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Abstract 

Planar spiral coils are used as inductors in radio frequency 
(RF) microelectronic integrated circuits (IC’s) and as anten-
nas in both 13.56 MHz  radio frequency identification 
(RFID) and telemetry systems. They must be designed to a 
specified inductance. From the literature, approximate for-
mulae for the inductance of such coils with rectangular con-
ductor cross section are known. They yield the direct current 
(DC) inductance, which is considered as a good approxima-
tion for inductors in RF IC’s up to the GHz range. In princi-
ple, these formulae can simplify coil design considerably. 
But a recent comparative study of the most cited formulae [1] 
revealed that their maximum relative error is often much 
larger than claimed by the author, and too large to be useful 
in circuit design.  
This paper presents a more accurate formula for the DC in-
ductance of square planar spiral coils than was known so far. 
It is applicable to any design of such coils with up to 20 
windings. Owing to its scalability, this holds irrespectively 
of the coil size and the inductance range. It lowers the maxi-
mum error over the whole domain of definition from so far 
29 %  down to 2.0 % . This has been tested by the same 
method used in the comparative study [1], where the precise 
reference inductances were computed with the help of the 
free standard software FastHenry2. A comparison to meas-
urements is included. Moreover, the source code of a 
MATLAB® function to implement the formula is given in the 
appendix.  
[1] H. A. Aebischer, Advanced Electromagnetics, vol. 7, no. 

5, 37-48, 2018.  

1. Introduction 

Planar spiral inductors are used in radio frequency (RF) mi-
croelectronic integrated circuits (IC’s) [2] and both as 
13.56 MHz radio frequency identification (RFID) [3] and te-
lemetry antennas [4]. In these applications, the coil must be 
designed to a predefined inductance. Therefore, values of the 
design parameters resulting in the specified inductance must 
be found. This represents a simple form of an inverse prob-
lem. It can only be solved indirectly, by using a method to 
calculate the inductance and by varying the parameters re-
peatedly, subject to any constraints, until the result matches 
the prescribed inductance to sufficient precision. Thereby, 
some method is needed to calculate the inductance of a coil 
from its geometric design parameters, as e.g. implemented in 
numerical software. But even for calculating the inductance 

of a single coil, creating the input data file to define the de-
sign is tedious, particularly if the coil has many windings. 
Moreover, for solving an inverse problem, the calculations 
must be repeated many times, so that the total computation 
time may become long. Hence, although they may lead to 
precise results, numerical methods are impractical for solv-
ing reverse problems.  
A considerable improvement is offered by the Greenhouse 
method [5]. It allows precise calculations of coil inductance 
at direct current (DC). It consists of dividing the coil into its 
constituent straight conductor segments and calculating their 
partial self-inductance and all mutual inductances between 
them separately using analytical formulae and summing up 
all the contributions. But the method doesn’t provide an in-
ductance formula that explicitly depends on the design pa-
rameters, like e.g. the number of turns, the coil size, etc. 
Thus, for large numbers of turns and for solving inverse prob-
lems, the calculations get tedious.  
Therefore, many researchers have worked on finding approx-
imate inductance formulae that explicitly depend on the de-
sign parameters. Using such a formula is by far the easiest 
and fastest way to calculate coil inductance, particularly for 
solving inverse problems. This approach is expected to pro-
duce less accurate results than the Greenhouse method, but it 
is faster and, above all, much easier to handle. Some formu-
lae approximating the direct current (DC) inductance of 
square planar spiral coils with rectangular conductor cross 
section are known from the literature.  
Recently, six of the most cited coil inductance formulae [6] 
– [9] were scrutinized in a comparative study [1] investigat-
ing their maximum relative error over a wide domain of def-
inition of the design parameters. The relative errors of the 
formulae were calculated for nearly 14000 parameter value 
combinations as the relative deviations of the inductances 
from precise reference values computed numerically. The 
maximum relative error was calculated as the maximum 
modulus of the relative deviations. The main conclusion was 
that “Further research in finding better formulae is highly 

encouraged. A generally applicable formula with good accu-

racy has not been found yet, despite the claims made to the 

contrary by some of the authors.” ([1], p. 47). This paper 
aims at deriving such a formula.  
Subsequent inspection of the extensive data collected during 
the course of [1] has revealed that the relative errors of the 
inductance formula of [9], after correcting an erroneous 
equation, seem to correlate with the number of windings 𝑁 
and the filling factor 𝜌 (which is a normalized measure of the 
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extent to which the area taken by the coil is used up or cov-
ered by its windings). This observation has spurred the hope 
for improving the formula by amending it by a correction fac-
tor depending on 𝑁 and 𝜌. This hope has been justified even 
more since 𝑁 is the most and 𝜌 the second-most influential 
parameter of the four dimensionless ones determining coil 
inductance. It has seemed possible to determine the correc-
tion factor with the help of a two-dimensional fit to the rela-
tive errors of the formula.  
This idea has resulted in an improved inductance formula be-
ing valid for any coil size and inductance range. It reduces 
the maximum error over the whole domain of definition from 
29 %, the current state of the art, as was substantiated in [1], 
down to 2.0 %. This has been tested with the same method 
and reference data used in [1].  
In section 2 the original inductance formula of [9] is derived. 
Section 3 derives the modified formula. Section 4 presents 
the results of the error analysis, comparing the maximum rel-
ative errors of all six formulae from the comparative study 
with the error of the new one. A comparison with measure-
ments is presented in section 5. Section 6 describes a 
MATLAB source code for implementing the formula (given 
in the appendix), together with numerical examples. Section 
7 concludes the paper.  

