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Abstract

A plea for the introduction, in advanced electromagnetics
courses, of some basic differential geometric notions: cov-
ectors, differential forms, Hodge operators. The main ad-
vantages of this evolution should be felt in computational
electromagnetism. It may also shed some new light on the
concept of material isotropy.

1. Introduction
This is an expanded version of an intervention within the
session “Waves are not vectors” of the AES 2012 meet-
ing of April 18, 2012, in Paris. At a time when physicists
talk about scalar or vector bosons, pseudovector mesons,
and so forth, to say nothing of vector potential or Poynt-
ing “vector”, it’s a good idea to thus challenge this habit to
confuse words and things. Not that the confusion is terri-
bly damaging, of course. We know, don’t we, what we are
talking about, it’s only the taxpaying common person who
risks being confused – should they try to understand a bit
of the science we pretend to possess and to teach. And it’s
inevitable to represent physical entities we wish to under-
stand by mathematical objects, since only the latter can be
handled within a logic-based formal discourse. What is at
stake is the choice of these mathematical objects.

For choice there is: Several formalisms exist, within
which classical electrodynamics can be described: A
quaternionic one was popular before Heaviside’s reformu-
lation in use nowadays, based on vector fields. Some au-
thors prefer tensors. Others favor Clifford algebras. Here,
I will use differential forms, and try to explain why this is
the best choice.

2. Differential forms as field descriptors
The criterion in this respect is the time-honored one of
parsinomy: Introduce abstract entities only when adequate
to the physical entities one wants to deal with, and only
when it becomes necessary. Therefore, a well structured
theory will start with weak mathematical structures and
enrich them on demand, as the theory grows, as if paint-
ing layer over layer of the desired theoretical framework.
Rather than unwrapping this metaphor, let’s have an exam-
ple.

Consider the case of the electric field E(x) at a point

x where it is well defined (i.e., not at a material interface).
This vector tells about the force exerted by the field over a
unit electric charge placed at x. This force itself is known,
to first order, via the virtual work E(x) · v involved in mov-
ing the charge from x to x + v, where vector v stands for
the virtual displacement. The mapping v → v ·E(x) being
linear and continuous on the space V of three-dimensional
vectors, it is – by the very definition of a dual – some ele-
ment e(x) of the dual V ∗ of V . Such elements are called
covectors and the pairing between a vector v and a covec-
tor ω is denoted by 〈v ; ω〉. So we have here v · E(x) =
〈v ; e(x)〉, showing that the electric field, as a physical en-
tity, is totally described by the field (in the mathematical
sense) x→ e(x), a field of covectors. (We denote this field
by e in what follows. It’s called a differential form of de-
gree one, or 1-form. Cf., e.g., [1, 2].) Comparing now the
two sides of the equality v · E(x) = 〈v ; e(x)〉, we see two
possible mathematical representations of the electric field:
(1◦) The one on the left, which uses the vector field E in
association with the metric structure conferred on space by
the dot product “ · ”, (2◦) The one on the right, which uses
the 1-form e plus nothing else. Parsimony mandates (2◦) as
the best choice: E appears as an auxiliary entity, that plays
the role of proxy for the real thing, e.

To show how the 1-form e (taken at some instant of
time, of course) gives complete information on the electric
field, let’s work out the electromotive force (e.m.f.) along
some oriented curve c. For this, chop c into a sequence
of segments {xi−1, xi}, with x0 at the start-point of c and
xn at the end-point, call vi the vector from xi−1 to xi, and
form the sum

∑
i〈vi ; e(xi−1)〉. As the subdivision of c is

properly refined, with n going to infinity, this Riemann sum
tends to a number, that we shall denote either by

∫
c
e (the in-

tegral of e along c), or 〈c ; e〉, to emphasize the duality pair-
ing between the integration domain c and the integrandum
e. This limit number is the e.m.f. along c: It’s what a volt-
meter, whose connecting threads would follow the path c,
would display. Since c can be any (smooth enough) ori-
ented curve, the 1-form e does indeed know all that is phys-
ically meaningful about the electric field.

