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Abstract
We demonstrate modeling of the field-kinetic and material
response subsystem for various media and extend the mod-
els to dispersive negative index metamaterials. It is shown
that neither the Minkowski or Abraham models are uni-
versally correct, as demonstrated to describe metamaterials
under both the field-kinetic and wave SEM models for vari-
ous applications such as negative refraction, perfect lensing,
and invisibility cloaking.

1. Introduction
Electromagnetic momentum has been debated since the
early 20th century. The so-called Abraham-Minkowski
debate is attributed to two independent stress-energy-
momentum (SEM) tensors postulated for mathematically
modeling electrodynamics of media [1]. Significant atten-
tion has been given to the momentum density expressions
associated with the rival SEM tensors. The momentum den-
sity expressions were defined as being either D̄ × B̄ from
the Minkowski tensor or ε0µ0Ē ×H̄ from the Abraham ten-
sor, where D̄ and B̄ represent the electric displacement and
magnetic induction fields, Ē and H̄ are the electric and mag-
netic fields, and ε0 and µ0 are the permittivity and perme-
ability of vacuum, respectively. Barnett presented a resolu-
tion to the photon momentum controversy in 2010, which
related the Abraham density to the kinetic momentum of
light and the Minkowski density to the canonical momen-
tum of light [2]. However, the original debate was in re-
gard to the relativistic invariance of the 4× 4 SEM tensors;
Barnett’s partial resolution only identified the kinetic and
canonical momentum densities.

Three other well-known SEM tensors have been pro-
posed over the past century, and have found significant
use in scientific and engineering modeling applications [3].
First, the Einstein-Laub tensor, like the Abraham and
Minkowski tensors, utilizes the Minkowski fields, and it
shares the Abraham momentum density. Second, the Am-
perian or “Lorentz” tensor derives from the Amperian for-
mulation or EB-representation and utilizes the Amperian
fields. Third, the Chu formulation or EH-representation
was developed in the 1960’s, and the Chu SEM tensor uti-
lizes the Chu fields. It is important to note that the latter
two formulations uniquely define the fields within matter,
while the Abraham, Minkowski, and Einstein-Lab tensors

all use the common Minkowski fields.
In this correspondence, we demonstrate modeling of the

field-kinetic and material response subsystem for dielectric
media and extend the models to negative index metamate-
rials, which necessarily include dispersion and loss. In this
model, we consider the total SEM tensor as a conservation
of energy and momentum such that

Ttotal = Tmech + Tcan = Tmech + Tmat + TFk
, (1)

TFk
+ Tmat 6= TMin (2)

where Tmech represents an external mechanical input of
work, Tmat is the material response subsystem, and TFk

is the field-kinetic subsystem. We show that the field-
kinetic subsystem as given by the Chu formulation rep-
resents the energy and momentum contained within the
fields [4], and the sum of the field-kinetic and material re-
sponse subsystems represent the wave or canonical subsys-
tem [5], which reduces to the Minkowski subsystem only
under negligible dispersion [6]. Our conclusion is that nei-
ther the Minkowski or Abraham models are universally cor-
rect. We demonstrate our view applied to the physics of
negative index materials under both the field-kinetic and
canonical SEM models for applications such as negative re-
fraction, which is fundamental to perfect lensing and invis-
ibility cloaking. First, we review the mathematical frame-
work of SEM tensors, relativistic invariance requirements,
and applicability to electrodynamics in Section 2. Second,
the field-kinetic and canonical SEM tensors are determined
for a broad class of causal, isotropic media in Section 3.
Then, we discuss the implications of negative refraction in
Section 4. Conclusions are presented in Section 5.

2. SEM Tensors
Energy and momentum continuity for a given system can
be divided into subsystems and mathematically represented
as [1, 3]

ϕj(r̄, t) = −∇ · S̄j(r̄, t)−
∂Wj(r̄, t)

∂t
(3a)

f̄j(r̄, t) = −∇ · ¯̄Tj(r̄, t)−
∂Ḡj(r̄, t)

∂t
(3b)

where f̄j is the force density, ϕj is the power density, ¯̄Tj
is the momentum flux or stress tensor, S̄j is the power flux,



Ḡj is the momentum density, and Wj is the energy density.
Each j may represent any subsystem. Closing the overall
system, such that

∑
j f̄j = 0 and

∑
j ϕj = 0 indicates

momentum and energy conservation, respectively.
The choice of which momentum density, stress tensor,

and force density are applied in any given problem are in-
herently tied to the formulation of electrodynamics being
considered and the interpretation rendered. It is impossi-
ble to sidestep the momentum controversy by employing a
Lorentz force density since, as the theoretical construction
implies, each force density is tied to a momentum density
and stress tensor through a formulation of Maxwell’s equa-
tions [3]. One may rearrange the continuity equations, but
such mathematical exercises should not be taken as reason
for interpretation [4, 7]. For reference, Table 1 lists the lead-
ing electromagnetic momentum densities and stress tensors
from the literature. The corresponding force densities for
the stationary [1] and fully relativistic formulations [3] can
also be found in the literature.