2. Derivation of Jenei’s inductance formula 

Because Jenei et al. missed to give a comprehensive deriva-
tion of their formula ([9], equation (7)), this section makes 
up for it. Fig. 1 shows the layout of a square planar spiral coil 
upon which they based their formula, together with the geo-
metric definition of the design parameters, which are:  
 

• 𝑁, number of turns or windings, 𝑁 ≥ 2.  
• 𝐴, outermost mid-conductor side length.  
• 𝐴𝑖, innermost mid-conductor side length.  
• 𝑤, winding distance or -pitch (𝑤 = 𝑠 + 𝑔).  
• 𝑔, gap or spacing between windings.  
• 𝑠, conductor width.  
• ℎ, conductor height or -thickness, hidden in Fig. 1.  

 
Figure 1: The layout of a square planar spiral coil and its de-

sign parameters.  

The partial inductance of a coil be defined as the sum of the 
partial self-inductances of its 4𝑁  straight conductor seg-
ments (counting the two shorter rim segments of lengths 𝐴/2 
and 𝐴𝑖/2 as one). Let the average length of all segments be 
𝑙𝑎𝑣 . With the help of the total length 𝑙,  
 

𝑙 = 4𝑁𝑙𝑎𝑣 ,                                    (1) 
 
the partial coil inductance can then be written in the general 
form ([10], equation (33))  
 

𝐿𝑝𝑎𝑟𝑡𝑖𝑎𝑙 =
𝜇0𝑙

2𝜋
[log (√𝑙𝑎𝑣

2 + 𝐴𝑀𝑆𝐷2 + 𝑙𝑎𝑣) − log𝐺𝑀𝐷

− √1 + (
𝐴𝑀𝑆𝐷

𝑙𝑎𝑣
)
2

+
𝐴𝑀𝐷

𝑙𝑎𝑣
] .                (2) 

 
Throughout this paper, log designates the natural logarithm. 
The constant 𝜇0 is the magnetic permeability of the vacuum, 
𝜇0 = 4𝜋 ∙ 10

−7 Vs/(Am). The exact expression for the loga-
rithm of the geometric mean distance (GMD) between two 
arbitrary points in the cross-sectional plane of a conductor 
with rectangular cross section is known but complicated 
([11], § 692 (6)). It has been shown ([12], p. 314 and [13], p. 
22) how the GMD can be approximated to better than 0.5 %,  
 

𝐺𝑀𝐷 = 0.2235(𝑠 + ℎ) ,                                
 
or, equivalently, to the same precision of the GMD,  
 

log 𝐺𝑀𝐷= log(𝑠 + ℎ) − 3/2 .                 (3) 
 
Equation (3) is nearly exact for a conductor of infinite cross-
sectional aspect ratio 𝑠/ℎ. With its help and with the arith-
metic mean square distance (AMSD) and the arithmetic 
mean distance (AMD) neglected against 𝑙𝑎𝑣 , equation (2) re-
duces to  
 

𝐿𝑝𝑎𝑟𝑡𝑖𝑎𝑙 =
𝜇0𝑙

2𝜋
[log (

2𝑙𝑎𝑣
𝑠 + ℎ

) +
1

2
] .                  (4) 

 
Expressing 𝑙𝑎𝑣  in terms of 𝑙 with the help of equation (1) and 
isolating log(1/2) = −0.69315, equation (4) becomes  
 

𝐿𝑝𝑎𝑟𝑡𝑖𝑎𝑙 =
𝜇0𝑙

2𝜋
{log [

𝑙

𝑁(𝑠 + ℎ)
] − 0.19315} .       (5) 

 
To get the total inductance of a coil, the mutual inductances 
of its parallel conductor segments must also be considered. 
The mutual inductances of segments at a right angle vanish. 
In [9] the mutual inductance of two parallel conductor seg-
ments separated by the central distance 𝑑 was approximated 
by the mutual inductance of their central filaments. It is also 
given by equation (2), but with 𝑙𝑎𝑣  instead of 𝑙 in the first 
factor, and with a different value of the GMD. Further, the 
mean distances AMSD and AMD can no longer be neglected. 
For filaments, they are all identical to 𝑑:  
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{
𝐺𝑀𝐷 = 𝑑                                        
𝐴𝑀𝑆𝐷 = 𝑑                                   (6)
𝐴𝑀𝐷 = 𝑑 .                                      

 

 
The central filaments approximation (6) holds the better the 
longer 𝑙𝑎𝑣  is compared to the cross-sectional dimensions 
(here 𝑠 and ℎ), as was shown in [10] for conductors of circu-
lar cross section. This is true for all cross sections.  
Two types of mutual inductances occur in square planar spi-
ral coils: There are those of a segment on one side of the 
square and any one on the opposite side, and there are those 
of a segment on one side and any remaining one on the same 
side. They can all be approximated by two average values: 
𝑚− for pairings of segments on opposite sides of the square, 
and 𝑚+ for pairings of segments on the same side.  
The average mutual inductance 𝑚− results from equation (2) 
as described above, with the mean distances according to 
equations (6), where 𝑑 = 𝑙𝑎𝑣, since the average length of the 
segments is identical to the mean distance between such on 
opposite sides of the square, see Fig. 1. Thus, we have  
 

𝑚− =
𝜇0𝑙𝑎𝑣
2𝜋

[log(√2 + 1) − √2 + 1] =
𝜇0𝑙𝑎𝑣
2𝜋

0.46716 . 
 