Note that 〈c ; e〉 is also the number that would be ob-
tained by evaluating the so-called circulation of the proxy
field E, that is to say, the integral

∫
c
τ(x) · E(x) dx, where

τ(x) is the tangent vector of length 1 at point x of curve c,
oriented in the forward direction along c, and dx the mea-



sure of lengths. Comparing these two expressions of the
e.m.f., one sees that the metric of space provided by the
dot-product “ · ” is not essential to the physical description
of the field: One could change this metric for a different
one, with dot product “ ·′ ”, say, and then, one would have
to describe the field by a different proxy vector-field E′,
and to equip the curve c with a different set τ ′ of tangent
vectors and a different lineal measure d′x, in order to pre-
serve the equality

∫
c
τ(x) · E(x) dx =

∫
c
τ ′(x) · E′(x) d′x

between these two different expressions for the same e.m.f.
〈c ; e〉. Fields are not vectors, therefore: A vector field like
E is not the mandatory representation of the electric field,
as a physical entity. The 1-form e does the job much better.

Similar considerations apply to the magnetic induction.
One fully knows it when, for any oriented surface S, the
induction flux 〈S ; b〉 embraced by S is known. Faraday’s
law then connects the rate of variation of this flux with the
e.m.f 〈∂S ; e〉 along the boundary ∂S of S:

dt〈S ; b〉+ 〈∂S ; e〉 = 0. (1)

(Beware that S must not change in time for this to hold,
so that one has dt〈S ; b〉 = 〈S ; ∂tb〉.) Orienting the sur-
face means providing it with a gyratory sense (clockwise
or counterclockwise), and orientations of S and its bound-
ary should “match”, that is, the forward direction along ∂S
should respect the gyratory sense assigned to S.

[Some technical details, which the reader can skip,
would be required to parse this compact expression 〈S ; b〉.
First, a bivector (or 2-vector) u ∨ v (the “join” of vectors u
and v, both anchored at the same point of space) is the al-
gebraic object represented by the parallelogram spanned by
u and v, with orientation (i.e., gyratory sense) provided by
the rule “go along u first, then turn to direction v”. Bivec-
tors at a point form a vector space, whose dual elements
are called bicovectors, or 2-covectors. Starting from two
covectors ω and η, one may form a 2-covector ω ∧ η by
the rule 〈u ∨ v ;ω ∧ η〉 = 〈u ;ω〉 〈v ; η〉 – 〈v ;ω〉 〈u ; η〉. A
differential form of order 2, or 2-form, is a smooth field
of 2-covectors. To understand 〈S ; b〉, where b is such a 2-
form, imagine surface S chopped into small patches ui∨vi,
each based at point xi of S, and form the Riemann sum∑
i±〈ui ∨ vi ; b(xi)〉, where the sign in front of ui ∨ vi is

+ if this patch has the same orientation as S itself, – other-
wise. The limit of that is, by definition, 〈S ; b〉.]

Although such cumbersome details are needed in the
theory, one can easily bypass them: Just think of e and b
as mappings from oriented curves or surfaces to reals, the
value being interpreted as an e.m.f. or a flux. These maps
are linear (and also continuous, in some rather involved
sense). Linearity means that, for instance, 〈c1 ; e〉 + 〈c2 ; e〉
= 〈c1 + c2 ; e〉, where c is the curve obtained by chaining
c1 and c2: This linearity reflects the fact that, in case the
end-point of c1 is the start-point of c2, a voltmeter would
measure for this chain the sum of the e.m.f.’s measured
along c1 and c2 separately. Hence the concept of chain:
a weighted sum, with real coefficients, of oriented subman-
ifolds of common dimension p (p = 1, in our example, with

both coefficients equal to +1) and of cochain: a p-cochain
is an element of the dual of the space of p-chains. Exam-
ples are the 1-cochain e and the 2-cochain b. Zero-cochains
are just functions (such as the scalar electric potential ψ).
The expressions “p-form” and “p-cochain” can be taken as
synonyms.

