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Abstract 

Second order statistical moments of scattered electromagnetic 
waves in the turbulent magnetized plasma slab with electron 
density fluctuations are calculated applying the modify 
stochastic smooth perturbation theory and the boundary 
conditions. The obtained results are valid for arbitrary 
correlation function of electron density fluctuations. Stokes 
parameters are analyzed both analytically and numerically. 
The theory predicts that depolarization effect caused by 
second Stokes parameter may be important in scintillation 
effects. Numerical calculations are carried out for new spectral 
function of electron density fluctuations containing both 
anisotropic Gaussian and power-law spectral functions using 
the experimental data. Polarimetric parameters are calculated 
for different anisotropy factor and inclination angle of 
elongated small-scale irregularities with respect to the 
magnetic lines of forces. The relationship between the 
scintillations and the polarimetric parameters is important. 

1. Introduction 

At the present time the features of electromagnetic waves 
propagation in random media is well studied [1]. The problem 
of depolarization of electromagnetic waves in a turbulent 
media has attracted considerable attention. Electron density 
fluctuations undergo significant influence on radio waves 
propagation in the turbulent magnetized plasma. Statistical 
moments of small-amplitude electromagnetic waves scattered 
by turbulent anisotropic plasma slab is important in many 
practical applications associated with both natural and 
laboratory plasmas. Angular power spectrum, scintillation 
effects and the angle-of-arrival of scattered electromagnetic 
waves by turbulent anisotropic magnetized ionospheric plasma 
slab for both power-law and anisotropic Gaussian correlation 
functions of electron density fluctuations were investigated 
analytically and numerically in [2-4].  

The problem of depolarization of electromagnetic waves in 
a turbulent medium attracts considerable attention. It is known 
that polarized characteristics of a space radio emission caused 
by refraction and scattering on both density irregularities of 
space plasma and magnetic field bearing important 
information on physical conditions of a source and ionospheric 
plasma parameters over the path of wave propagation [5]. 
Particularly, radio wave depolarization effect in cosmic 

plasma caused by the vortex medium motion has been 
discussed in [6]. Variances of scattered ordinary and 
extraordinary waves, root-mean-square deviation of the 
Faraday angle by inhomogeneous magnetized plasma slab 
have been calculated in [7,8]. It was shown that isolines of the 
normalized Faraday angle nonlinearly depends on the 
inclination angle of elongated plasma irregularities and 
increases in proportion to the anisotropy factor. 

Depolarization of electromagnetic radiation in a cold 
plasma with random magnetic inhomogeneities  
applying stochastic perturbation theory has been considered in 
[9,10]. Simple expressions for the Stokes parameters as a 
function of distance and one physical parameter characterizing 
the interstellar plasma has  
been obtained which is valid in the parabolic approximation 
for plane wave propagation.  

The purpose of the present paper is to calculate Stokes 
parameters as a function of a physical parameters 
characterizing anisotropic irregularities of magnetized 
turbulent plasma and the transmission distance. Second order 
statistical moments of scattered radio wave have been obtained 
using modify stochastic smooth perturbation method taking 
into account the boundary conditions. Application of Stokes 
parameters allows to define polarization characteristics of 
scattered waves with a big accuracy in inhomogeneous 
plasma. Numerical calculations are carried out for the spectral 
correlation function of electron density fluctuations containing 
both anisotropic Gaussian and power-law correlation functions 
using the experimental data. The results are valid for near and 
far zones with respect to plasma slab boundaries.  

2. Formulation 

The electric field in the collisionless plasma satisfies the wave 
equation [11]: 
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where: 0 /e eH mc =  is the electron gyrofrequency, e  and 
m  are the charge and mass of an electron, 0H  is the steady 
magnetic field c  is a light speed in the free space, ( )N r  is 
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the electron density in the magnetized plasma,   is the 
Laplacian, 0 /k c= , 2 2/eu =  and 2 2v( ) ( ) /p=r r   are 

magneto-ionic parameters, 2 1/2( ) (4 ( ) / )p N e m=r r  is the 
plasma frequency. The second rank permittivity tensor in the 
homogeneous medium is:  

    
v v1 ( )