Each of the 𝑁 horizontal segments on the upper side of the 
square couples with each of the 𝑁 ones on the lower side, and 
vice versa. This leads to 2𝑁2 mutual inductances 𝑚−. And 
each of the 𝑁 vertical segments on the left-hand side of the 
square couples with each of the 𝑁  ones on the right-hand 
side, and vice versa. This yields another 2𝑁2, or 4𝑁2 in to-
tal. Now Jenei et al. use composite mutual inductances of the 
form 𝑀− = 4𝑁𝑚−. By equation (1) this becomes  
 

𝑀− =
𝜇0𝑙

2𝜋
[log(√2 + 1) − √2 + 1] =

𝜇0𝑙

2𝜋
0.46716 .  (7) 

 
Hence, there remain 𝑁  composite mutual inductances 𝑀− . 
Since the current in segments on opposite sides of the square 
flows in opposite directions, they must be subtracted from the 
partial inductance: −𝑁𝑀−.  
The average mutual inductance 𝑚+ is also given by equation 
(2) with 𝑙 in the first factor replaced by 𝑙𝑎𝑣 , and likewise the 
mean distances according to equations (6). Here, 𝑑 = 𝑑+, the 
mean distance between segments on the same side of the 
square, must be used,  
 

𝑚+ =
𝜇0𝑙𝑎𝑣
2𝜋

{log [√1 + (
𝑙𝑎𝑣
𝑑+
)
2

+
𝑙𝑎𝑣
𝑑+
]                    

− √1 + (
𝑑+

𝑙𝑎𝑣
)

2

+
𝑑+

𝑙𝑎𝑣
} ,         

 
where 𝑑+ is given by  
 

𝑑+ =
(𝑁 + 1)

3
𝑤 .                                 (8) 

 

The mathematical proof of equation (8) can be found in ap-
pendix 1. Each of the 𝑁 horizontal segments on the upper 
side of the square couples with each of the remaining 𝑁 − 1 
ones on the same side. This leads to 𝑁(𝑁 − 1) mutual in-
ductances 𝑚+. (Herein, the mutual inductances in the reverse 
coupling direction are already included). For the four sides 
of the square, we get 4𝑁(𝑁 − 1). Jenei et al. use composite 
mutual inductances of the form 𝑀+ = 4𝑁𝑚+. By equation 
(1) this becomes, if the remaining 𝑙𝑎𝑣  in 𝑚+  are also ex-
pressed in terms of 𝑙,  
 

𝑀+ =
𝜇0𝑙

2𝜋
{log [√1 + (

𝑙

4𝑁𝑑+
)
2

+
𝑙

4𝑁𝑑+
]                    

− √1 + (
4𝑁𝑑+

𝑙
)

2

+
4𝑁𝑑+

𝑙
} .            (9) 

 
Therefore, there remain 𝑁 − 1  composite mutual induct-
ances 𝑀+. Since the current in segments on the same side of 
the square flows in the same direction, they must be added to 
the partial inductance: +(𝑁 − 1)𝑀+. So, the total inductance 
𝐿0 is given by  
 

𝐿0 = 𝐿𝑝𝑎𝑟𝑡𝑖𝑎𝑙 − 𝑁𝑀
− + (𝑁 − 1)𝑀+.               (10) 

 
With the help of equations (5), (7), (9), and (10), and by re-
ducing the precision of the two numerical constants, one ar-
rives at Jenei et al.’s original notation  
 

𝐿0 =
𝜇0𝑙

2𝜋
{
 

 

log (
𝑙

𝑁(𝑠 + ℎ)
) − 0.2 − 0.47𝑁 + (𝑁 − 1)

∙ {log [√1 + (
𝑙

4𝑁𝑑+
)
2

+
𝑙

4𝑁𝑑+
]

− √1 + (
4𝑁𝑑+

𝑙
)

2

+
4𝑁𝑑+

𝑙
}

}
 

 

 .         (11) 

 
The total length 𝑙 can be calculated in terms of the design pa-
rameters 𝑁, 𝐴𝑖, and 𝑤. Note that its original expression ([9], 
equation (1)) turned out to be false [1]. The correct one was 
proven to be ([1], equations (23), (31), (32), and the mathe-
matical proof in the appendix)  
 

𝑙 = 4𝑁𝐴𝑖 + (4𝑁
2 − 5𝑁)𝑤 ,                   (12) 

 
where  

𝐴𝑖 = 𝐴 − 2(𝑁 − 1)𝑤 .                          (13) 
 
Equation (13) can easily be verified with the help of Fig. 1.  
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3. Derivation of the modified inductance formula 

The first step towards improving the inductance formula of 
[9] had already been taken in the comparative study [1] by 
deriving the correct equation (12) for the total length of the 
conductor. With its help, the maximum errors of equation 
(11) dropped significantly, at least for the two lower ranges: 
Compare the first two values in Table 1 with those of [9] in 
Table 2.  
The maximum relative errors seemed to correlate with the 
ranges, see Table 1. More precisely, they seemed to correlate 
with 𝑁, whose value distinguishes the ranges (see below). 
The two-windings range didn’t need any correction. As for 
the three upper ones, the possible correlation could only be 
exploited for improving accuracy if it was the result of a large 
systematic error combined with a smaller amplitude of statis-
tical fluctuations. In other words, the errors had to be biased, 
either towards positive or negative values.  
 
Table 1: The maximum relative errors of equation (11) with 

𝑙 evaluated with the help of equation (12) for the 
four ranges defined in this section.  