Thanks to the linear structure thus conferred to chains,
one may consider the boundary operator ∂ as a linear map,
from p-chains to (p − 1)-chains, which can be useful: For
instance, the boundary of curve c joining point p to point q,
considered as a 1-chain, is the 0-chain ∂c = q−p. If surface
S is a cylinder bounded by two closed curves c1 and c2,
then ∂S is a chain based on c1 and c2, like e.g. c2 – c1, de-
pending on how S, c1 and c2 are oriented. (The orientation
of ∂S, which must match that of S, is thus determined, but
it may not match with the orientations of the various com-
ponents of the chain ∂S. Hence the possible minus signs.)
Also, in finite element practice, one will often deal with
surfaces made of triangular facets of the mesh. As mesh
elements are independently oriented, such surfaces will be
2-chains based on mesh facets, with weights ±1 (or 0, for
facets lying outside the surface), and their boundaries will
be edge-based 1-chains, also with weights ±1 or 0.

3. Exterior derivative, Maxwell’s equations
But the main advantage of this linearity is perceived in what
follows: Define a new operator denoted d, called exterior
derivative, from (p − 1)-cochains to p-cochains, by the
clause

〈S ; de〉 = 〈∂S ; e〉 for all p-chains S, (2)

that is to say, define d as the dual of ∂. (This equality is
the general form of the Stokes theorem.) Turning to (1),
where S was but a dummy variable, we can get rid of it, and
transform (1), using d, into the following local expression
of Faraday’s law:

∂tb+ de = 0, (3)

which is as simple as possible. In particular, no metric ele-
ment is used in it, contrary to what happens in the standard
expression ∂tB + rotE = 0.

There, B plays proxy in a way similar to what we al-
ready described about E. The flux 〈S ; b〉 embraced by S
can be written as

∫
S
n(x) · B(x) dx, where dx is the areal

measure and n one of the two fields of unit-length vectors
normal to S. This normal field has to be chosen in such a
way that (applying the right-hand rule), the gyratory sense
indicated by counter-clockwise rotation around n coincides
with the orientation of S. Then, the equality

∫
S
n · rotE =∫

∂S
τ · E comes from the elementary version of the Stokes

theorem, and (1) is seen to result in ∂tB + rotE = 0. All
the objects we are dealing with here, E, B, τ , n, the curl
operator rot, are metric-dependent, but these dependencies
appear to cancel each other, resulting in the completely
metric-free expression (3)!

The behavior of B, as a proxy field for b, is more com-
plex than that of E: Not only B will have to change if the
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metric is changed, in order to keep the flux 〈S ; b〉 invariant,
but with unchanged metric the sign of B will still depend
on which orientation convention (right-hand or left-hand)
is adopted. Orientation of the ambient three-dimensional
space (that is, the choice of which species of screws, snails,
stairs, etc., are deemed right-handed or left-handed) is a
convention which has no necessary connection with the
choice of metric and/or Cartesian axes, but quite often—by
choice of the analyst, not by physical necessity—all these
elements go together: The basis of vectors w1, w2, w3 one
selects is supposed to determine the scalar product (by the
rule u·v =

∑
i u

ivi, if u =
∑
i u

iwi and v =
∑
i v
iwi), and

is supposed to be right-handed. Changes of basis—which
cannot have any physical import—then wreak havoc in the
relations between mathematical entities, hence these arcane
notions of “axial” (vs “polar”) vectors, of right-handed vs
left-handed cross products, etc., that make the teaching of
Electromagnetism so taxing. As (1) demonstrates, all these
props can be discarded.

