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Abstract

In this paper, some features of electromagnetic transmission

of the waves of ”semiconductor dielectric” periodic Bragg

structure with a finite number of periods have been inves-

tigated. In the absence of absorption, for a structure with

p-type semiconductor layers, we have analyzed the depen-

dences on the external magnetic field of photon spectrum

and transmission coefficient spectrum. It has been shown

that with an increasing magnetic field, there is a significant

narrowing of bandwidth and broadening of band gaps, as

well as formation of new band gaps in the resonance re-

gion. The boundaries of all forbidden and allowed bands

are shifted to higher frequencies with the increase of the

angle of radiation incidence.

1. Introduction

In recent years, a remarkably increased interest of the re-

searchers in the photonic crystal structures (PCS) is ex-

plained not only by the presence of photonic band gaps

[1, 2, 3] in their frequency spectrum, but also by the possi-

bility to have an effective control of their optical character-

istics. The configuration of the band spectrum, transmission

and reflection coefficients are determined by the dispersion

of eigen waves, their type and propagation direction against

the axis of structure symmetry and controlling field [4, 5].

One of the most examined materials is one-dimensional

PCS representing planar layered periodic structures whose

properties can be effectively controlled [6, 7]. In the struc-

tures with layers of doped semiconductor, the wave char-

acteristics depend strongly on the magnitude and direction

of the external magnetic field towards the direction of wave

propagation and the structures periodicity axis. The fea-

tures of propagation of electromagnetic waves in such a

structure are largely associated with a gyrotropy of layers

of doped semiconductor that can appear both in microwaves

and optical ranges [8, 9, 10, 11, 12, 13].

In this paper, for the structure with a finite number of al-

ternating layers of a p-type semiconductor and an isotropic

dielectric, we have obtained the dispersion equation and the

expression for energy transmission coefficient for the TM

wave. Based on the numerical analysis, we have examined

the dependence of the above characteristics on the external

magnetic field and the waves incidence angle on the struc-

ture.

It is shown that with the growth of the field, there is a

qualitative change in the character of transmission spectra.

This is expressed not only in modification of the spectral

position and width of the transmission and non transmission

areas, but also in creation of new transmission ranges. With

the increase in the angle of the radiation incidence on the

structure, the boundaries of all forbidden bands are shifted

at different speeds to the region of higher frequencies.

2. Material relations

Let us consider a one-dimensional PCS with a finite num-

ber of periods. The structure of one period d includes a

semiconductor layer with the thickness d1 and a dielec-

tric layer with the thickness d2. The structures periodicity

axis coincides with the OZ axis direction, and the exter-

nal magnetic field H0 lies within the layers plane and co-

incides with the OY axis. The wave vector of the incident

wave lies in theXZ plane and makes an angle with theOZ
axis ψ0 (Fig. 1). Dielectric layers will be assumed to be

isotropic with a scalar dielectric constant (DC or permittiv-

ity) εd. The magnetic field leads to the anisotropy of the

semiconductors optical properties, making its DC a tensor.

The structures gyrotropic properties are due to the presence

of non-diagonal antisymmetric components of the DC ten-

sor εs. If we neglect the relaxation processes, the non-zero

components of the tensor have the following form [3, 7]:

εxx = εzz = ε, εyy = εl
(

1−
ω2
p

ω2

)

,

εzx = εxz = iεa,

ε = εl
(

1−
ω2
p

ω2 − ω2
H

)

, εa =
εlω

2
pωH

ω(ω2 − ω2
H)
. (1)

where εl is the lattice part of DC semiconductor, ωp =
√

4πe2n0/m∗εl and ωH = eH0/m
∗c is the plasma and

cyclotron frequency. Here, m∗ - is the effective mass

of charge carriers in the semiconductor under study, e =
4.8 · 10−10 units of CGSE and n0 - is the charge module

and the carrier concentration. The plasma frequency plays

the role of the ”cutoff” frequency, below which the elec-

tromagnetic wave can not propagate in an unmagnetized

(when H0 = 0) solid-state plasma. In this case, at ω < ωp

of the plasma, DC is negative and the refractive index of

the plasma becomes an imaginary quantity. The cyclotron

frequency at H0 6= 0 is resonant, since when ω tends to ωH



Figure 1: Geometry of the problem.

the moduli of the quantities ε and εa grow abruptly. The

quantities ε and εa tendency to infinity is a consequence of

the fact that dissipative processes driven by collisions of the

charge carriers with the lattice were not taken into account

while obtaining (1). In this case, the currents of conduc-

tivity can be neglected in Maxwell’s equations in compari-

son with displacement currents. Allowance for dissipation

leads to the complexity of the components of the DC tensor

and to the finiteness of the real and imaginary parts of the

magnetoactive plasma.

