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Abstract
For light waves propagating in dissipative media, the emer-
gence of classical characteristics from the initial quantum
world is investigated. Two classicality measures of the sys-
tem, which are the measure of the degree of (relative) clas-
sical correlation δCC and that of the degree of quantum de-
coherence δQD, are analyzed. The classicality conditions
for both δCC and δQD are satisfied when the conductivity
responsible for the energy dissipation is sufficiently high.
We also investigated absolute classical correlations for the
light in dissipative media. The measure of the degree of
the absolute classical correlation in q-space, δ̄CC,q , expo-
nentially increases with time, whereas that in the p-space,
δ̄CC,p, exponentially decreases. Further, we have obtained
an interesting result which is that the product between them
does not vary over time: δ̄CC,q δ̄CC,p = constant. This
outcome is actually similar to that of the uncertainty rela-
tion between two conjugate variables, which gives an es-
sential limitation in measurements of a quantum system. If
we think that the emergence of classicality in a quantum
information system disturbs the process of quantum infor-
mation, exact knowledge for the mechanism of such classi-
cality transition is necessary in order to cope with it.

1. Introduction
Since the inception of quantum theory in the mid 1920s, the
imperfection of Newton’s deterministic description of dy-
namical systems has been recognized. While no priori clas-
sical world exists, a probabilistic description of dynamical
systems relying on conventional quantum mechanics is crit-
ical for a rigorous and sensible interpretation of physical re-
sults within nonrelativistic regime. Quantum mechanics is
based on Schrödinger’s wave functions which can be easily
collapsed through their interaction with the environment. If
we follow the Cophenhagen interpretation of quantum me-
chanics, the chaotic classical behavior for a particular sys-
tem emerges from the universally valid quantum world via
the collapse of wave functions. The interpretation for the
mechanism of such quantum to classical transition is im-
portant not only in modern measurement theories but also
in quantum information science. Because the phenomena
of quantum to classical transition disturb quantum informa-
tion processing[1], it is necessary to keep quantumness of a
system for a sufficient long time during the process of quan-
tum information. For the purpose of coping and minimizing

the loss of quantumness for the system, it is crucial to know
the exact mechanism for such transition.

In order to study transition to classicality from the initial
quantum world, we consider dissipative light waves which
are experienced in everyday life. Let us assume, for conve-
nience, that there is no net free charge in media, in addition
that electric permittivity ε, magnetic permeability µ, and
conductivity σ are real constants. Non-zero conductivity in
a medium is, in general, responsible for the dissipation of
light waves. The recent increasing interest in quantum be-
haviors of light waves and their reduction to classicality in
dissipative media has accompanied active research on quan-
tum optical properties of materials through advanced com-
putational resources and developed algorithmic tools[2-9].

Useful criteria for determining whether the system be-
haves classically or not can be represented in terms of the
classical correlation together with the quantum decoher-
ence. The measures of the degree of classicality have been
defined by Morikawa, which are the measure of the degree
of (relative) classical correlation (MDRCC) and that of the
degree of quantum decoherence (MDQD) in q-space[10].
Soon after, many researchers in this field studied the emer-
gence of classicality from quantum world by means of
MDRCC and MDQD. Due to the complementarity between
q and p, it may also be possible to define these quantities in
p-space. We study MDRCC and MDQD for dissipative op-
tical waves in both q- and p-spaces and clarify whether their
values in p-space are the same as those in q-space or not.

We can specify, from basic analysis of classical correla-
tion, whether there is a well-defined classical trajectory in
phase space. The condition for classicality through a classi-
cal correlation is satisfied when the Wigner function repre-
sented in phase space for a quantum state is sharply peaked
along a classical trajectory. If a well-defined classical tra-
jectory exists for a particular system, high precision mea-
surements can be achievable. On the basis of fundamen-
tal quantum optics, it will be rigorously examined in this
work that whether the value of MDRCC is uniquely deter-
mined irrelevant to the adopted space. We will also define
the measure of the degree of absolute classical correlation
(MDACC) and its relevant properties will be investigated in
detail.

The classicality of a system cannot be entirely evaluated
in terms of its classical correlation. Another factor that we
can use for examining the classicality is quantum decoher-
ence. The interaction of the system with the environment



destroys coherence to their eigenstates, leading to the emer-
gence of the classical structure of phase space. This means
that a preferred set of states is singled out from superposed
numerous ones.