Two-wind. 
[%] 

Low range 
[%] 

Med. range 
[%] 

High range 
[%] 

1.7 9.3 18 24 
 

 
A closer inspection of the large data compiled as part of [1] 
revealed that this was the case. Further, it had been found that 
𝑁 was the most and the filling factor 𝜌 the second-most in-
fluential parameter of the four dimensionless ones determin-
ing coil inductance ([1], Table 1). Hence, it was obvious to 
extend the quest for correlation also to 𝜌 to improve preci-
sion. Indeed, the errors not only correlated with 𝑁, but also 
with 𝜌, leaving some minor statistical fluctuations caused by 
the variation of the remaining dimensionless parameters 𝜅 
and 𝛾 (see below). This meant that formula (11) could effec-
tively be improved by adjoining a correction factor depend-
ing on 𝑁 and ρ to compensate for the systematic error. The 
correction factor might be found with the help of a two-di-
mensional fit to the relative errors of equation (11). All errors 
were negative, except for one parameter combination with 
𝑁 = 3 (for which the error was so small that even a slight 
overcompensation due to the wrong sign of the correction 
wouldn’t harm.)  
Equation (11) was derived from physical principles, so it is 
scalable [1]. This means that it scales linearly upon stretching 
or shrinking all dimensional parameters 𝐴, 𝑤, 𝑠, and ℎ with 
a constant factor. Consequently, the formula holds for all coil 
sizes and for any inductance range, since scalability is a gen-
eral property of coil inductance. For a proof in the case of 
planar spiral coils, see ([1], p. 39). The modified formula will 
remain scalable, even though the correction factor will be 
based on a data fit. This is because the correction factor will 
only depend on dimensionless parameters (𝑁 and 𝜌). Note 
that the filling factor 𝜌 does not appear in equation (11). It 
can be expressed as ([1], equation (7))  
 

𝜌 =
(𝑁 − 1)𝑤 + 𝑠

𝐴 − (𝑁 − 1)𝑤
 .                              (14) 

In [1] the coil designs were described by combinations of val-
ues of dimensionless parameters. This was to benefit from 
the reduction of the parameter space dimension from five to 
four. The remaining two dimensionless parameters, besides 
𝑁 and 𝜌, were the relative winding distance κ defined as  
 

𝜅 =
𝑤

𝑠
 > 1 ,                                             

 
and the cross-sectional aspect ratio 𝛾,  
 

𝛾 =
𝑠

ℎ
 ≥ 1.                                               

 
The condition 𝛾 ≥ 1 reflected a constraint on printed circuit 
boards (PCB’s) and on IC’s. Herewith, the set of equations 
transforming dimensional to dimensionless parameters was 
complete. The inverse transformation equations can be found 
in ([1], equations (12) – (15)).  
In the comparative study, the precise inductances of 13851 
coil designs were calculated [1]. The designs were defined 
by 𝐴 = 1 mm and all parameter combinations given by the 
Cartesian products of the sets of values of the dimensionless 
parameters 𝑁, 𝜌, 𝜅, and 𝛾 listed below. The precise reference 
inductances were calculated with the help of the free standard 
software FastHenry2 [14]. It can be downloaded from the site 
www.fastfieldsolvers.com. The calculations were done at 
DC, requesting 2 × 2 subfilaments. For the conductivity of 
copper at 20 ℃, the value 𝜎 = 5.9595 ∙ 107 Ω−1m−1, corre-
sponding to the resistivity 1/𝜎 = 1.678 ∙ 10−8 Ωm , was 
used ([15], 𝑇 = 293 K). The sets of parameter sampling val-
ues were  
 
Two-windings range: 𝑁 = 2,  
𝜌 = 0.01, 0.0537, 0.0975, 0.1412, 0.1850, 0.2288, 0.2725, 
0.3162, 0.36.  
 
Low range: 𝑁 = 3, 4, 5, 6, 7,  
𝜌 = 0.01, 0.0737, 0.1375, 0.2013, 0.2650, 0.3287, 0.3925, 
0.4563, 0.52.  
 
Medium range: 𝑁 = 8, 9, 10, 11, 12,  
𝜌 = 0.01, 0.1063, 0.2025, 0.2988, 0.3950, 0.4913, 0.5875,  
0.6838, 0.78.  
 
High range: 𝑁 = 13, 14, 15, 16, 17, 18, 19, 20,  
𝜌 = 0.01, 0.1162, 0.2225, 0.3287, 0.4350, 0.5413, 0.6475,  
0.7538, 0.86.  
 
All ranges:  
𝜅 = 1.1, 2.2125, 3.3250, 4.4375, 5.5500, 6.6625, 7.7750,  
8.8875, 10.  
𝛾 = 1, 2.4, 5.6, 13.3, 31.6 , 75, 177.8, 422, 1000.  
 