Table 1: Leading electromagnetic momentum densities and
stress tensors.

Ḡ ¯̄T

Abr. ε0µ0Ē × H̄ 1
2

(
D̄ · Ē + B̄ · H̄

) ¯̄I − D̄Ē − B̄H̄

Min. D̄ × B̄ 1
2

(
D̄ · Ē + B̄ · H̄

) ¯̄I − D̄Ē − B̄H̄

Amp. ε0Ē × B̄ 1
2

(
ε0Ē · Ē + µ−1

0 B̄ · B̄
)

¯̄I − ε0ĒĒ − µ−1
0 B̄B̄

E-L ε0µ0Ē × H̄ 1
2

(
ε0Ē · Ē + µ0H̄ · H̄

) ¯̄I − D̄Ē − B̄H̄

Chu ε0µ0Ē × H̄ 1
2

(
ε0Ē · Ē + µ0H̄ · H̄

) ¯̄I − ε0ĒĒ − µ0H̄H̄

As one considers the amount of work being done on
the system, one also sees that the momentum and stress are
explicitly tied to the energy density and flux. This can be
illustrated using the work-energy relation or the Relativistic
Principle of Virtual Power (RPVP) [4, 5]. In Section 2.2 it
will be demonstrated, instead, using a straightforward ap-
plication of the Lorentz transformation. For now, we list
for reference in Table 2 the leading electromagnetic energy
densities and power flows corresponding to the momentum
quantities in Table 1.

Table 2: Leading electromagnetic energy densities and
power flows.

S̄ W
Abr. Ē × H̄ 1

2

(
D̄ · Ē + B̄ · H̄

)
Min. Ē × H̄ 1

2

(
D̄ · Ē + B̄ · H̄

)
Amp. µ−1

0 Ē × B̄
1
2

(
ε0Ē · Ē + µ−1

0 B̄ · B̄
)

E-L Ē × H̄ 1
2

(
ε0Ē · Ē + µ0H̄ · H̄

)
Chu Ē × H̄ 1

2

(
ε0Ē · Ē + µ0H̄ · H̄

)
The continuity equations can be rewritten in four-

dimensional coordinates (r̄, ict) so that

f̄j = � ·
[
T̄j ,−icḠj

]
(4a)

−iϕj
c

= � ·
[
−i S̄j

c
,Wj

]
(4b)

so that � · ¯̄Tj = F̄j , where � = [∇, ∂/∂(ict)], F̄j =
[−f̄j ,−iϕj/c], and the SEM tensor is

¯̄Tj =

[ ¯̄Tj −icḠj
− i
c S̄j Wj

]
. (5)

Here, we have defined ¯̄Tj ≡ − ¯̄Tj .

2.1. Equivalence of total force

The electromagnetic force density f̄ and power density ϕ
inside an object depend upon formulation applied. In gen-
eral, the equations take the form of Eqs. (3), where the force
densities are defined by the corresponding momentum den-
sity Ḡ and stress tensor ¯̄T given in Table 1 and the power
densities ϕ are defined by the corresponding energy density
W and power flux S̄ given in Table 2. The total electro-
magnetic force F̄ (t) on an object can be computed by in-
tegrating an electromagnetic force density f̄(r̄, t) over the
volume V of the object. An exact, mathematically equiva-
lent approach is to apply the divergence theorem to reduce
the contribution of an electromagnetic stress tensor ¯̄T to an
integral over the surface A with outward pointing area ele-
ment dĀ enclosing the volume V so that the total force is
calculated equivalently by

F̄ (t) = −
ˆ
V

dV
∂

∂t
Ḡ(r̄, t)−

˛
A

dĀ · ¯̄T (r̄, t). (6)

In some cases, the total force may be equivalent between
formulations although the force densities differ. The same
argument may be applied to the transfer of energy since the
energy continuity equation takes the same form.