1 1i j i j i jk k i ji u m u m m
u u

 
= − − + 

− − 
   ,     (2) 

where: i j  is the Kronecker symbol,  i jk  is the asymmetric 
tensor of the third rank, m  is the unite vector along the 
external magnetic field lying in the main yz-plane. 
Components of the Cartesian second rank permittivity tensor 
of the collisionless magnetized plasma are [12]:  

1xx Y= − ,    1 (1 )yy TY u= − −  ,    1 (1 )zz LY u= − −  ,      

xy yx L xyi Y u i= − =    ,   yz zy L TY u u= =  ,   

                       xz zx T xzi Y u i= − = −  −    ,                  (3) 

where: v / (1 )Y u= − , 2sinTu u=   , 2cosLu u=  ,   is 
the angle between vector 0H   and z-axis. The distance L 
traveling by wave in the ionospheric plasma satisfies the 
condition 2/ 1L k l    ( l  is the characteristic spatial scale of 
plasma irregularities).  

In the homogeneous plasma the electric field satisfies the 
equation:  
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At oblique incidence wave: 

0 1sin sinxk k N k=    , 0 2sin cosyk k N k=    ,    

                              0 3coszk k N k=   ,                        (5)        
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1

2 4 2 2sin 4 (1 v) cosu u
−

+ −


  ,                     (6)   

where:   is the angle between wave vector k  and z-axis,   is 
the angle between projection of the vector k on the xy-plane 
and y-axis; 2N  is the square of the refractive index of two 
normal plane waves (ordinary and extraordinary) propagating 
in a homogeneous anisotropic magnetized plasma; minus sign 
and index 1j =  correspond to the extraordinary wave, plus 
sign and index 2j =  - to the ordinary wave. 

Substituting (5) into equation (4) determinant is equal to: 

                      4 2
1 2 3( ) 0x A x A x A = + + = ,                  (7) 

where: 2 2 2 2
1 2 3 1 3(1 ) (1 )xx yyA = − − + − − +       

2 2
1 2 2 3(1 ) 2zz yz+ − − +       ,  2

2 1 2( )yy zz yzA = − +      

2 2
3 2 3( ) ( ) 2 ( )xx xz xz xx yy xy xy xz xx yz+ + + − +             , 

2 2 2
3 2xx yy zz xy xz yz yy xz xx yz zz xyA = − + − +             , 

2
1 1 1= −  ,  2

2 2 1= −  , 2
3 3 1= −   , 0/x k k= . 

If the angle 0=  (vector k is located in the yz-plane) we 
obtain the biquadratic equation: 

4 2 2 2 2 2cos ( cos ) sin sin coszz yy xx xxx  + + − +

          

2 22 sin cos ( cos )yz yy xx zzx + − + + 
        

2 2 2sin 2 sin cos cosxx yy xy xz xz+ + − +          

2 2 22 sin cos sin (xx yz yz xy xx yy zz
+ − − + −


           

2 2 22 ) 0xy xz yz xz yy xx yz xy zz− − − − =         .                   (8) 

In anisotropic homogeneous medium, for propagation in a 
small cone about z-axis, there exist two characteristic waves: 
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where:  z Ik  and z IIk  are the propagation constants for the 
ordinary and extraordinary waves, respectively. For an 
incident 3 MHZ electromagnetic wave the polarization plane 
is clockwise as k kI II  and the angle of the Faraday rotation 

0.23F = 0k L  is positive. 

In the quasi-longitudinal approximation ( 00= ) we 
obtain: 

2

0
1 v v cosz Ik

u
k

 
= − + 

 
 , 

2

0
1 v v cosz IIk

u
k

 
= − − 

 
 .                                      (10)  

rotation of the polarization plane is clockwise, k kI II  and in 

this case Faraday angle decreases 0.075F = 0k L . Now we 
consider wave propagation through a medium containing  
random irregularities.  
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3. Statistical characteristics of scattered waves 

Each parameter in equation (1) we submit as sum of the 
constant mean and fluctuating terms: 

( )=   +E E e r ,  =  0 0H H ,  ( )N N n=   + r .  (11)                                