When the wave propagates perpendicular to the exter-

nal magnetic field, each of the structures layers can have

two eigen waves with orthogonal polarization - TE and

TM . The wave characteristics of the first waves type do

not depend on external magnetic field and are not consid-

ered by us. The behavior of TM waves depends strongly

on the magnitude of the applied field.Thus, the features of

the semiconductors high-frequency behavior are largely re-

lated to the frequency and field dependence of the effective

semiconductor permittivity:

ε⊥ = ε− ε2a
ε
, (2)

3. Dispersion in the fine-stratified medium

The wave field of TM wave contains components

{Ex, Hy, Ez}. We assume the dependence of these com-

ponents on time and longitudinal coordinates (along the

axisOX) to be proportional to the factor exp [i(ωt− kxx)],
where the planar component of the wave vector is the same

in all the layers of the structure, i.e.

kx = k0
√
ε0 sinψ0 = k0

√
ε⊥ sinψ1 = k0

√
εd sinψ2.

(3)

Here, - k0 = ω/c, c is the light speed in vacuum,

ε⊥ = ε− ε2a/ε is the semiconductors effective permittivity

in the magnetic field, ε0 is the DC of the media in which the

PCS is located, ψ0 is the angle of incidence on the structure,

measured from the OZ axis, ψ1 and ψ2 are the angles be-

tween the normal and the wave vector in the layers of the

semiconductor and the dielectric, respectively. The normal

components of the wave vector in each of these layers are

Figure 2: The frequency dependence of εef at H0 =
0, 0.5, 1.5, 2, 3 kOe (curves 1 − 5) in the absence of

absorption.

defined by the expressions:

kz1 = (k20ε⊥ − k2x)
1/2, kz2 = (k20εd − k2x)

1/2. (4)

The solution to the boundary problem together with pe-

riodicity conditions (for the tangential component of the

wave field) results in the following dispersion relation:

cos (Kd) = C1C2 −
ε⊥εd

2kz1kz2

[(kz1
ε⊥

)2
+

(kz2
εd

)2
+ k2x

( εa
εε⊥

)2]
S1S2, (5)

where K is the Bloch wave number, and the following

notations have been introduced: Cj = cos (kzjdj), Sj =
sin (kzjdj), j = 1, 2

For a fine-stratified structure, when the condition λ ≫
d1 + d2 (or Kd = 2πd/λ << 1) is satisfied, it is possible

to use a long-wave approximation, the dispersion relation

takes the form:

K = k0

√

εef (θ, ψ0). (6)

Here, we have introduced an effective permittivity of a

fine-stratified medium at an arbitrary angle of incidence of

the TM wave on the structure:

εef (θ, ψ0) = εef (θ)−
(

(εd+θε⊥)
εd + ε⊥
εd

−εd
ε2a
ε2

)

sin2 ψ0

ε⊥(1 + θ)2
,

(7)

where the parameter θ = d1/d2. Equation (6) deter-

mines the spectrum of the eigen waves, which can prop-

agate in a fine-layered periodic structure for a given ex-

ternal field and wave propagation direction. When the

wave propagates along the periodicity axis of the struc-

ture (at ψ0 = 0), the expression (6) reduces to the form

K = k0
√

εef (θ), where

εef (θ) =
εd + θε⊥
(1 + θ)

. (8)

Fig. 2 shows frequency dependences of the effective

semiconductor permittivity structure of the value corre-

sponding to the values of the external magnetic field H0 =
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Figure 3: The dispersion relations ω(K) for a fine-layered

structure in which the semiconductor layers can be of the

n− or p−type (a, b) at H0 = 1 kOe in the absence of

absorption and parameter values θ = 0, 0.25, 4,∞ (curves

1-4).