2.1.1. Equivalence of Total Force

Fig. 1 (a) depicts an object surrounded by vacuum illus-
trating which total force equations are equivalent at any
point in time. Integrating the electromagnetic force den-
sity f̄(r̄, t) over the volume enclosing the object as depicted
by the dashed line yields the total force and is given by
Eq. (6), where the tensor reduces to the unambiguous vac-
uum Maxwell stress tensor since the surface of integration
is outside the material. However, the momentum density Ḡ
still depends on the electromagnetic formulation applied.
Therefore, any formulations which share a common mo-
mentum density will produce identical results for the total
force on an object at all points in time. The implication
is that the Chu, Einstein-Laub, and Abraham force densi-
ties are equivalent in terms of total force and the Amperian
formulation differs only in the modeling of magnetic me-
dia. The Minkowski SEM tensor will yield a different time
varying force for dielectric and magnetic media.

A second example is an object submerged inside an-
other medium such as a dielectric fluid as shown in
Fig. 1 (b). The total force remains the same for two formu-
lations if their momentum densities are identical. However,
we must clarify how the force is computed. The electro-
magnetic force is determined by volume integration of the
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Figure 1: Illustration of total force calculation within a vol-
ume V within the dashed line. The total force on (a) an
object in vacuum is computed by volume integration of a
force density within a region which completely encloses the
material object and (b) an object embedded is computed in
a similar way by considering a thin vacuum region between
the two materials.

force density f̄(r̄, t), and there will generally be both vol-
ume and surface forces at the boundary, the latter due to ma-
terial discontinuities at the boundaries [8, 9]. Any ambigu-
ity as to which of the materials to which the surface forces
should be assigned is removed by mathematically introduc-
ing a thin layer of vacuum separating the two materials. The
volume integration is then applied to the submerged mate-
rial. The tensor reduces to the vacuum stress tensor since
the surface of the integration is in the vacuum region, and
the forces applied to the two media are unambiguous. Tak-
ing the limit of the vacuum region to zero yields the un-
perturbed field problem with the surface forces applied cor-
rectly to the corresponding media [10]. In general, forces
will be distributed to both the submerged object and the
submerging fluid. The conclusion is unchanged. The to-
tal calculated time-domain force on an object is the same
with any electromagnetic subsystem that share a common
momentum density [3]. We will find that another conclu-
sion from this thought exercise is important; once we iden-
tify the correct subsystem separation of field and matter it
is necessary to assign a force on the embedded object and
the embedding material [10, 11, 12].

When materials are excited by monochromatic waves,
the time-average force is generally the observable quantity
of interest. The total average force on a material object due
to time-harmonic fields is

〈F̄ 〉 = −
˛
A

dĀ · 〈 ¯̄T 〉, (7)

where the momentum density does not contribute to the
time-average force of time-harmonic fields [3].

The total average force is the integration of the average
force density over a volume that includes the entire object.
All such computations will yield identical results regardless
of the force density applied. This statement is a result of
the condition that all electromagnetic SEM tensors must be
consistent with Maxwell’s equations [1]. To illustrate this
fact, one must only consider again the problem in Fig. 1
under time-averaged conditions. Since the momentum den-

sity averages to zero, both computations in Fig 1 (a) and (b)
reduce to the divergence of the vacuum stress tensor and
the force is unambiguously independent of the formulation
applied [3, 5]. As a result, it is generally not possible to
determine the time-domain force or energy equations from
only the time-average quantities [13].

2.2. Relativistic invariance

The total force on an object is often measured in experi-
ment. However, this quantity is insufficient for determin-
ing the correct interpretations of electrodynamics as was
demonstrated in the previous section. Moreover, the force
densities differ between the various formulations [14], but
it has been shown that many experimental observations can
be modeled in the stationary limit (i.e. material velocity
goes to zero v → 0) by closing the system using a variety
of subsystems [15]. In fact, the problem with the stationary
approximation is the work-energy relation is always satis-
fied in a trivial manner [4]; F̄ · v̄ = Φ = 0 since the ve-
locity is zero in the limit. To determine which tensors are
truly valid in a physical sense, we must look at relativistic
invariance.

It is a fundamental tenet of modern physics that ten-
sors which are not relativistic invariant cannot be energy
momentum tensors. As an example, consider a region of
space occupied by media described mathematically by a lo-
cal mass density and a velocity field. The local momentum
vector may vary with position and time regardless of how
the coordinate system is assigned. Our inability to measure
relativistic effects in any experiment may only be due to our
limited measurement capabilities. This limitation does not
prevent the fundamental laws of physics from holding [4].

For example, consider two frames of reference S and
S ′, whereas S ′ moves with constant velocity v̄ = x̂v with
respect to S. The SEM tensor in S is

¯̄Tj =


Txx Txy Txz icGx
Tyx Tyy Tyz icGy
Tzx Tzy Tzz icGz
iSx/c iSy/c iSz/c W

 . (8)

We want to know if the tensor is invariant under certain
electrodynamic hypotheses. As a simple demonstration, we
consider the Lorentz transform of the component

T ′xx = γ2
[
Txx + β (Sx/c+ cGx)− β2W

]
, (9)

where β = v/c and γ = (1− β)−1/2. To consider the five
different hypotheses (i.e. Abraham, Minkowski, Amperian,
Einstein-Laub, and Chu), we must consider the Lorentz
transformation laws for the field variables within each field
framework.