Second components are random functions of position. The 
angular brackets indicate the statistical average. Substituting 
(11) into equation (1) using the perturbation method we obtain 
set of stochastic differential equation for a scattered electric 
field: 

                      
2

2
0ij ij j i

i j

k e j
x x

 
−  − = 

   

   ,              (12) 

where:  2
0 0 0 0k Y i u u= −   −   −j E E m    

( )  E m m ,   is the current density, 0 0 0v / (1 )Y u= − . 
Let an incident wave propagates along the z-axis and the 

external magnetic field is located in the yz-plane ( || Z0k , 
yzm ). Applying the Fourier integrals to the equation (12) 

[11] we obtain:           

( ) ( , , ) exp[ ( ) ]x y x y x ydk dk k k z i k x k y

 

− −

= + e r e  

( ) ( , , ) exp[ ( ) ]x y x y x ydk dk k k z i k x k y

 

− −

= + j r g  . 

The set of second order differential equations for a scattered 
electric field is: 
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2 2 2 2
0 0( )x y zz z zk k k e k g+ + − =  .                                      (13) 

Rewrite these equations as: 

1 1 1 1 1x z x y ze a e b e c e d e f + + + + =  , 

2 2 2 2 2 + + + + =y z x y ze a e b e c e d e f  , 

                  3 3 3 3 3 + + + + =x y x y ze a e b e c e d e f  ,          (14) 

where: 1 xa i k= − ,  2 2
1 0= −xx yb k k ,   2

1 0= +xy x yc k k k ,    

2
1 0= xzd k  ,   2 ya i k= − ,   2

2 0= +yx x yb k k k ,  

2 2
2 0= −yy xc k k ,   2

2 0= yzd k  ,    3 /= y xa k k  ,   

2
3 0( / )= x zyb i k k  ,  2

3 0( / )= x xyc i k k   ,   

2 2 2
3 0( ) /= − + −x y zz xd i k k k k ,   2

1 0= − xf k g ,   

2
2 0= − yf k g  ,   2

3 0( / )= − x zf i k k g .  

Let yz-plane coincides with the lower boundary of a slab. The 
boundary conditions are: at z L  (L is a thickness of 
inhomogeneous plasma slab) waves propagating in negative 
direction must be absent, at 0z  waves propagating in 
positive direction must be absent. 

As far as all functions are finite inside a turbulent plasma 
slab, 0 z L , we solve the set of equations (14) using the 
spectral method: 
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Set of stochastic differential equations (13) will be 
transformed into set of algebraic equations: 

1 1 2 1( ) ( ) ( ) ( ) ( ) ( )t A t c B t t C t F t + + =  , 

2 1 2 2( ) ( ) ( ) ( ) ( ) ( )b A t t B t t C t F t + + =  , 

               1 2 3 1( ) ( ) ( ) ( ) ( ) ( )t A t t B t d C t F t + + =  ,         (16) 

where: 2
1 1( ) = −t b t , 2 1 1( )t d ia t = +  , 2

1 2( ) = −t c t ,     

2 2 2( )t d ia t = +  ,  1 3( ) = +t b it ,  2 3 3( )t c ia t = +  . 

Introducing the designation 0/x t k= for the determinant of 
equations (16) we obtain:           

     6 4 3 2
0 4 3 2 1 0( ) ( )

x

i
x k Q x Q x Q x Q x Q

k
 = − + + + + ,      (17) 

where:  2
4 2 zzQ = −  ,   2 2

2 ( xz yz xx zzQ = − − − −      

2) (2 )yy zz x xx yy zz
− + + +        , 3 2= y yxQ   , 

2 2
1 [2( ) (2 ) ]= − + + −y xy zx xx zy yz x yQ          , 

2 2
0 ( 2xx yy zz yz zx xy yy xz xx yzQ = − + − + +            

2 2 2 2) ( )zz xy x xx zz xx yy xz xy+ − + − + −          
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2 2 2( )]− + + +y xx yy yy zz yz xy       ,  0/x xk k =  ,    

0/=y yk k ,  2 2 2
x y= +    . 