(0.5, 1, 1.5, 2, 2.8) kOe (curves 1-5). To create them, let us

assume that the thicknesses of the layers in the structure

period are equal (d1 = d2, θ = 1). The material SiO2

with DC εd = 4 is selected as a dielectric layer. For the

semiconductor layers (InSb -type), we used the following

parameter values [7]: εl = 17.8, the carriers effective mass

is m∗ = 0.42m0 (where m0 is free electron mass), the con-

centration is n0 = 1.9 · 1013 cm−3, the plasma frequency

ωp = 9 · 1010 s−1. At this value of the field, the cyclotron

resonance frequency for the holes is defined by the expres-

sion ωH = 4.2 ·107H0 s
−1. An effective permittivity is ex-

periencing dramatic changes in the magnitude and the sign

near the resonant frequency of the structure, which is de-

fined in case of equal layer thicknesses in the period by the

expression:

ωres ≃
√

ω2
H + γωp(ωp + ωH), (9)

where the parameter γ = ε(εl + εd)
−1. With the in-

crease of the controlling magnetic field, there is a high-

frequency shift of the resonance curves. Fig. 3 shows the

dispersion relations ω(K) for a wave propagating along the

axis of periodicity of a fine-layered structure in which the

semiconductor layers can be of the n− or p−type (a, b).

To create them, the following values of the layers param-

eters were used: for dielectric layers εd = 4 (SiO2), for

semiconductor layers εl = 17.8 (InSb); for n−type semi-

conductor, the effective mass of carriers m∗ = 0.014m0

and their carrier concentration n0 = 0.65 · 1012 cm−3; for

p−type m∗ = 0.42m0 and n0 = 1.9 · 1013 cm−3, m0 -

is mass of a free electron. At the chosen carrier concentra-

tions, the plasma frequency for both types of semiconduc-

tor is the same and equal to ωp = 9 · 1010 s−1. The above

dependences were obtained with no absorption assumption

in the layers of the semiconductor (ν = 0) at an external

magnetic field H0 = 1 kOe and parameter values θ =
0, 0.25, 4,∞ (curves 1-4). For a given value of the field,

the cyclotron resonance frequency for electrons and holes

is determined by the expressions ωHn = 12.5 · 108H0 s
−1

and ωHp = 0.42 · 108H0 s
−1. The presence of an external

field leads to the splitting of the dispersion curves and to

the appearance in the spectrum of high-frequency and low-

frequency branches. The frequencies of these branches at

K → 0 are given by the expressions:

ω± =

√

√

√

√

q ±
√

q2 − 4(εd + θεl)εlθω4
p

2(εd + θεl)
, (10)

where q = (εd + θεl)ω
2
H + (εd + 2θεl)ω

2
p. We note

that in the case under consideration H0 6= 0, in the ab-

sence of absorption, the dispersion curves of each of the

branches intersect at one point with frequencies AtK → ∞
the low-frequency branch tends asymptotically to the fre-

quency ωr =
√

ω2
H + ω2

p. As a result of the splitting of the

dispersion curves, a frequency gap is formed in the spec-

trum in which the wave is damped. The width of the gap

∆ = ω+ − ωr depends considerably on the ratio of the

thicknesses of the layers and the external magnetic field. In

the region ωr < ω < ω+, the wave in the PCS is damped

and the transmission coefficient can take anomalously small

values. Near resonant frequencies ω
(n)
r ≈ 12.532·1011 s−1

and ω
(p)
r ≈ 0.994 · 1011 s−1 in the spectra, there is a struc-

ture of condensing alternating allowed and forbidden nar-

row bands.