The Lorentz transformation laws for the Minkowski
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field variables Ē, H̄ , D̄, and B̄ are [16]

Ē ′ = Ē‖ + γ
(
Ē⊥ + v̄ × B̄

)
, (10a)

H̄′ = H̄‖ + γ
(
H̄⊥ − v̄ × D̄

)
, (10b)

D̄′ = D̄‖ + γ

(
D̄⊥ +

v̄ × H̄
c2

)
, (10c)

B̄′ = B̄‖ + γ

(
B̄⊥ −

v̄ × Ē
c2

)
, (10d)

where the subscripts ‖ and ⊥ denote parallel and perpen-
dicular components to the velocity v̄. These transforma-
tion laws are applied for the Abraham, Minkowski, and
Einstein-Laub formulations, which utilize the Minkowski
fields. The Lorentz transformation laws for the Chu field
variables Ē , H̄, P̄ , and M̄ are [16]

Ē ′ = Ē‖ + γ
(
Ē⊥ + v̄ × µ0H̄

)
, (11a)

H̄′ = H̄‖ + γ
(
H̄⊥ − v̄ × ε0Ē

)
, (11b)

P̄ ′ = P̄‖ + γ

(
P̄⊥ −

v̄ × (P̄ × v̄)

c2

)
, (11c)

M̄′ = M̄‖ + γ

(
M̄⊥ −

v̄ × (M̄ × v̄)

c2

)
, (11d)

where it is important to note that the Chu field values Ē
and H̄ differ from the Minkowski ones. We will make clear
which field values are being applied within a given con-
text. The Lorentz transformation laws for the Amperian
field variables Ē , B̄, P̄ , and M̄ are [16]

Ē ′ = Ē‖ + γ
(
Ē⊥ + v̄ × B̄

)
, (12a)

B̄′ = B̄‖ + γ

(
B̄⊥ −

v̄ × Ē
c2

)
, (12b)

P̄ ′ = P̄‖ + γ

(
P̄⊥ −

v̄ × (P̄ × v̄)

c2

)
, (12c)

M̄′ = M̄‖ + γ

(
M̄⊥ −

v̄ × (M̄ × v̄)

c2

)
, (12d)

Utilizing Eq. (9), we substitute the corresponding com-
ponent values for S̄, W , ¯̄T , and Ḡ given in Tables 1 and
2 along with the field transformations for reference frame
S to S ′ using Eq. (10) for the Abraham, Minkowski, and
Einstein-Laub tensors, Eq. (11) for the Chu tensor, and
Eq. (12) for the Amperian tensor. After some algebraic ma-
nipulation, the results are summarized in Table 3. It can
be seen that only the Minkowski, Chu, and Amperian SEM
tensors retain their form after transformation. Such mathe-
matical exercises can be carried-out on the remaining tensor
components with similar results. The conclusion is that the
Abraham and Einstein-Laub tensors are not valid SEM ten-
sors [4].

3. Energy and momentum in media
3.1. Field-kinetic subsystem

The Minkowski, Amperian, and Chu SEM tensors differ in
many regards, but one significant difference is the momen-

Table 3: Transformed stress tensors.

T ′xx = −T ′xx

Abr. D′xE
′
x + B′xH

′
x − 1

2 δxx(D̄′ · Ē′ + B̄′ · H̄′)

+γ2β[ε0µ0(Ē′ × H̄′)x − (D̄′ × B̄′)x]

Min. D′xE
′
x + B′xH

′
x − 1

2 δxx(D̄′ · Ē′ + B̄′ · H̄′)

Amp. ε0E′xE
′
x + µ−1

0 B
′
xB
′
x − 1

2 δxx(ε0Ē′ · Ē′ + µ−1
0 B̄

′ · B̄′)

E-L γ2[E′xD
′
x +H′xB

′
x

+2γ2βc−1{(Ē′ × H̄′)x + c2β2(D̄′ × B̄′)x
+cβ(H′yB

′
y +H′zB

′
z + E′yD

′
y + E′zD

′
z)}

− 1
2 (1 + β2){ε0E′xE

′
x + µ0H′xH

′
x

+γ2[(ε0E′yE
′
y + ε0E′zE

′
z + µ0H′yH

′
y + µ0H′zH

′
z)

+c2β2(ε0B′yB
′
y + ε0B′zB

′
z + µ0D′yD

′
y +D′zD

′
z)