2. Analysis of classicality measures

If we take the Coulomb gauge, the scalar potential van-
ishes because we have assumed that there is no net charge
density in media. As a consequence, the electromagnetic
fields are manageable by expanding only a vector potential.
For convenience, we will only consider the underdamped
case. The quantum treatment of overdamped and critically
damped optical waves is somewhat difficult and the result-
ing energy spectrum is not discrete but continuous like a
free particle[11]. Usually, an lth mode vector potential
can be separated into a position function ul(r) and a time
function ql(t). While the position function is determined
from boundary conditions of the media, the time function
of quantum light waves with natural angular frequency ωl
in dissipative media are described by the following Hamil-
tonian

Ĥl(q̂l, p̂l, t) = e−σt/ε
p̂2
l

2ε
+

1

2
eσt/εεω2

l q̂
2
l , (1)

where p̂l = −i~∂/∂ql. From now on, let us consider a
particular mode and drop the subscript l from all equations
for convenience. The corresponding wave functions of the
system for both q- and p-spaces can be derived using the
Lewis-Riesenfeld theory[12, 13] and we have represented
them in Appendix A. We will use these wave functions in
order to investigate the classical correlation and quantum
decoherence for light waves in dissipative media.

If a system were to retrieve the classical correlation with
a disappearance of quantum coherence, it would reveal clas-
sicality. Though active researches are paid to the interpreta-
tion of quantum mechanics, there is, nonetheless, ambiguity
concerning the appearance of the classical world from the
quantum one[14, 15]. Consequently, it has yet to be studied
how to establish classical correlations and quantum deco-
herence alongside the loss of quantum coherence[16]. The
definition of classicality measures, MDRCC and MDQD,
are appeared in Ref. [10]. Recently, theoretical studies
for classicality measures have been performed for partic-
ular systems by Genkin et al.[17, 18] according to these
definitions.

To study theoretical characteristics of the classicality
measures exactly, it is necessary to take into account the
evolution of the density operator that is constructed in terms
of the wave functions given in Eq. (A1) in Appendix A. Let
us suppose that the light wave is equilibrated with the en-
vironment at temperature T . Then, the partition function
should be given by Z =

∑∞
n=0 e

−β~Ω(n+1/2), where Ω is
a modified frequency of the form Ω = [ω2 − σ2/(4ε2)]1/2,
β = 1/(kT ), k is the Boltzmann constant, and n are quan-
tum numbers. The density operator of the system is ex-

pressed in terms of Z as[19]

ρ(t) =
1

Z

∞∑
n=0

|ψn(t)〉e−β~Ω(n+1/2)〈ψn(t)|. (2)

By using Eq. (A1) given in Appendix A, we can easily
show that the representation of ρ(t) in the configuration
space is obtained to be

〈q|ρ(t)|q′〉 = Πq exp[−µ++(t)q2
+ − µ−−(t)q2

−

+ iµ+−(t)q+q−], (3)
Πq = [(2X(t)/π) tanh(β~Ω/2)]1/2, (4)

where q+ = (q + q′)/
√

2, q− = (q − q′)/
√

2, and

µ++ = X(t) tanh
β~Ω

2
, (5)

µ−− = X(t) coth
β~Ω

2
, (6)

µ+− = −σX(t)

εΩ
, (7)

with X(t) = εΩeσt/ε/(2~). We can see that µ++ and µ−−
depend on temperature, whereas µ+− does not. The vari-
ation of µ++ and µ−− with the increase of temperature is
shown in Fig. 1 for several different values of t. µ++ de-
creases as the temperature grows while µ−− increases in
the same situation.

Among many criteria for classicality of dynamical sys-
tems proposed so far[2, 20-22] the one designated in terms
of the classical correlation, together with the one in terms of
quantum decoherence, is crucial for estimating the degree
of classicality. We will first see the MDRCC of the sys-
tem, then investigate the MDQD. The strong classical cor-
relation in the q-variable representation is achieved when
the system is squeezed. However, the quantum states can-
not have a precise resolution in the phase space beyond the
constant ~[23] due to its global characteristic of being rel-
atively broad with time in p-space. From the Wigner trans-
formation given in Eq. (B2) in Appendix B, we can define
the classicality measure MDRCC in q-space as the relative
sharpness of the peak shaped along the classical trajectory
in phase space. It is determined by the ratio of the momen-
tum dispersion, σp =

√
µ−−~, to the average value of the

momentum, pave = µ+−q+~/
√

2. From this definition, the
MDRCC in q-space can be written as[10]

δCC,q =
σp
|pave|

=
2(µ++µ−−)1/2

|µ+−|
. (8)

Here, we used the dispersion of q+, (2µ++)−1/2, as the
value of q+. A further evaluation using Eq. (7) gives

δCC,q =
2εΩ

σ
. (9)

Hence, δCC,q is inversely proportional to σ/ε which acts as
a damping factor.