4. Dispersion relations and transmission

spectra

The analysis of the relationship (6) shows, - that in the gen-

eral case of periodic structure, when λ ∼ d, the disper-

sion dependences K(ω) are alternating the forbidden and

allowed frequency bands. The band gaps reflect the struc-

tures opacity, i.e. an effective reflection of the wave with

the reflection coefficient of a unit value, the allowed bands

reflect the structures transparency. The transmission coef-

ficient of the PCS consisting of n periods can be expressed

through the components of the transfer matrix of the struc-

ture M̂ . According to the Abeles theorem [7, 14], this ma-

trix is determined by the n-th degree of the transfer matrix

of one period M̂ = (m̂)n. Its components have the form of

Mjj = mjj
sin (nKd)

sin (Kd)
− sin ((n− 1)Kd)

sin (Kd)
,

Mj,3−j = mj,3−j
sin (nKd)

sin (Kd)
, (11)

where j = 1, 2, and the elements of the matrix m̂ are

given in the Appendix. At the same time, the wave ampli-

tude coefficient of the wave transmission by the structure

takes the form [9]:

t =
2k0kza exp (−ikzbnd)

k0kzaM11 + k0kzbM22 − kzakzbM12 − k20M21
.

(12)
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Figure 4: The frequency dependence of effective DC of the

structure εef , the Bloch wave number K and the transmis-

sion coefficient T at H0 = 0 and in the absence of absorp-

tion.

For the numerical analysis of the PCS bandwidth, we

use the energy transmission coefficient T = (nb/na)|t|2 =
|t|2, where we take into account that the refractive indices

of the media bordering the PCS are the same: na = nb =√
ε0.

Let us first consider the wave properties of the consid-

ered PCS in the absence of an external magnetic field. Fig. 4

shows the frequency dependence of three variables an ef-

fective permittivity of the structure εef , the Bloch wave

number K and the transmission coefficient T , that are ob-

tained for the case of wave propagation along the periodic-

ity axis (ψ0 = 0 and kx = 0). It can be seen that at the

frequency

ωres(0) = ωp

√

εl/(εl + εd) ≃ 8.1 · 1010 s−1. (13)

there is a change of the sign of the effective permittivity.

In the area of ω < ωres(0), the permittivity εef is negative,

so this area is forbidden on the dispersion relation. The

spectrum of the transmission coefficient T (ω) represents an

oscillating function with alternating transmission and non-

transmission bands. For the area ω > ωres(0), the figure

shows the first two areas of transparency and the first Bragg

band gap. The two following figures shows evolution of the

dispersion relations, which is observed with an increasing

magnetic field in the case of the wave propagation along the

axis of periodicity.

Fig. 5 shows the dependences K(ω) within the field in-

tervals H0 = (20 − 370) Oe. It is seen that in the case

of small fields, at which the resonance frequency is permit-

ted in the first zone, the dispersion relation change occurs

only in this area. The dispersion curves type in the second

Figure 5: The photon spectrum of PCS K(ω) at H0 =
20, 50, 80, 190, 370 Oe, (d1 = d2 = 0.15 cm).

allowed band and the forbidden bands width remain prac-

tically unchanged in these fields. The character of changes

in the dependence K(ω) in the first zone consists in the fol-

lowing: first, at the resonance frequency, there is a split of

the zone into two subzones (H0 = 50 Oe). With a further

increase of the field, there is an expansion the resulting for-

bidden area (H0 > 80 Oe), and appearance at the resonant

frequency of a new narrow allowed band (H0 ≥ 190 Oe).

Fig. 6 shows the evolution of the dependence K(ω)
with a further increase of the field within the values range

H0 = (0.5 − 2.8) kOe. In these fields, the spectrum mod-

ification occurs not only in the area of the first, but also the

second allowed band (in the absence of the field). There is

a significant expansion of the forbidden bands and narrow-

ing of the second allowed band, as well as appearance of

additional bands at the field values H0 = (1.5, 2.8) kOe.
Such a change in the dispersion spectrum in a magnetic

field should affect the reflection and transmission spectra

for the structure under consideration.

Fig. 7 shows the spectra of the transmission coeffi-

cient T (ω) for the considered interval of the magnetic

field. According to the dependence K(ω), the increasing

86



Figure 6: The photon spectrum of PCS K(ω) at H0 =
0.5, 1.0, 1.5, 2.0, 2.8 kOe, (d1 = d2 = 0.15 cm).

field triggers extension of the opacity bands with the max-

imum reflectivity capacity of the structure. In these stop-

bands, there might appear narrow minibands of the struc-

tures transparency near the resonance frequency.