The same parameter combinations and the resulting precise 
reference inductances were used in the present work to derive 
the modified inductance formula (25), as explained below 
and in the error analysis described in section 4.  

http://www.fastfieldsolvers.com/
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Note that the values of 𝜌 differ from range to range. The rea-
son is that, depending on the minimum number of 𝑁  in a 
range and the maximum value 𝜅 = 10, a maximum value of 
𝜌 is allowed. This is to prevent invalid parameter combina-
tions, for which the length of one of the constituent straight 
conductor segments would vanish or even become negative 
([1], p. 40).  
For the three upper ranges and each of their values of 𝜌, a 
linear function of 𝑁 was by far good enough to be fitted to 
the relative errors ∆𝐿/𝐿 of equation (11) in function of 𝑁:  
 

∆𝐿

𝐿
(𝑁) = 𝑐1𝑁 + 𝑐2 .                             (15) 

 
For each value of 𝜌, the values of the constants 𝑐1 and 𝑐2 dif-
fered. For the two-windings range, they were set to zero be-
cause it didn’t need any correction, see Table 1. For the three 
upper ranges, doing the linear fit (15) for the 9 sampling val-
ues of 𝜌 resulted in 9 values of the constants 𝑐1 and 𝑐2. By 
replacing the constants with fitting functions 𝑐1(𝜌)  and 
𝑐2(𝜌), the two-dimensional fit to the relative error ∆𝐿/𝐿 of 
equation (11) in function of 𝑁 and 𝜌 was completed to  
 

∆𝐿

𝐿
(𝑁, 𝜌) = 𝑐1(𝜌)𝑁 + 𝑐2(𝜌) .                     (16) 

 
The functions 𝑐1(𝜌)  and 𝑐2(𝜌)  were determined by fitting 
them to the 9 values of the constants 𝑐1 and 𝑐2, respectively. 
It was found that for all three ranges and both constants, a 1st 
order rational function worked perfectly, with one exception: 
For 𝑐2 in the low range, a 2nd order polynomial performed 
better.  
The coefficients of a rational function can always be scaled 
by presetting one of them to unity. Here, it was the zero-order 
coefficient of the denominator polynomial, see equations 
(19) and (21) – (24). Thus, only three coefficients were still 
unknown, both in the rational functions and in the polyno-
mial (20).  
These fits represented two independent linear optimization 

problems of dimension three solvable in the least-squares 

sense by means of an overdetermined system of linear equa-
tions. The fits worked best for 𝜅 = 1.1 and 𝛾 = 1 left con-
stant. (Of course, in the error analysis, all four parameters 𝑁, 
𝜌, 𝜅, and 𝛾 will be varied, see section 4).  
It turned out that the relative errors of the modified induct-
ance formula (25), with the functions 𝑐1(𝜌) and 𝑐2(𝜌) based 
on coefficients resulting from the least-squares fits, were still 
biased: The extreme positive error didn’t match the extreme 
negative one. In the high-range, the extreme positive error 
was +0.7 %, while the extreme negative one was −5.4 %, 
instead of ±[(0.7 % − (−5.4 %)]/2 = ±3.05 %  if the er-
rors were balanced.  
This bias could, in principle, be removed by directly mini-
mizing the maximum error of the inductance resulting from 
equation (25), instead of the least-squares errors of the fit-
ting functions 𝑐1(𝜌) and 𝑐2(𝜌). (In fact, this way the extreme 
errors could even be lowered further, down to ±2.0 %, see 
section 4). Only, this no longer represented a linear optimi-
zation problem. Moreover, the coefficients of the functions 

𝑐1(𝜌) and 𝑐2(𝜌) could no longer be computed separately, be-
cause they did not belong to two independent optimization 
problems anymore, but to one and the same. So, they had to 
be determined simultaneously. This led to a global non-lin-

ear optimization problem of dimension six (for the three un-
known coefficients of each of the two functions 𝑐1(𝜌) and 
𝑐2(𝜌)).  
It was found that this global optimization problem could be 
reduced to a local one by taking the solutions to the linear 
problem as starting values for the non-linear one. The coeffi-
cients solving the linear problem were systematically multi-
plied by the five factors 0.5, 0.75, 1.0, 1.5, and 2.0 in six 
nested loops, with one loop for each of the six coefficients. 
In the innermost loop, the relative errors of equation (25), 
with the functions 𝑐1(𝜌) and 𝑐2(𝜌) based on the respective 
coefficients, were calculated for all designs, and both the ex-
treme positive and the extreme negative error were stored to-
gether with the six respective coefficients in eight columns 
of a matrix, with one line for each of the 56 = 15625 com-
binations of coefficients. This was done for all three upper 
ranges separately. One of the 15625 combinations of coeffi-
cients was then picked as the solution. Namely, the one for 
which the magnitude of both the extreme positive and the ex-
treme negative error were minimal, in which case they were 
also balanced. This procedure minimized the maximum error 
of the inductance calculated by equation (25).  
Thus, the search for six coefficients in the infinite interval 
(−∞,∞) was reduced to one of six factors in the finite inter-
val [0.5, 2.0] , and even further to five discrete factors. It 
turned out that the rather coarse mesh of coefficients gener-
ated by the five discrete factors was good enough. This sim-
ple method for solving the global optimization problem, ap-
proximately but systematically, proved to be a viable com-
promise between computing time and accuracy. On a per-
sonal computer with 4 GHz clock frequency, the procedure 
took 4 hours and 22 minutes (where the precise reference in-
ductances were already known from [1]). The resulting func-
tions 𝑐1(𝜌) and 𝑐2(𝜌), normalized to fit to the percentaged 
negative errors of equation (11), were found to be:  
 
Two-windings range: 

 
𝑐1(𝜌) ≡ 0 ,                                 (17) 

 
𝑐2(𝜌) ≡ 0 .                                 (18) 

 
Low range: 

𝑐1(𝜌) = −
7.2𝜌 + 0.35

2.78𝜌 + 1
 ,                      (19) 

 
𝑐2(𝜌) = −12.8𝜌

2 + 11𝜌 + 0.80 .             (20) 
 

Medium range:  