By analogy, one can guess that Ampère’s law, −∂tD +
rotH = J in standard terms, must be replaced by

−∂td+ dh = j, (4)

where h is a 1-form and d and j are 2-forms. There is
however an important difference. For j to properly rep-
resent current density, its integral

∫
Σ
j, or 〈Σ ; j〉 in the al-

ternate notation, over a surface Σ, should represent an in-
tensity going through Σ, which implies a crossing direc-
tion with respect to Σ, not the same thing at all as the gy-
ratory sense that was necessary on S for 〈S ; b〉 to make
sense. Of course, if the ambient space is oriented, the two
kinds of orientation are related by the right-hand rule, but
why should one impose this conventional, human created,
feature—an orientation of the space we inhabit—in back-
ground of a physical theory, if it can be avoided?

It can, as follows: Let’s distinguish outer orientation,
characterized in the case of surfaces by a crossing direction,
from inner orientation, characterized by a gyratory sense.
Two-chains based on outer-oriented surfaces will be called
twisted 2-chains [3], those based on inner-oriented ones be-
ing known from now on as straight 2-chains, for due con-
trast. A similar distinction holds for 1-chains: An outer
orientation, for a curve γ, is a way to turn around it (instead
of going along it) in a definite sense, that is to say, a consis-
tent system of inner orientations of closed loops encircling
γ. Twisted 1-chains are those based on such outer-oriented
curves. Now if γ is the boundary ∂Σ, the outer orientations
of Σ and ∂Σ “match” when the forward direction along
such an encircling loop coincides with the crossing direc-
tion assigned to Σ. Finally, twisted cochains are defined as
mappings from twisted chains to reals, the d being again
the dual of ∂, and eq. (4) can be interpreted as a relation
between the ∼1-form h (note the use of ∼ as a shorthand
for “twisted”) and the ∼2-forms d and j.

The real number 〈γ ;h〉 is the magnetomotive force
(m.m.f.), not “along” γ, like an e.m.f., but “around” it, so to
speak, which makes sense when one thinks that an m.m.f.

is created by Ampère turns, i.e., current flows, that do “turn
around” γ in a clearly defined way. Symmetrically, the in-
duction flux 〈S ; b〉 is not “through” S, contrary to what its
standard representation

∫
S
n · B tends to suggest, with this

n that looks like a crossing direction. The meaningful di-
rection is instead the forward one along the boundary ∂S,
which abstractly represents the way one arranges along ∂S
the threads of the voltmeter that records—thanks to Fara-
day’s law—the rate of change of the magnetic flux. Hence
the word “embraced” to correct, as much as possible, the
wrong suggestion that magnetic flux would be, like inten-
sity, the flux of some kind of “stuff” across a surface. This
interpretation, on the other hand, is all right as j is con-
cerned, for 〈Σ ; j〉 is the quantity of electric charge that
crosses Σ, per unit of time. Electric charge q, by the way, is
a twisted 3-form, the integral 〈Ω ; q〉 of which over a volume
Ω represents the total charge inside Ω. A straightforward
application of the Stokes theorem shows then that

∂tq + dj = 0 (5)

expresses conservation of electric charge. Charge density
q, here, rather than being a new entity in the theory, is de-
fined from d by q = d d, so one can see, by applying d to
both sides of (4), that (5) derives from (4), thanks to the re-
lation d◦d = 0, which itself is a consequence, by duality, of
the obvious property ∂ ◦∂ = 0, “the boundary of a boundary
is zero” [4].

Magnetic charge, if such a thing existed, would sim-
ilarly be represented by the (straight, this time) 3-form
m = db. The fact that db = 0 is, again, seen to be a con-
sequence of Faraday’s law by letting d act on both sides of
(3), under the natural assumption that b has been null until
some instant t, for instance t = 0. We have all reasons to
believe that m = 0 indeed [5], but if experience said oth-
erwise some day, adapting Maxwell’s theory to that would
be easy: Just put, on the right-hand side of (3), a term −k,
where k is a (straight) 2-form, interpreted as the current of
magnetic charge [6]. Then, magnetic charge would be con-
served, ∂tm+ dk = 0, as a consequence of (4).