Now we investigate MDRCC in p-space. In terms of the
p-space wave functions (see Eq. (A3) in Appendix A), the

26



Figure 1: Temperature dependence of µ++ (a) and µ−− (b)
for three different values of t. We used ~ = 1, ω = 1,
σ = 0.1, ε = 1, and k = 1.

density operator ρ̃(t) in p-space can be constructed using
the same way as that of the q-space. Consequently, we see
from a straightforward evaluation that ρ̃(t) is expressed in
the configuration space as

〈p|ρ̃(t)|p′〉 = Πp exp[−ν++(t)p2
+ − ν−−(t)p2

−

+ iν+−(t)p+p−], (10)
Πp = [(2Y (t)/π) tanh (β~Ω/2)]1/2, (11)

where p+ = (p+ p′)/
√

2, p− = (p− p′)/
√

2, and

ν++ = Y (t) tanh
β~Ω

2
, (12)

ν−− = Y (t) coth
β~Ω

2
, (13)

ν+− =
σY (t)

εΩ
, (14)

with Y (t) = Ω/(2~ω2εeσt/ε). Notice that the effects of the
temperature on ν++ and ν−− are the same as those of µ++

and µ−−, respectively, which were previously investigated.
If we consider the symmetrical representation between

q and its conjugate variable p, we can also define the

Figure 2: Conductivity dependence of δCC (solid blue line)
and δQD (dashed red line). Short dashed line is a reference
line which corresponds to 1. We used ~ = 1, ω = 1, ε = 1,
and β = 1.

MDRCC in p-space. Similarly to the case of q-space, the
MDRCC for p-space is derived to be

δCC,p =
2(ν++ν−−)1/2

|ν+−|
=

2εΩ

σ
. (15)

Notice that Eqs. (9) and (15) are the same as each other:
δCC,q = δCC,p(≡ δCC). Thus, the value of MDRCC is
uniquely determined regardless of the considered space.
δCC diverges for σ → 0, whereas it decreases as σ increases
within the underdamped regime. This means that δCC is not
defined for the light waves in free space that have no con-
ductivity. The condition for strong classical correlation is
δCC � 1[10] which corresponds to the case that σ is suf-
ficiently large. An interesting outcome is that, while µ++,
µ−−, ν++, and ν−− are affected by temperature as can be
seen from Fig. 1, δCC is independent of temperature.

Now let us investigate the quantum decoherence for
the light. MDQD in q-space is defined as the ratio of the
dispersion of

√
2q− to the dispersion of q+/

√
2[10]. Be-

cause the necessary dispersions are easily obtained from
Eq. (3), one can evaluate MDQD in q-space to be δQD,q =
2(µ++/µ−−)1/2. Similarly, in p-space, we have δQD,p =
2(ν++/ν−−)1/2. A little evaluation using Eqs. (7) and (14)
gives δQD,q = δQD,p ≡ δQD, where

δQD = 2 tanh(β~Ω/2). (16)

Hence, the value of MDQD, as well as MDRCC, for the
system is uniquely determined. The condition for strong
quantum decoherence is δQD � 1. We have plotted
MDRCC and MDQD in Fig. 2 as a function of the conduc-
tivity. From this figure, we can see that the conditions for
high classicality within the underdamped regime, for both
classical correlation and quantum decoherence, are satisfied
when σ is sufficiently large.

The classicality measure given in Eq. (8) is defined in
terms of pave as well as σp. As such, the value of this mea-
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Figure 3: Time evolution of the MDACC in q-space given
in Eq. (17), for three different values of σ. We used ~ = 1,
ω = 1, ε = 1, and β = 1.

sure is determined relatively to |pave|. It may also be possi-
ble to define an absolute measure for the classical correla-
tion. Accordingly, we define the measure of the degree of
absolute classical correlation (MDACC) in q-space in terms
of momentum dispersion only as δ̄CC,q = σp =

√
µ−−~.