𝑐1(𝜌) = −
2.1𝜌 + 0.17

0.75𝜌 + 1
 ,                      (21) 

 

𝑐2(𝜌) = −
0.59𝜌 + 1.2

−0.90𝜌 + 1
 .                      (22) 
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High range:  
 

𝑐1(𝜌) = −
1.5𝜌 + 0.11

0.98𝜌 + 1
 ,                       (23) 

 

𝑐2(𝜌) = −
2.85𝜌 + 2.48

−0.75𝜌 + 1
 .                     (24) 

 
Note that equations (22) and (24) are both singular at some 
point 𝜌 > 1. However, these points lie beyond the domain of 
definition 0 < 𝜌 < 1 ([1], equation (6)). Hence, in the do-
main of definition, the functions (19) – (24) are exempt from 
singularities. With the help of equation (16), the modified, 
improved inductance formula reads  
 

𝐿 = 𝐿0 (1 −
𝑐1(𝜌)𝑁 + 𝑐2(𝜌)

100
) .               (25) 

 
𝐿0 is given by equations (5) and (7) – (10) or, equivalently, 
by equation (11), but with the precise constants 0.19315 and 
0.46716. The filling factor 𝜌 is given by equation (14), and 
the functions 𝑐1(𝜌)  and 𝑐2(𝜌)  are expressed by equations 
(17) – (24). Equations (17) and (18) guarantee that, for the 
two-windings range, 𝐿 ≡ 𝐿0.  

4. Error analysis  

In the comparative study, it was concluded that “The method 

used in the present study for the error analysis may also 

prove useful for standardized error tests on future formulae. 

Using the same method, domains of definition, and sampling 

values as presented in section 3 will guarantee that only ge-

ometrically valid designs are considered, that all parameter 

space dimensions are scanned homogeneously, and that the 

results will be comparable to those reported in section 4 of 

this paper.” ([1], p. 47). Consequently, in the present work, 
the error analysis of equation (25) was done in the same way 
as described in [1], by varying all four dimensionless param-
eters 𝑁, 𝜌, 𝜅, and 𝛾. In other words, the relative errors of 
equation (25) were calculated for all four ranges or 13851 
parameter combinations defined in section 3.  
Table 2 compares the maximum errors of equation (25) with 
those of the formulae from the literature for the four ranges 
([1], Tables 5 – 9 and 11). The results show that equation (25) 
improves the precision of inductance calculations by means 
of a formula substantially, compared to what was possible 
with the best formula so far. This was 29 % in the two-wind-
ings range, 23 %  in the low range, 13 %  in the medium 
range, and 8.8 % in the high range, or a maximum error of 
29 % over all ranges. With equation (25), the maximum er-
ror over all ranges collapses to 2.0 %.  
Note that due to 𝐿 ≡ 𝐿0 in the two-windings range, the max-
imum error of equation (11) in Table 1 should be identical to 
the one of equation (25) in Table 2. Yet, the former is 1.7 %, 
while the latter is 1.9 %. The reason for the difference is that 
for the former, the rounded values of the constants, i.e. 0.2 
and 0.47, were used, as in [9] and [1]. By chance, this gave 
a slightly smaller maximum error. For all other ranges, the 
precise constants led to a smaller maximum error.  

Table 2: The maximum relative errors of the formulae from 
the literature together with those of equation (25) for 
the four ranges defined in section 3. 

Formula Two-wind. 
[%] 

Low 
[%] 

Med. 
[%] 

High 
[%] 

[6]   51 63 67 69 
[7]   33 23 23 30 

[8], 1   39 37 35 34 
[8], 2   29 23 13     8.8 
[8], 3   35 26 22 22 
[9]  101 70  15 14 

Eq. (25)        1.9     1.8     2.0     2.0 
 

5. Comparison with measurements 

Measurements on 16 RFID reader antennas were performed 
with an Agilent® 4294A Precision Impedance Analyzer with 
a 42941A Impedance Probe. It had already been shown in 
[16] that two-wire transmission lines, i.e. circuits of closely 
spaced conductors, exhibit a spurious increase of the reac-
tance at high frequencies resulting from LC resonance. This 
is no different in planar spiral coils, where the conductor seg-
ments also lie close together and locally form spurious capac-
itors. This phenomenon impedes the precise measurement of 
the inductance at 13.56 MHz. For this reason, it was meas-
ured at 300 kHz instead, representing the DC value. The mar-
ginal reduction of the inductance at 13.56 MHz compared to 
DC as shown in Table 4 warranted the validity of this proce-
dure.  
Table 3 lists the 16 reader antennas manufactured on PCB 
with standard copper layer thickness ℎ = 35 μm, numbered 
in the first column (#) and characterized by their design pa-
rameters 𝑁, 𝐴, 𝑤 (in mils), and 𝑠 (both in mils and in milli-
meters. 1 mil corresponds to 25.4 μm).  
 
Table 3: Dimensional design parameters of 16 reader anten-

nas manufactured on standard PCB (ℎ = 35 μm).  
# 𝑁 𝐴 

[mm] 
𝑤 

[mil] 
𝑠 

[mil] 
𝑠 

[mm] 
1 3   20 12   6 0.15 
2 3   20 20   6 0.15 
3 3   20 30   6 0.15 
4 3   20 40   6 0.15 
5 3   20 30 12 0.30 
6 3   50 12   6 0.15 
7 3   50 20   6 0.15 
8 3   50 40   6 0.15 
9 3   50 20 12 0.30 
10 3   50 30 12 0.30 
11 3   50 40 12 0.30 
12 4   50 40 12 0.30 
13 5   50 40 12 0.30 
14 3 100 40 12 0.30 
15 5   10 12   6 0.15 
16 3   50 30 18 0.46 
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Table 4: Precise DC inductance 𝐿𝑝𝑟𝑒𝑐𝑖𝑠𝑒  of the antennas from 
Table 3, the relative errors of the measurements, of 
equation (25), and the relative reduction of the in-
ductance at 13.56 MHz compared to DC.  