A last remark on the straight-vs-twisted opposition:
straight and twisted forms appear in other fields of physics.
In Thermodynamics, for instance, temperature is a 0-form,
its gradient is (the proxy of) a 1-form, heat flux is a twisted
2-form, and volumic enthalpy is a ∼3-form. Entropy has
the same status. One can observe on this that so-called
“intensive variables” always correspond to straight forms,
while “extensive” ones are twisted forms. This is no acci-
dent, and straight [resp. twisted] p-forms are proper gener-
alizations of the concept of intensive [resp. extensive] quan-
tities.

4. Constitutive laws
The metric structure thus appears as superfluous, so far.
Worse, using it when stating Maxwell’s equations hides
some important things, such as the difference in nature just
evoked between intensive and extensive entities. Yet, the9
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metric thus expelled comes back, in an interesting way, in
the constitutive laws.

We expect, of course, two relations such as h = νb
and d = εe to complete (3) and (4). But ν and ε there
can no longer be mere numbers, since they connect objects
of different types. They must be, accordingly, operators:
What we have, at each point x of space, is a map ν(x) from
straight 2-covectors to twisted covectors, and a map ε(x)
from straight covectors to twisted 2-covectors. Such maps,
from a p-covector, straight or twisted, to an (n−p)-covector
of the opposite kind, i.e., twisted or straight, are called,
when they are linear, “Hodge operators”. In the use we
made of them here (assuming linearity of the constitutive
laws), they describe the behavior of matter (or of vacuum)
at point x. (Ohm’s law, similarly, would be j = σe + js,
where js is the “source” current, the one that generates the
field. But let’s ignore this issue and consider j in (4) as
given.) They can be considered locally, at each point x, or
globally, as in h = νb and d = εe, thus sending a p-cochain
to an (n− p)-cochain.

As it appears (we soon return to this point), ε and ν en-
code the metric structure of space-time (they determine the
light cone, in particular). So at this stage one has a neat sep-
aration between the so-called pre-metric part of Maxwell’s
theory (essentially (3) and (4), both conservation laws of
sorts, plus derived relations such as (5) and db = 0), and
its metric aspects—constitutive laws—that characterize the
medium in which the electromagnetic field develops, and
thus appear as less fundamental than the two main equa-
tions.

Such a separation is more difficult in the classical the-
ory: In B = µH , for instance, we have most often a scalar
µ, but also, sometimes, a symmetric tensor µij , so that com-
ponents of B are given by Bi =

∑
j µ

i
jH

j . A mere change
of basis being enough to pass from a scalar to such a ten-
sor, this casts in doubt the notion of isotropy: Isotropy can-
not naively be understood as the presence of off-diagonal
components in matrix µ, since that could be achieved by
a change of basis, an operation which is, physically, irrel-
evant. A more refined notion of anisotropy comes from
restricting changes of basis to orthonormal ones, so that
eigenvalues of µ acquire an invariant character. It then
seems to make sense to identify isotropy with the equality
of these three principal values. But this amounts to endow
the chosen metric (in which the proxies of b and h are B
and H) with a physical character that it may not possess.
The usual Euclidean metric has such a character as far as
the vacuum is concerned, because our geodesy is based on
the very existence of light rays, so that the metric we fa-
vor is adapted to Maxwell’s equations in the void (hence
the scalar character of ε0 and µ0 in the laws D = ε0E and
B = µ0H). But this is not necessarily the case in crystals,
be it natural ones or artificial ones such as metamaterials.