Then, the use of the second of Eq. (7) results in

δ̄CC,q = ~ [X(t) coth(β~Ω/2)]
1/2

. (17)

From this, we can confirm that, though δCC,q does not vary
with time, δ̄CC,q varies with time. The time behavior of
δ̄CC,q is illustrated in Fig. 3 for several different values of
σ. One can see that δ̄CC,q exponentially increases as time
goes by. This increase is relatively sharp for the large value
of σ.

Similarly to Eq. (17), we can represent MDACC in p-
space as

δ̄CC,p =
√
ν−−~ = ~ [Y (t) coth (β~Ω/2)]

1/2
. (18)

We see from Fig. 4 that δ̄CC,p exponentially decreases with
time on the contrary to δ̄CC,q . The ratio of this decrease
becomes large as σ grows.

Now let us consider the product of δ̄CC,q and δ̄CC,p,
which is

δ̄CC,q δ̄CC,p = [~Ω/(2ω)] coth (β~Ω/2) . (19)

From this equation, we can conclude that although δ̄CC,q

and δ̄CC,p vary with time, their product is constant. This
consequence is very similar to the uncertainty relation be-
tween q and p. According to recent research[9] on quan-
tum damped electromagnetic waves, the uncertainty of the
time function, q, of vector potential, analyzed under the
choice of the Coulomb gauge, exponentially decreases with
time, whereas the uncertainty of its conjugate variable, p,
increases. More strictly speaking, the two uncertainties in
Fock state for the wave described by the standard quantum
damped harmonic oscillator are represented as[8, 9, 24]

∆q = Q(n)e−σt/(2ε), ∆p = P (n)eσt/(2ε), (20)

Figure 4: Time evolution of the MDACC in p-space given
in Eq. (18), for three different values of σ. We used ~ = 1,
ω = 1, ε = 1, and β = 1.

where

Q(n) = [(n+ 1/2) ~/(εΩ)]
1/2

, (21)

P (n) =
[
(n+ 1/2) ~εω2/Ω

]1/2
. (22)

As a consequence, the corresponding uncertainty product
does not vary with time: ∆q∆p = Q(n)P (n) = constant.
As is well known, this famous uncertainty relation is a fun-
damental outcome of quantum mechanics beyond quantum
optical systems. In the limit σ → 0 with n = 0, this reduces
to the minimum uncertainty, ~/2, allowed for quantum me-
chanical systems. Uncertainty relations impose an intrinsic
prohibition for measurability with the acquisition of uncer-
tainty products below the minimum uncertainty. Hence, it
is impossible to measure both q and p precisely at the same
time. This is in contrast to classical theory which endows
the values of q and p simultaneously without any essential
limitation in their mutual accuracy. As you can see from the
results Eqs. (17)-(19), quantum representation of the mea-
sures of classical correlations for q- and the conjugate p-
spaces exhibit a symmetry similar to this. We can think that
Eq. (19) is a kind of conservation law because the product
does not vary with time. Although we have studied classi-
cality measures in thermal state so far, it may be interest-
ing to extend this study to general states, such as coherent
state, squeezed state, and Schrödinger cat state, as a further
research at later works.

3. Conclusion
As a summary, through the calculation of the evolution of
the density operator for a light wave in dissipative media,
the characteristics of classical correlation and quantum de-
coherence in both q- and p-spaces was investigated. We
have managed MDRCC and MDQD separately for q- and
p-spaces and showed that the results of their p-space anal-
yses are the same as those of q-space analyses. Hence,
we can conclude that both the MDRCC and MDQD have
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unique values for each. The classicality condition for clas-
sical correlation is satisfied under the limit that σ is suffi-
ciently large. In other words, the system exhibits a strong
classical correlation as σ increases. From Eqs. (9) and (15),
it is obvious that the MDRCC can be defined only when
the conductivity is not zero. The classicality condition for
quantum decoherence is also satisfied for a sufficient large
value of σ. However, as you can see from Fig. 2, the de-
pendence of MDQD on σ follows quite a different behavior
from that of the classical correlation, MDRCC.