Algebraic equation ( ) 0x =  has four roots: 
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where 0  is any root of the third-order equation: 
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− = ,                              (20) 

which can be solved by the Kardan-Ferrary method [13]. 
At quasi-longitudinal propagation determinant (17) has 

four roots [11]:      
2

1 1 2x = −   ,  2
2 3 4= −x     ,   3 1= −x x  , 

                                        4 2= −x x  ,                                (21) 

where:   1/2
1 ( )= +xx xy   ,   1/2

3 ( )xx xy  = − , 

2
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=
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xx zz xy
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1
4

xx zz xy
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+ −
=

−
. 

These formulas were obtained at:  0 || 1k l ,   0 1k L  ,  

||L l ,  where  ||l  is the characteristic spatial scale of plasma 
irregularities.  

Solving functions ( )A x , ( )B x and ( )C x  we obtain 
components of scattered electric fields satisfying the boundary 
conditions:  

2 20
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( , )sin ( )
L
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where: { , }=æ x yk k is the transversal wave number,  
2

1 1= − zza   ,  1 1 22= − −zz xx xyb      ,  1 14= xy    , 

1 1 2(2 1)= − zzc    ,   2
2 3= − zza   ,   2 2= xy zzb    ,    

2 3 42= − −zz xy xxc      ,  1 01 u = +  , 

2 3 42 2= − −zz xy zzd      ,   2 34= − xy   . 

Second-order statistical moment of scattered electric field 
in the xy-plane has the following form: 
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− − −

+       

2 2 0
1 1 0

1 0

sin( )1 ( ) cos
2x y z

y k L t
c k b k k

y k L

  
+ −   

  



 

0
0 1

0 1

sin( ) cos
2 z x y

t k L y i
k a k k

t k L

 
− + 

  



 

0 0
0 0

0 0

1 cos( ) 1 cos( )
sin sin

2 2z z

y k L t k Lt y
k k

y k L t k L

 − −   
−    

    
   

2 2 2
2 0 2 2

2

1 ( )x yb k d k c k+ + +


 

2 0
2 0

2 0

sin(2 ) cos( )
2 z

x k L
x k

x k L

  
−  

  
  .                              (24) 

Cross-correlation function of scattered radiation in the xy-
plane is: 
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  ,                                (25) 

where: y  
and x  are distances between observation points 

spaced apart in the principle and perpendicular planes, 
respectively, ( , , )D x y zW k k  is the arbitrary two-dimensional 
spectral function of electron density fluctuations. These 
expressions are valid for the near ( 1)R   and far ( 1)R   

zones from plasma slab boundaries, 2
0 ||/R L k l=  is the wavy 

parameter.   

4. Polarimetric parameters 

Knowledge of the correlation functions of scattered fields 
allows to calculate Stokes parameters 

 =   +  x x y yI e e e e ,    =   −  x x y yQ e e e e ,    

         2Re ( )=  x yU e e ,   2Im ( )=  x yV e e  .      (26) 

In general the set of parameters (26) describes elliptically 
polarized wave. Depolarization degree is the ratio of the 
unpolarized component energy to the energy of the wave 

                        
2 2 2 1/2( )− + +

 =
I Q U V

I
 .                     (27) 

For a completely polarized wave, 2 2 2 2= + +I Q U V , and 
polarization fluctuations are absent.  

Still more interesting than the Stokes parameters are the 
following three measures. The total polarization P, the degree 
of ellipticity E and the degree of linear polarization L given 
by: 

2 2 2 1/2( )Q U V
P

I

+ +
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Q U V

=
+ +

,      
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2 2 2 1/2
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Q U

L
Q U V

+
=

+ +
 .                     (28)    

For elliptic polarized wave 1P = , for partially polarization 
0 1P   and for unpolarized wave 0P = . These parameters 
are of interest having wide application because they are 
invariant under Lorentz transformation and may be used in 
astrophysical applications, which is not true of the Stokes 
parameters. 

Using statistical characteristics of scattered 
electromagnetic waves Stokes parameters can be easily 
calculated: 
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4. Numerical calculations 

The incident electromagnetic wave having frequency of 3 
MHz ( 2

0 6.28 10k −=  1m − ) propagates along the Z-axis. 
Plasma parameters at the altitude of 300 km are: 0 0.22u = , 

0v 0.28= . The first Fresnel radius and the Fresnel 

wavenumber are equal to 5.5 km and 0.64 km 1− , 
respectively.  