+2cβ{(ε0Ē′ × B̄′)x + (D̄′ × µ0H̄′)x}]}]

Chu ε0E′xE
′
x + µ0H′xH

′
x − 1

2 δxx(ε0Ē′ · Ē′ + µ0H̄′ · H̄′)

tum density Ḡ. While each of the three SEM tensors are rel-
ativistically invariant, it is desirable to determine if one of
the three is the kinetic momentum of light, which is the mo-
mentum representing only field contributions without con-
tributions from the mass of the material. In 1953, Balazs
developed a thought experiment that allows for the deter-
mination of the kinetic momentum by studying the center-
of-mass displacement of a material slab as an electromag-
netic pulse passes [17], and number of researchers have pre-
sented versions of this thought experiment [2, 3, 11, 18, 19].

We consider a slab of dispersive, impedance-matched
material surrounded by vacuum. The slab is characterized
by a group velocity vg = ∂ω/∂k and wave impedance is
η =

√
µ/ε =

√
µ0/ε0. An electromagnetic wave pulse has

an initial free space momentum Ei/c. The slab of thickness
d delays the pulse with respect to the free space path by
the distance L = (ng − 1)d since the group velocity in
the material is vg = c/ng , where ng is the group velocity
index of refraction. The required kinetic momentum of the
material while the pulse overlaps spatially with the slab is

pm =
Ei
c

(
1− 1

ng

)
, (13)

which is necessary in order to maintain uniform motion of
the center-of-mass energy. The momentum of the slab is the
difference between the momentum of the incident pulse and
the material momentum given by Eq. (13) as required by
momentum conservation. Therefore, the electromagnetic
momentum of the pulse is the field-kinetic momentum

pFk
=

1

ng

Ei
c
. (14)

This momentum corresponds to the Chu momentum, and
we, therefore, take the Chu SEM tensor as the field-kinetic
formulation [4]. Further discussion of this relationship is
given in Section 4 of this correspondence.
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The Maxwell-Chu equations [3, 16, 20]

∇× H̄ − ε0
∂

∂t
Ē = J̄e (15a)

∇× Ē + µ0
∂

∂t
H̄ = −J̄h (15b)

ε0∇ · Ē = ρe (15c)
µ0∇ · H̄ = ρh (15d)

separate the electric and magnetic fields from the material
response. The Chu formulation models the material re-
sponses by effective electric current density J̄e, magnetic
current density J̄h, electric charge density ρe, and magnetic
charge density ρh. These quantities for moving media with
local velocity field v̄ are defined as [3, 16, 20]

J̄e ≡
∂P̄
∂t

+∇× [P̄ × v̄] + J̄ (16a)

J̄h ≡ µ0
∂M̄
∂t

+ µ0∇× [M̄ × v̄] (16b)

ρe ≡ −∇ · P̄ + ρ (16c)
ρh ≡ −µ0∇ · M̄, (16d)

where M̄ is the magnetization, P̄ is the polarization, J̄ is
the free current density, and ρ is the free charge density of
the given medium. The energy and momentum continuity
equations for the field-kinetic subsystem are completed by
the interaction terms [3, 16, 20]

f̄Fk
= ρeĒ + ρhH̄+ J̄e × µoH̄ − J̄h × ε0Ē(17a)

ϕFk
= J̄e · Ē + J̄h · H̄ (17b)

Next, we will derive the material response to the field-
kinetic subsystem for dielectrics and isotropic metamate-
rials with electric and magnetic response.

3.2. Material response in dielectrics

Consider a harmonic oscillator describing the motion of a
bound charge under excitation of a time-harmonic field Ē.
The motion can be used to determine the stationary dielec-
tric response of the charge q given the damping factor γ and
the electric resonant frequency ωe0. The equation of motion
for r̄ = x̂x+ ŷy + ẑz is [20]

m

(
∂2

∂t2
+ γe

∂

∂t
+ ω2

e0

)
r̄ = qĒ . (18)

If there are N such harmonic oscillators per volume of di-
electric, the material subsystem is given by [21, 22, 23]

S̄mat = 0 (19a)

W̄mat = N

{
1

2
m
∂r̄

∂t
· ∂r̄
∂t

+
1

2
ω2
e0mr̄ · r̄

}
(19b)

ϕmat = −ϕFk
+N

{
γe
∂r̄

∂t
· ∂r̄
∂t

}
. (19c)

The energy terms consist of a kinetic energy term 1
2m

∂r̄
∂t ·

∂r̄
∂t

and a potential energy term 1
2ω

2
0mr̄ · r̄ for each of N

charges in motion per-unit-volume. The momentum con-
tinuity equation for the material is [23]