Fig. 8 shows the diagram T (ω, ψ0), illustrating the de-

pendence of the transmission coefficient on the frequency

and incident radiation angle. These diagrams were obtained

for the magnetic field values H0 = (0, 0.5, 2.0) kOe. It

can be seen that with an increasing external magnetic field,

there is a significant broadening of the forbidden zones and

their shift to the region of high frequencies. Near the reso-

nant frequency, a narrow permitted miniband appears in the

band gap, with the frequency range practically independent

on the angle of incidence on the structure. The position

and the width of the allowed and forbidden bands that are

close to the resonance are weakly dependent on the inci-

dence angle. However, with an increase in the angle ψ0, the

boundaries of all forbidden and allowed bands are shifted

at a different speed to higher frequencies area.

5. Conclusions

The paper investigates controllability of the transmittivity

of ”semiconductor-dielectric” PCS by an external magnetic

field in the high-frequency range (in area ω ≃ 1011 s−1).

On the basis of numerical analysis of the dispersion relation

Figure 7: The spectra of the transmission coefficient T (ω)
at H0 = 0.5, 1.0, 1.5, 2.0, 2.8 kOe.

0 0 030 30 3060 60 6090 90 90

Figure 8: The map of the distribution of the transmission

coefficient versus the frequency ω and incident radiation

angle ψ0.

for TM wave in the periodic structure and energy transmis-

sion coefficient, we have investigated the above characteris-

tics dependence on the magnitude of the external magnetic

field. To better understand the features of the magnetic field

influence on the structures photon spectrum, layers of a

semiconductor of the hole type (with parameters p− InSb)
are considered in the absence of absorption. This approx-
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imation is completely acceptable in the investigated fre-

quency range and the adopted impurity concentrations. The

dispersion dependences of the TM wave for a structure with

semiconductor layers of the n− and p−type have been an-

alyzed for different ratios of a semiconductor and a dielec-

tric layers thicknesses and an external magnetic field. The

features of these characteristics have been revealed in the

region of cyclotron resonance, which is observed in a rela-

tively narrow frequency interval for the given field value. It

is shown that the spectral position of the transmission and

non-transmission areas of radiation of the PCS with a fi-

nite number of periods significantly depends on the fields

value. The results analysis has shown that by changing the

magnetic field, one can effectively control the width of the

opacity zones and the transmission coefficient value in this

range of frequencies. Thus, the fields presence causes nar-

rowing of the available transmission areas and emergence

of new zones in comparison to the PCS spectrum in the ab-

sence of the magnetic field. This results in an increase in

the width of the forbidden bands. By increasing the angle

of incidence on the structure, the boundaries of the forbid-

den and allowed bands are shifted at a different speed to

higher frequencies.

We also note that the use of metal layers in the PCS to

induce a gyrotropy due to their high conductivity and, cor-

respondingly, the small depth of the skin layer (δ ≤ µm)
is ineffective. The waves of this range penetrate the metal

layer only slightly and are almost completely reflected.

6. Appendix

Below, there are transmission matrices for some individual

layers of a semiconductor and a dielectric making the struc-

tures period:

m̂1 =







C1 −
kxεa
kz1ε

S1 i
k0ε⊥
kz1

S1
(

i
kz1
k0ε⊥

+ i
k2xε

2
a

kz1ε2

)

S1 C1 +
kxεa
kz1ε

S1






,

m̂2 =







C2 i
k0εd
kz2

S2

i
kz2
k0εd

S2 C2







(14)

as well as transmission matrix components for one pe-

riod m̂ = m̂1 · m̂2:

m11 =

[

C1 −
kxεa
kz1ε

S1

]

C2 −
kz2ε⊥
kz1εd

S1S2,

m12 = −k0εd
ikz2

[

C1 −
kxεa
kz1ε

S1

]

S2 −
k0ε⊥
ikz1

S1C2,

m21 =

(

i
kz1
k0ε⊥

+ i
k2xε

2
a

kz1ε2

)

S1C2 +
ikz2
k0εd

[

C1 +
kxεa
kz1ε

S1

]

S2,

m22 =
ik0εd
kz2

(

i
kz1
k0ε⊥

+ i
k2xε

2
a

kz1ε2

)

S1S2 +

[

C1 −
kxεa
kz1ε

S1

]

C2. (15)

where the following notations have been introduced:

Cj = cos (kzjdj), Sj = sin (kzjdj), j = 1, 2.
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