In the experiment [14] which used transmission through the 
ionosphere from satellite beacons, were shown that nighttime 
irregularities are aligned along the earth’s magnetic field and 
appear to extend from top to bottom of the F-region. They are 
much more elongated than those found for most of the spaced 
receiver drift measurements. The irregularities are observable 
structures as small as a few hundred meters. Small scale 
(< 200 m) ionospheric irregularities with the Gaussian 
spectrum are responsible for polarization fluctuations [15]. 

Thermal plasma density measurements obtained by using 
the spherical electrostatic analyzer probe carried by the polar 
orbiting satellite show have been shown [16] that the range of 
scale sizes examined, 200 m to over 100 km under normal 
conditions. Irregularities in the high-latitude region have 
power spectrum the index within the range 1.5-2.5. The most 
important dynamic and statistical back scattered signal (BSS) 
characteristics were measured [17] using probe waves in the 
frequency range of 1.68-6 MHz that made it possible to obtain 
the basic parameters of the plasma irregularities. During the 
experiments the BSS amplitudes and some important dynamic 
and statistical characteristics were measured. The space 
distance antenna reception of BSS allowed to find out the 
anisotropy character of the scattered field. Theirs directions 
changed. The spectral index was equal to 1.4 4.8p =   in 
different heating sessions with the average 3.05p  =  in 
the probe wave frequency range of 2.6 6 MHz.  

Data obtained from spaced receiver measurements made 
at Kingston, Jamaica (during the periods August 1967– 
January 1969 and June 1970–September 1970) show that the 
irregularities between heights of 153 and 617 km causing the 
scintillation of signals from the moving earth satellites (BE–B 
and BE–C) are closely aligned along the magnetic field lines 
in the F–region [18]. Orientation of the irregularities in the 
ionosphere has been measured with respect to the geographic 
north observing a diffraction pattern of the satellite signals (41 
MHz) on the ground. The dip angle of the irregularities with 
respect to the field lines was within 016 . The anisotropic 
spectral features in the F–region are defined for Gaussian and 
Power-law spectra. Average value of the variance of electron 
density fluctuations 2 2 2

1 0/n n N=   at the frequencies of 25 

MHz and 30 MHz is in the range 3 510 10N
− − . 

We will use new spectrum of electron density irregularities 
combining anisotropic Gaussian and power-law spectra [4]: 

32
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l k k l k⊥
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 + + + 

k
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where:  2 2 2 1 2 2
1 0 0(sin cos ) 1 ( 1)p − = + + −     

2 2 2
0 0sin cos / 

   , 2 2 2 2
2 0 0(sin cos ) /= +p     , 

2 2
3 0 0( 1) sin cos / 2= −p     ,  ( / 2)pA p=  

   (5 ) / 2 sin ( 3) / 2p p − −  ,  
xk , yk  and 

zk  are the 

wave vector k  components perpendicular ( , )x yk k  and 

parallel ||( )k   to the incident wave propagation, || / ⊥= l l  is 
the anisotropy factor - the ratio of longitudinal and transverse 
characteristic linear sizes of plasma irregularities, 0  is the 
orientation angle of elongated ionospheric plasma 
irregularities with respect to the magnetic lines of force. The 
shape of electron density irregularities has a spheroidal form. 
Anisotropy of the shape of irregularities is connected with the 
difference of the diffusion coefficients in the field align and 
field perpendicular directions.  

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 
Numerical calculations are carried out for characteristic 

linear scale of small-scale ionospheric irregularities is 80 m – 
200 m, thickness of a slab is 40 km. 

Figure 1 depicts  depolarization degree of scattered 
electromagnetic waves versus anisotropy factor for different 
inclination angle 0 0

0 0.5 5= − for small-scale plasma 
irregularities 160=l m. Parameter   increasing in 
proportion of the orientation angle of elongated irregularities 
with respect to the direction of the earth’s magnetic lines of 
force. Two observation points are spaced apart normal to the 
main plane 640 m.  