¯̄Tmat = N

{[
qr̄ · Ē +

1

2
m
∂r̄

∂t
· ∂r̄
∂t
− 1

2
ω2
e0mr̄ · r̄

]
¯̄I

− qr̄Ē

}
Ḡmat = N

{
qr̄ × µ0H̄ −m

∂r̄

∂t

}
f̄mat = −f̄Fk

+N

{
− γem

∂r̄

∂t

}
. (20a)

Here, we recognize the terms proportional to qr̄Ē as the
energy of the charge in the electric field, 1

2m|∂r̄/∂t|
2 as

the kinetic energy of the particle, and ω2
e0

2 m|r̄|2 as the po-
tential energy. This last term proportional to ω2

e0 is due to
the spring-like restoring nature between the electron and an
oppositely charged nucleus, which is assumed to be much
more massive.

Equation (18) can be written in terms of the macro-
scopic polarization definition by P̄ = Nqr̄, giving the
equation of motion as(

∂2

∂t2
+ γe

∂

∂t
+ ω2

e0

)
P̄ =

Nq2

m
Ē = ε0ω

2
epĒ , (21)

where ωep =
√

Nq2

mε0
is the plasma frequency. The dielectric

material contributions to the energy are [1, 3, 6]

S̄mat = 0 (22a)

W̄mat =
1

2ε0ω2
ep

[
∂P̄
∂t
· ∂P̄
∂t

+ ω2
e0P̄ · P̄

]
(22b)

ϕmat = −ϕFk
+

γ

ε0ω2
ep

∂P̄
∂t
· ∂P̄
∂t

(22c)

The dielectric material contributions to the momentum
are [1, 3, 6]

¯̄Tmat =
1

2

(
P̄ · Ē

) ¯̄I − P̄Ē (23a)

+
1

2

[
P̄ · Ē +

1

ε0ω2
ep

(
∂P̄
∂t
· ∂P̄
∂t
− ω2

e0P̄ · P̄
)]

¯̄I

Ḡmat = P̄ × µ0H̄ −
1

ε0ω2
ep

∇P̄ · ∂P̄
∂t

(23b)

f̄mat = −f̄Fk
− γe
ε0ω2

ep

∇P̄ · ∂P̄
∂t
. (23c)

The material subsystem and field-kinetic subsystem can be
combined to form the canonical subsystem as described
conceptually in Eq. (2).

3.3. Energy and momentum in NIMs

By duality of the field-kinetic (i.e Chu) subsystem, the
causal dielectric and magnetic response of a stationary
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isotropic system can be formulated as [6, 24](
∂2

∂t2
+ γe

∂

∂t
+ ω2

e0

)
P̄ = ε0ω

2
epĒ (24a)(

∂2

∂t2
+ γm

∂

∂t
+ ω2

m0

)
µ0M̄ = µ0ω

2
mpH̄ (24b)

The resulting material energy contributions are

S̄mat = 0 (25a)

W̄mat =
1

2ε0ω2
ep

[
∂P̄
∂t
· ∂P̄
∂t

+ ω2
e0P̄ · P̄

]
+

µ0

2ω2
mp

[
∂M̄
∂t
· ∂M̄
∂t

+ ω2
m0P̄ · P̄

]
(25b)

ϕmat = −ϕFk
+

γe
ε0ω2

ep

∂P̄
∂t
· ∂P̄
∂t

+
γm

ε0ω2
mp

∂M̄
∂t
· ∂M̄
∂t

, (25c)

and the momentum contributions are

¯̄Tmat =
1

2

(
P̄ · Ē + µ0M̄ · H̄

) ¯̄I − P̄Ē − µ0M̄H̄(26a)

+
1

2

{
P̄ · Ē + µ0M̄ · H̄

+
1

ε0ω2
ep

(
∂P̄
∂t
· ∂P̄
∂t
− ω2

e0P̄ · P̄
)

+
µ0

ω2
mp

(
∂M̄
∂t
· ∂M̄
∂t
− ω2

m0M̄ · M̄
)}

¯̄I

Ḡmat = P̄ × µ0H̄+ Ē × µ0M̄+ P̄ × µ0M̄

− 1

ε0ω2
ep

∇P̄ · ∂P̄
∂t
− µ0

ω2
mp

∇M̄ · ∂M̄
∂t

(26b)

f̄mat = −f̄Fk
− γe
ε0ω2

ep

∇P̄ · ∂P̄
∂t

− µ0γm
ω2
mp

∇M̄ · ∂M̄
∂t

. (26c)

Under time-harmonic excitation, the stationary (i.e.
v̄ → 0) Minkowski constitutive parameters can be approx-
imated D̄ = ε(ω)Ē and B̄ = µ(ω)H̄ . Each field phaser
follows the relation Ā = <{Āe−iωt}. The constitutive pa-
rameters are

