
(7, 30) 35.8286 35.7711
(10,21) 31.5857 31.2791
(12,32) 34.2649 34.2102
(16, 12) 26.7636 26.7633
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Figure 6. Potential Distribution along (a) p=0.5m,0<z<2m; (b) p=0,0<z<2m (line of symmetry) (c)
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Inhomogeneous Problem with mixed boundary potentials.

56




7. Conclusion

With growing cost of data storage and increasing
complexity of electromagnetic problems facing device
designers today, opportunity frequently exists to
approximate problem domains to reduce problem sizes and
resultant data storage requirements during implementation.
Most numerical methods available nowadays involve huge
iterative procedures often with large data storage
requirements. The Markov Chain Monte Carlo (MCMC)
solutions presented in this paper is fast and efficient in
implementation once matrices Q and R are accurately
calculated. In the paper, inhomogeneous axisymmetric
problems are considered. Specifically, Laplace’s equations
in inhomogeneous cylindrical system are solved using
axisymmetric approximations. Two cases of the problem
based on constant and mixed boundary potentials are
considered. The MCMC solutions presented in this paper
agree well with the finite difference method while using less
computational resources as the method requires no
iterations.

The MCMC method presented in this paper can be
extended to homogeneous and inhomogeneous axisymmetric
Poisson’s equations as well as axisymmetric problems in
spherical coordinates.
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