5. Anisotropy
Hodge operators help understand this question better, to the
price of conceiving them in a different way than what clas-

sical textbooks propose [1, 2]. These define a scalar prod-
uct first, and then use it to build a map from p-covectors to
(n − p)-covectors. Here, we do the opposite: We take as
primitive objects the operators ε and µ, as given by physics,
and determine a metric adapted to each of them. Isotropy,
or lack of it, is then a matter of how these (a priori different)
metrics relate. Let’s describe this mechanism.

So let be given (by adequate measurements) the opera-
tors ε(x) and ν(x) that link, at each point x, the local values
of the fields d and h, to those of e and b. Owing to their rela-
tion to electric and magnetic energy density, these operators
are, as a rule, symmetric and positive definite, which means
that the∼3-forms e(x)∧ εe(x) and b(x)∧νb(x) don’t van-
ish for e(x) 6= 0 and b(x) 6= 0, and that (let’s drop the x,
understood, from now on) e ∧ εe′ = e′ ∧ εe and b ∧ νb′ =
b′∧νbwhatever e, e′, b, b′. By setting |b|ν = λ(b(x)∧νb)1/2,
where λ is a suitable constant, one obtains a norm on the
linear space of 2-covectors, from which a Euclidean norm
| |ν on vectors is easily derived. (Adjusting λ to make the
notions of length and of volume consistent, cf. [7], yields a
unique, canonical such norm.) Hence a metric, “ν-adapted”
in the sense that, if B and H are the proxies of b and h for
this metric, then B = H . “Hodge implies metric”, so to
speak. (This works in spatial dimensions 3 and higher, cf.
[7].)

Now let’s turn towards ε. By the same process, one
can form an ε-adapted metric | |ε , which quite often will
be the same as | |ν , up to a multiplicative constant. This
is what happens for the vacuum, for which this constant is
to do with its impedance. It also happens for most kinds of
transparent matter, where the constant is affected by another
multiplicative factor, called the refractive index of the ma-
terial. In both cases, there is isotropy in a physically mean-
ingful sense, since light rays, as it can be proven, propagate
at the same velocity in all directions and whatever the po-
larization, even though a choice of metric non-adapted to
either ε or ν could mask this fact.

So what about genuine anisotropy? This holds when,
having chosen one of the hodges (usually, ν) to make a
metric with, the eigenvalues of the matrix ε that links the
proxies D and E of d and e by D = εE, happen to be dis-
tinct. (Proxies D and E there, of course, are those relative
to the ν-metric.) Then the velocity of light (as measured
by using the ν-metric) depends on direction, and the very
notion of light cone can even collapse if the three principal
values differ two by two, to be replaced by a more complex
geometrical object, the Fresnel surface [6]. Propagation ve-
locity of a plane wave then also depends on its polarization,
hence the spectacular phenomenon of birefringence [8].

Isometry, to sum up, is not a matter of commutativity
between ε and ν, or its inverse µ (the products εν or νε
do not even make sense). It’s a matter of both determining
the same metric, up to a multiplicative factor, of 3D space.
This amounts to saying that ε and µ are the same up to such
a factor, a criterion which can be applied whatever the rep-
resentation of these operators. So we may compare, for in-
stance, the standard representations of ε and µ as Euclidean
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tensors, εij and µij , in a system of orthonormal coordinates:
Isotropy holds if and only if there is a constant r such that
εij = rµij . This does not mean that the matrices εij and µij
are scalar multiples of the identity.

So one may conceive of metamaterials whose effective
permittivity and permeability would not be isotropic in the
common sense, but still would propagate waves the way an
isotropic medium does, that is, with spherical wavefronts
expanding away from each emitter point. But ‘spherical’
here refers to the intrinsic metric of the metamaterial, the
one determined, up to a constant, by the Hodge operators
ε and µ, and these wavefronts would not appear to us out-
siders as spheres, but as ellipsoids.