ε(ω) = ε0

(
1−

ω2
ep

ω2 − ω2
e0 + iωγe

)
(27a)

µ(ω) = µ0

(
1−

ω2
mp

ω2 − ω2
m0 + iωγm

)
. (27b)

The time-averaged energy density is

〈Wcan〉 =
ε0
2

[
1 +

ω2
ep

(
ω2 + ω2

e0

)
(ω2 − ω2

e0)
2

+ γ2
eω

2

] ∣∣Ē∣∣2
+

µ0

2

[
1 +

ω2
mp

(
ω2 + ω2

m0

)
(ω2 − ω2

m0)
2

+ γ2
mω

2

] ∣∣H̄∣∣2 .(28)

In the limit of zero losses (γe → 0 and γm → 0) both
εI = 0 and µI = 0 and the energy density satisfies the
well-known relation [20, 21, 25, 26]

〈Wcan〉 =
1

4

∂(εω)

∂ω

∣∣Ē∣∣2 +
1

4

∂(µω)

∂ω

∣∣H̄∣∣2 . (29)

It is the rate of change in energy that appears in the energy
continuity equation, which tends to zero upon cycle aver-
aging, and since 〈∂W/∂t〉 = 0, the resulting conservation
equation

−〈∇ · S̄can〉 =
1

2

[
ωεI |Ē|2 + ωµI |H̄|2

]
(30)

is generally regarded as the complex Poynting’s theorem,
where 〈S̄can〉 = 1

2<{Ē×H̄
∗} is the time average Poynting

power.
The average momentum density,

〈Ḡcan〉 =
1

2
<
{
D̄ × B̄∗ + k̄

ε0ωω
2
ep

(ω2 − ω2
e0)2 + γ2

eω
2
|Ē|2

+ k̄
µ0ωω

2
mp

(ω2 − ω2
m0)2 + γ2

mω
2
|H̄|2

}
, (31)

satisfies [27]

〈Ḡcan〉 =
1

2
<
{
D̄ × B̄∗ +

k̄

2

(
∂ε

∂ω
|Ē|2 +

∂µ

∂ω
|H̄|2

)}
=

1

2

{
1

vgvp
Ē × H̄∗

}
(32)

when the losses approach zero, where vp = ω/k and
vg = ∂ω/∂k are the phase velocity and the group veloc-
ity, respectively. The time average stress tensor is found to
be

〈 ¯̄Tcan〉 =
1

2
<
{

1

2
(D̄ · Ē∗ + B̄ · H̄∗) ¯̄I − D̄Ē∗ − B̄H̄∗

}
(33)

since the dispersive terms average to zero. Because the
average rate of change in momentum density is zero (i.e.
〈∂Ḡ/∂t〉 = 0), the momentum conservation theorem for a
monochromatic wave becomes

−〈∇ · ¯̄Tcan〉 =
1

2
<
{
ωεIĒ × B̄∗ − ωµIH̄ × D̄∗

}
(34)

where the tensor is the complex Minkowski tensor. The
force terms in Eq. (34) have been defined as the force den-
sity on free currents [28, 29].

4. Discussion
For illustration purposes, we consider a couple of examples.
First, we consider the momentum density contribution to an
electromagnetic pulse. Then, we consider the momentum
flux or stress tensor contribution to a continuous wave.
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4.1. Electromagnetic Pulse

A pulse is incident upon a medium with constitutive param-
eters µ(ω), ε(ω). For simplicity, we consider the medium
to be dispersive, but lossless. The excitation energy of the
pulse is [1, 3]

Eexc ≡ Ei − Er = Ei(1− |R|2), (35)

where Ei is the incident energy, Er is the reflected energy,
and |R|2 is the reflectivity. The excitation energy is unam-
biguously defined in terms of the vacuum quantities. The
spatial length of the transmitted pulse is decreased propor-
tional to the factor n−1

g due to the change in velocity inside
the medium. We can investigate the interpretation of the
field-kinetic and canonical subsystems inside the medium.

If we assume the field-kinetic momentum density de-
fined by the Chu SEM tensor, we see that the momentum
inside the material is

p̄Fk
=

ˆ
z

dzḠFk
(z) = ẑ

1

ng

Ei
c

(
1−R2

)
= ẑ

1

ngc
Eexc. (36)

This is the momentum derived in Balazs’ thought experi-
ment.