# 𝐿𝑝𝑟𝑒𝑐𝑖𝑠𝑒  
[nH] 

Err. 
meas. 
[%] 

Err. 
(25) 
[%] 

Red.  
[%] 

1    542 0.15 -0.52 -0.89 
2    480 1.14 -0.17 -0.75 
3    426 2.13 0.12 -0.74 
4    385 1.29 0.37 -0.77 
5    401 1.09 -0.09 -1.27 
6 1716 0.19 -0.55 -0.73 
7 1575 0.51 -0.38 -0.60 
8 1372 0.90 -0.15 -0.59 
9 1510 0.16 -0.69 -1.16 
10 1391 0.40 -0.41 -0.99 
11 1305 0.33 -0.26 -0.95 
12 2037 0.26 -0.45 -0.81 
13 2849 0.40 -0.47 -0.72 
14 3173 0.13 -0.38 -0.81 
15   446 0.50 -0.47 -0.87 
16 1352 0.01 -0.67 -1.34 

 

 
Table 4 presents the same coil designs as Table 3, in the same 
order, with their precise DC inductance 𝐿𝑝𝑟𝑒𝑐𝑖𝑠𝑒  calculated 
with the help of the software FastHenry2. It also includes the 
relative errors of the measurements and of equation (25). The 
measurement errors agreed well with the manufacturer’s 
specifications of the measurement set-up. According to Fig. 
10-6 of the operation manual, the error at 300 kHz was less 
than 1 % for inductances above about 1 μH , and less than 
3 % below it.  
The error of equation (25) never exceeded 0.7 %, in accord-
ance with the maximum of 2.0 % reported in section 4.  
At high frequencies, both the skin and the proximity effect 
lower the inductance of the constituent straight conductor 
segments of the coil, and thus its total inductance, compared 
to DC [16], [17]. To investigate the strength of the combined 
effect at 13.56 MHz, numerical calculations were done with 
the help of the software FastHenry2, now requesting 10 × 10 
subfilaments to allow for nonhomogeneous current distribu-
tion due to the skin- and the proximity effect. The last column 
of Table 4 shows the relative reduction of the inductance at 
13.56 MHz compared to DC. The largest reduction occurred 
at #16 and amounted to −1.34 %. Increasing the number of 
subfilaments to 15 × 15  changed it only marginally to 
−1.33 %. So, it was concluded that 10 × 10 subfilaments 
sufficed to compute the reduction of the inductance due to 
frequency effects at 13.56 MHz.  

6. Implementation in MATLAB 

The source code of the MATLAB function L_SquarePla-
narSpiral to calculate the DC inductance of square planar 
spiral coils with the help of equation (25) is given in appendix 
2. Since the code is short and simple, engineers who don’t 
have access to MATLAB can easily translate it into any other 
computer language. All quantities are in SI units. Besides the 

inductance 𝐿, the function also returns the filling factor 𝜌. If 
the data entered represents an invalid parameter combination 
as explained in section 3, an error message is output. This 
condition is detected by checking the value of 𝜌, which is cal-
culated with the help of equation (14). Following are exam-
ples to test the correct implementation of the code for each 
range. The dimensional coil data  
 
A = 0.05; w = 1.4e-3; s = 7e-4; h = 35e-6; 

 
is used for all four ranges. The MATLAB function is run by 
the command  
 
[L, rho] = L_SquarePlanarSpiral (N, A, w, s, h)  
 
Table 5 lists the number of windings 𝑁 to be used for each of 
the four ranges in the test, together with the respective value 
of 𝐿 returned by the MATLAB function, the precise DC in-
ductance, the relative error of 𝐿, and the value of 𝜌 returned.  
 
Table 5: Example data for testing the MATLAB function pre-

sented in appendix 2.  
𝑁 𝐿 

[𝜇H] 
𝐿𝑝𝑟𝑒𝑐𝑖𝑠𝑒  
[𝜇H] 

Err. 
[%] 

𝜌 
 

2 0.595 0.595 -0.05 0.0432 
5 2.354 2.366 -0.51 0.1419 
10 5.402 5.406 -0.07 0.3556 
15 7.011 7.013 -0.02 0.6678 

 