Figure 1: Normalized depolarization degree  
anisotropy factor ; curve 1 corresponds to , 

curve 2 -  , curve 3 - , curve 4 - . 
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Numerical calculations show that first Stokes parameter (I) 
representing the total radiated power density has maximum at 
the anisotropy factor 2= . Intensity of scattered radiation 
decreases in proportion to the parameter   and fading nulls. 
Figure 2 illustrates 3D picture of the second Stokes parameter 
(Q) representing the degree of polarization. This parameter can 
be both positive and negative values and this is the important 
parameter in the scintillation effect. Particularly, for a field 
aligned small scale irregularities it is positive having 
maximum at 2= , if 1x =  and 0y = ; negative if 0x =

and 1y = (here , , ||/x y x y l=   is the nondimensional 
parameter - distances between observation points are 
normalized on the linear scale of plasma irregularities). 

For 3 MHz and 40 MHz incident wave scattered 
electromagnetic waves are elliptic polarized ( 1P = ) for field 
aligned irregularities ( 0

0 0= ). At the angle 0
0 10= , 

5=  and 10=  scattered radiation is partially polarized 
0.79P =  ( 0 1P  ) for 3 MHz incident wave; increasing 

frequency up to 40 MHz, 0.24P =  at 5=  and 0.22P =  at 
10= . That is orientation angle and anisotropy factor have 

an influence on the polarization of scattered electromagnetic 
waves.  

Figure 3 illustrates the dependence of the degree of 
ellipticity E versus anisotropy factor of ionospheric 
irregularities. Ellipticity decreases in proportion of the 
inclination angle 0  and tends to the saturation increasing 
parameter  . Saturation of the curves started at 6=  for  

0
0 0.05= (irregularities approximately are field aligned) and 

at 1.5=  for 0
0 2= . The degree of linear polarization L 

versus anisotropy factor is depicted in Figure 4. Linear 
polarization increases in proportion of the orientation angle of 
stretched ionospheric irregularities with respect to the external 

magnetic field, increasing anisotropy factor the curves tend to 
the saturation: curve 1 at 5=  curve 4 at 2= . 
 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 
The depolarization effect depends on the strength of the 

random variations of the medium and is expected to be very 
sensitive to frequency. Application of the Stokes parameters at 
radio waves scattering in the upper ionosphere allows to 
determine characteristic spatial scales and anisotropy factors 
of irregularities solving the reverse problem. 
 

5. Conclusions 

The problem of wave propagation through a medium 
containing random irregularities is studied with the effect of 

-1

0

1

-1

0

1
-5

0

5

x 10
5

XY

Q

Figure 2: The second Stokes parameter versus 
distances between observation points. Figure 3: The degree of ellipticity E versus anisotropy 

factor . curve 1 corresponds to , curve 2 

-  , curve 3 - , curve 4 - . 
 

Figure 4: The degree of linear polarization L 
versus anisotropy factor . Curve 1 corresponds 

to , curve 2 -  , curve 3 -

, curve 4 - . 
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anisotropic background on the fluctuations taken into account. 
The general formulation of the problem of how a slab of 
random medium affects the propagation and polarization of an 
incident electromagnetic wave is obtained. The solution of 
wave equation is given in Fourier series. It was shown that 
anisotropy factor of small-scale plasma irregularities has an 
influence on the polarimetric parameters of scattered radiation, 
while the role of the inclination angle is negligible. The 
obtained results are valid for both near and far zones from 
plasma a slab boundaries. The relationship between the 
scintillation effects and the polarimetric parameters is 
important. It was suggested that the second Stokes parameter 
may play important role in the scintillations as the small-scale 
plasma irregularities having metric characteristic linear scales 
should have sufficient scattering power. The depolarization 
effect may be appreciable for strong scintillation. The obtained 
Stokes parameters in the far zone from plasma layer 
boundaries allows to determine polarization parameters of 
scattered radio waves in the ionospheric F region with great 
accuracy and also make the assumption of region in formation 
of depolarization of scattered radio waves. The theory should 
be generalized for conductive anisotropic turbulent media 
using the same approach as given in this paper. 
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