We may arrive at this result using another approach by
viewing each photon as a particle with effective mass un-
changed as it enters the material so that m0 = m = E/c2.
In the vacuum region (z < 0), the velocity of the pulse is
v̄0 = ẑc. At t = 0, the pulse enters the material and the
velocity becomes v̄ = ẑc/ng . The force on the material is
due to the momentum exchange

p̄i − p̄kin = m0v̄0 −mv̄ = ẑ

(
E

c2
c− E

c2
c

ng

)
= ẑ

E

c

(
1− 1

ng

)
.

Therefore, the field-kinetic subsystem gives the interpreta-
tion of constant effective mass.

Alternately, if we assume the canonical momentum
density defined for a dispersive, lossless material from
Eq. (32)

Ḡcan(z) = ẑngnp
Wi(z)

c
(1− |R|2), (37)

we see that the momentum inside the material is

p̄can =

ˆ
z

dzḠcan(z) = ẑnp
Ei
c

(
1−R2

)
= ẑnp

Eexc
c
. (38)

This momentum, which is proportional to the phase veloc-
ity index of refraction, is generally measured inside ma-
terials as a combination of field plus material contribu-
tions [12, 28, 30, 31, 32].

Figure 2: Demonstration of a refracted Gaussian beam at a
matched negative refractive index boundary. The incident
medium z < 0 is vacuum (µ0, ε0) and the transmitted is a
matched left-handed medium (−ε0,−µ0). The parameters
for incident TM field are amplitude H0 = 1 A/m, inci-
dent wavelength λ0 = 1064 nm, beam waist w = λ0, and
NA = 0.8.

We may arrive at this result using another approach by
viewing each photon as a particle where the effective mass
increases when it enters the material. The force on the ma-
terial is due to the momentum exchange

p̄i − p̄can = m0v̄0 −mv̄ = ẑ

(
E

c2
c− E

c2/(ngnp)

c

ng

)
= ẑ

E

c
(1− np) . (39)

In this view, the momentum of the pulse entering a dielec-
tric is increased due to the additional momentum of the ma-
terial which is added to the electromagnetic pulse. These
contributions were described in detail in Section 3.

It is interesting what happens to the two quantities in
negative index media (NIM). Note that for NIM, np < 0,
but ng > 0. The field-kinetic momentum, being related to
ng , remains positive in negative index media. The canoni-
cal momentum on the other hand reverses direction due to
its proportionality to np. Note, however that in the presence
of losses, the direction of the canonical momentum can be
parallel or anti-parallel to the energy flow [6].

4.2. Continuous Wave

Consider the problem of a continuous wave incident upon a
negative index material (−ε0,−µ0) from vacuum (ε0, µ0).
The wave shown in Fig. 2 is a TM Gaussian beam incident
at π/6.

The field-kinetic force on the surface is F̄Fk
=

x̂1.6 pN/m. The interpretation of this force is that there
is an equal and opposite force −F̄Fk

= −x̂1.6 N/m that
changes the direction of the incident photons from the +ẑ
and +x̂ direction to the +ẑ and −x̂ direction. The trans-
mitted electromagnetic momentum has an identical ẑ com-
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ponent as the incident. Therefore, it is the equal and op-
posite force of the material on the electromagnetic waves
at the surface that causes the change in momentum in the
x̂ direction. The form of the field-kinetic momentum re-
mains the same for all types of medium, and this descrip-
tion was previously applied to describe the optical dynam-
ics of anisotropic metamaterial cloaks [33, 34]. Although
the field-kinetic subsystem had yet to be uniquely identi-
fied, the Chu formulation was used to describe the optical
dynamics of optical cloaks, which explains in retrospect
how the forces on the optical paths were able to describe
the transformed paths. Such a description is also useful for
perfect lenses where planar surfaces are used to negatively
refract images [24].

The canonical SEM tensor provides an alternate view-
point. In this case, the time-averaged force reduces to the
divergence of the Minkowski stress tensor. The canonical
force on the surface is F̄can = ẑ2.8 pN/m. The zero force
in the x̂ direction means that the tangential component of
the wave momentum is conserved [6]. The change in the
normal component of the wave momentum is due to the ad-
ditional momentum from the material response as described
in Section 3.

5. Conclusions
We have shown that the field-kinetic subsystem as given by
the Chu formulation represents the energy and momentum
contained within the fields, and the sum of the field-kinetic
and material response subsystems represent the wave or
canonical subsystem. The canonical subsystem reduces to
the Minkowski subsystem only under negligible dispersion.
We may conclude that neither the Minkowski or Abraham
SEM tensors are universally correct. In fact, the Abraham
SEM tensor violates the physical constraint of relativistic
invariance. Our view was demonstrated the physics of neg-
ative index materials under both the field-kinetic and canon-
ical or wave SEM models for negative refraction, which is
fundamental to perfect lensing and invisibility cloaking.
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