7. Conclusions 

An improved formula for the DC inductance of square planar 
spiral coils with rectangular conductor cross section has been 
derived. It is based on purely physical principles on one part, 
and on a correction factor on the other. The latter has been 
determined by a parameter fit. In doing so, a simple but effec-
tive method for reducing a global non-linear optimization 
problem to a local one, by using the solution to a related linear 
problem as starting point for the non-linear one, has been suc-
cessfully used. Since the correction factor only depends on 
dimensionless parameters, the derived formula remains scal-
able, i.e. it is valid irrespectively of the coil size and the in-
ductance range.  
The formula has been tested by the same method applied in a 
previous comparative study [1] which analyzed the maximum 
errors of the most cited formulae known from the literature 
over a large domain of definition considering almost 14000 
reference designs. Their precise inductances were computed 
numerically with the help of the scientific and industrial 
standard software FastHenry2. Using the same method and 
the same reference designs in this paper guarantees that the 
test results from the new formula can directly be compared to 
those reported in that study.  
The formula reduces the maximum error of the DC induct-
ance over the whole domain of definition from hitherto 29 % 
down to 2.0 %. Hence, it seems that the long sought-after 
generally applicable formula with sufficient accuracy for coil 
design has been found.  
Calculations of the DC inductance done on 16 RFID reader 
antennas manufactured on standard PCB with 35 μm copper 
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layer thickness have led to a maximum error of the formula 
of 0.7 %, which is compatible with the above result of its 
maximum error over the whole domain of definition. Meas-
urements performed on these antennas have confirmed the 
calculations.  
Yet, there remain two restrictions in applying the formula, 
particularly to RFID transponder card antennas:  
Firstly, these are usually not square, but rectangular due to the 
card standard ISO 7810. Hence, it would be useful to extend 
the formula to include rectangular coils as well. This will add 
a fifth dimensionless parameter to the set, making the error 
analysis much costlier.  
Secondly, transponder card antennas are often manufactured 
from round wire. Therefore, it would be desirable to repeat 
the analysis suggested above for rectangular coils once again, 
but this time with circular conductor cross section.  
Finally, a MATLAB source code for the formula together 
with numerical examples have been provided.  

Appendix 1 

Proof of equation (8):  
 
For 𝑁 = 3, there are 2 pairings of adjacent segments sepa-
rated by the distance 𝑤, and 1 pairing of segments separated 
by a distance 2𝑤, see Fig. 1.  
In general, for 𝑁 = 𝑛, there are 𝑛 − 1 pairings of adjacent 
segments separated by the distance 𝑤, 𝑛 − 2 pairings of seg-
ments separated by a distance 2𝑤 , 𝑛 − 3 pairings of seg-
ments separated by a distance 3𝑤, etc., and 𝑛 − (𝑛 − 1) = 1 
pairing of segments separated by a distance (𝑛 − 1)𝑤. So, 
there are 

𝑁𝑑 = 1 + 2 + 3 +⋯+ 𝑛 − 1 = ∑𝑘

𝑛−1

𝑘=1

=
𝑛(𝑛 − 1)

2
 

 
distances. The average distance is the sum over all distances 
divided by the number of distances. The sum over all dis-
tances is given by the sum of the above list,  
 

𝑆𝑑 = ∑(𝑛 − 𝑘)𝑘𝑤 = 𝑛𝑤∑𝑘 − 𝑤∑𝑘2
𝑛−1

𝑘=1

𝑛−1

𝑘=1

𝑛−1

𝑘=1

 . 

 
The first sum on the r.h.s. is again the sum of the natural 
numbers, resulting in 𝑛2(𝑛 − 1)𝑤/2. The second sum on the 
r.h.s. is the sum of squares of the natural numbers, resulting 
in 𝑛(𝑛 − 1)(2𝑛 − 1)𝑤/6, see [18]. Subtracting this from the 
first sum yields 𝑆𝑑 = 𝑛(𝑛2 − 1)𝑤/6 , and we find 𝑑+ =
𝑆𝑑/𝑁𝑑 = (𝑛 + 1)𝑤/3, q.e.d.  

Appendix 2 

Source code of the MATLAB function L_SquarePlanarSpi-
ral:  
 
function [L, rho] = ... 

          L_SquarePlanarSpiral (N, A, w, s, h) 

 

L = NaN; 

mu2 = 2e-7; 

rho = ((N - 1)*w + s) / (A - (N - 1)*w); 

Ai = A - 2*(N - 1)*w; 

l = 4*N*Ai + (4*N^2 - 5*N)*w; 

dp4 = 4*N * (N + 1)/3*w; 

  

switch N, 

 case 2; 

  if rho > 0.36001, 

    disp ('Invalid parameter combination.');  

    return;  

  end 

  c1 = @(rho) 0; 

  c2 = @(rho) 0; 

          

 case {3, 4, 5, 6, 7}; 

  if rho > 0.52001, 

    disp ('Invalid parameter combination.');  

    return;  

  end 

  c1 = @(rho) -(7.2*rho + 0.35) / (2.78*rho + 1); 

  c2 = @(rho) -12.8*rho^2 + 11*rho + 0.80; 

          

 case {8, 9, 10, 11, 12}; 

  if rho > 0.78001, 

    disp ('Invalid parameter combination.');  

    return;  

  end    

  c1 = @(rho) -(2.1*rho + 0.17) / (0.75*rho + 1); 

  c2 = @(rho) -(0.59*rho + 1.2) / (-0.90*rho + 1); 

          

 case {13, 14, 15, 16, 17, 18, 19, 20}; 

   if rho > 0.86001, 

    disp ('Invalid parameter combination.');  

    return;  

   end 

  c1 = @(rho) -(1.5*rho + 0.11) / (0.98*rho + 1); 

  c2 = @(rho) -(2.85*rho + 2.48) /(-0.75*rho + 1); 

end    

    

L_partial = mu2*l*(log(l/N/(s + h)) - 0.19315); 

Mm = mu2*l*0.46716; 

Mp = mu2*l*(log(sqrt(1 + (l/dp4)^2) + l/dp4)... 

            - sqrt(1 + (dp4/l)^2) + dp4/l); 

L0 = L_partial - N*Mm + (N - 1)*Mp; 

L = L0 * (1 - (c1(rho)*N + c2(rho))/100); 
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