6. Conclusion and prospects
This geometric view of the Maxwell equations we have
sketched here is almost a century old [3, 9, 10, 11] and has
not been adopted yet in mainstream treatises. It should be.
It’s the best way to present modern numerical techniques,
be they based on the Galerkin method with edge elements,
on finite volume ideas, or on so-called “mimetic” heuristics
[13]. The above viewpoint leads naturally to such methods,
which can be presented under the common header “Gener-
alized Finite Differences” [12]. The salient points are (1◦)
By attaching degrees of freedom to elements of the mesh
(not only and exclusively nodes, but also edges, facets, vol-
umes), one is led, almost compulsorily, to a discrete ex-
pression of the conservation laws (3) and (4), which in a
sense introduces no approximation error, (2◦) The Hodge
operators ε and ν must be approximated by square matri-
ces (indexed over edges and facets, respectively), and it’s in
this process that approximation errors appear. So the central
task of the theory, from the numerical point of view, con-
sists in approximating Hodge operators in a consistent way,
and this is where different techniques may compete. This is
also where geometric objects introduced for purely math-
ematical purposes long ago, such as Whitney forms [14],
become useful.

Some benefits can be drawn from this also when deal-
ing with waves, and in metamaterial studies. A plane wave
is a time-varying field of covectors of the form e(t, x) =
Re[Eexp(i(ωt − 〈x ; κ〉))], where both E and κ are cov-
ectors, and a similar expression for h. Again, no metric
element there, contrary to what happens in the standard for-
malism where x · κ, with κ a vector, would replace 〈x ; κ〉.
Treating κ as a covector shifts emphasis from the direc-
tion of propagation of the wave (which is along the vector
κ in the standard treatment) to the planes of equal phase
(those parallel to the kernel of the covector κ). This small
difference eases up the treatment of wave propagation in
anisotropic media, including the study of dispersion rela-
tions. In particular, a streamlined treatment of the Fres-
nel surface is obtained. It’s even more true with Bloch
waves when studying crystal-like media (replace E above
by a cell-periodic covector field E(x) borne by a Bravais
cell). The difference between Bravais cells (parts of V ) and
Brillouin zones (parts of V ∗) is better marked and metric

properties are not in the way.
Fields, to sum up, are physical entities, and there exist

mathematical entities with the same name that can represent
them. The latter are our creation, and should be chosen with
care. Differential forms, aka cochains, i.e., fields of cov-
ectors (bi-covectors in some cases, as has been explained)
are the recommended choice. Other mathematical entities,
namely fields of special form called “waves” (plane waves,
spherical waves, Bloch waves . . . ) also are useful (when
taken as wave packets) to represent physical fields, but just
that. Fields are not waves, waves are not vectors, not even
vector fields, vector fields “are” not the physical fields they
stand proxy for. One should not reify vector fields (or dif-
ferential forms, for that matter) and believe in their exis-
tence as physical objects.

References

[1] W.L. Burke, Applied Differential Geometry, Cam-
bridge University Press, Cambridge (U.K.), 1985.

[2] Th. Frankel, The Geometry of Physics, An Introduc-
tion, Cambridge U.P., Cambridge (U.K.), 1997.

[3] W.L. Burke, Manifestly parity invariant electromag-
netic theory and twisted tensors, J. Math. Phys., 24:
65–69, 1983.

[4] C.W. Misner, K.S. Thorne, and J.W. Wheeler, Gravi-
tation, Freeman, New York, 1973.

[5] A.S. Goldhaber and W.P. Trower, Resource Letter
MM-1: Magnetic monopoles, Am. J. Phys., 58: 429–
439, 1990).

[6] F.W. Hehl and Y.N. Obukhov, Electric/magnetic reci-
procity in premetric electrodynamics with and with-
out magnetic charge, and the complex electromag-
netic field, Phys. Lett. A, 323: 169–175, 2004.

[7] A. Bossavit, On the notion of anisotropy in constitu-
tive laws: some implications of the ‘Hodge implies
metric’ result, COMPEL, 20: 233–239, 2001.
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