We also investigated MDACC. Notice that δ̄CC,q expo-
nentially increases with time depending on the value of σ,
whereas δ̄CC,p exponentially decreases. These time varia-
tions are somewhat significant, especially when σ is large.
In the meantime, we can confirm an interesting conse-
quence that δ̄CC,q δ̄CC,p does not vary with time. This re-
ciprocal relation is very similar to that of the uncertainty
relation that plays a central role in quantum mechanics. We
can expect for a more general system that, if δ̄CC,q increases
with time, δ̄CC,p decreases and vice versa. The values of not
only q but also p, that correspond to non-zero MDACCs,
span within specified ranges instead of posing precise ones.
Of course, there is no way to avoid this intrinsic limitation
for δ̄CC,q and δ̄CC,p in nature.

Our theory can be extended to more general dynami-
cal systems beyond damped optical waves. Notice that σ/ε
plays the role of the damping factor. In some cases for a
wave traveling through plasma, σ become negative[25, 26].
Then the amplitude of wave packets is amplified with time
and the system is described by an amplified oscillator[24].
The time behavior of classical correlations for an ampli-
fied optical wave with a negative constant damping fac-
tor is quite different from that for damped optical waves.
For such wave, δ̄CC,q exponentially decreases with time,
whereas δ̄CC,p exponentially increases. This fact can be
easily verified by replacing σ in Eqs. (17) and (18) with
−σ and taking the absolute value of the resulting δ̄CC,q

and δ̄CC,p. The uncertainty-like property, δ̄CC,q δ̄CC,p =
constant, is also met for this amplified waves.

In general, the theory of measurement is finding the
state of an object from its measured data. Because, in the
case of the quantum state, the measuring apparatus com-
plies with the law of classical mechanics while the object
remains in a quantum state, various problems take place re-
garding their correspondence. The superposition of multi-
ple state functions is possible for quantum states, whereas
classical states can be represented with a pair of canonical
conjugate variables, (q, p). Accordingly, the main task in
the quantum measurement theory is to demonstrate which
steps under which conditions are to be followed from the
results of a quantum process in the implementation to-
ward classicality in measuring processes. Apparently, the
reciprocal relation between δ̄CC,q and δ̄CC,p, obtained in
this work, may contribute to providing an insight not only
for understanding the underlying mechanism for the funda-
mental quantum mechanics, but also the emergence of the
classical characters from the initial quantum world. The ab-

solute classical correlation in q-space would be enhanced as
time goes by, provided that that in p-space decreases over
time and vice versa.

As a future task, it may be worth analyzing classicality
measures for optical waves propagating through time-
varying media, which display rich properties associated
with nonclassicality[4, 5, 27, 28]. If electromagnetic
parameters such as electric permittivity, magnetic per-
meability, and conductivity vary with time, the media
are defined as time-varying media. A peculiar feature of
quantum optical waves in time-varying media is that their
quantum solutions are described in terms of solutions of
the classical equation of motion for q(t)[4]. The effects
of time dependence of electromagnetic parameters on
classicality of optical waves may be an interesting topic for
future research as well.

Appendixes

A. Formulation of wave functions
The quantum wave functions corresponding to the Hamil-
tonian given in Eq. (1) can be derived using the Lewis-
Riesenfeld theory[12, 13] and are given by[3]

〈q|ψn(t)〉 = 〈q|φn(t)〉e−i(n+1/2)Ωt, (A1)

where

〈q|φn(t)〉 = 4
√
ξ/π

(√
2nn!

)−1

Hn

(√
ξq
)

× exp
[
−ξ′q2/2

]
, (A2)

with ξ = εΩeσt/ε/~ and ξ′ = ξ + iσeσt/ε/(2~). We will
use these wave functions in order to investigate classical
correlations for light waves in dissipative media.

Because we are studying classical correlations in both
q- and p-spaces, it is necessary to establish the wave func-
tions relevant to p as well as Eq. (A1). Once the wave
functions in q-space are known, we can also determine the
wave functions in p-space from the technique of the Fourier
transformation. Hence, we easily have p-space wave func-
tions:

〈p|ψ̃n(t)〉 =
1√
2π~

∫ ∞
−∞
〈q|ψn(t)〉e−ipq/~dq, (A3)

which are necessary for evaluating the density operator in
p-space.

Using Eqs. (A1) and (A3), it is possible to derive the
density operators in both q- and p-spaces, respectively.
From the configuration space representation of these
operators, we can evaluate classicality measures associated
with the classical correlation and the quantum decoherence
that are necessary to develop the theory of quantum to
classical transition, separately for q- and p-spaces.

B. Wigner transformation
To investigate classical correlation and quantum decoher-
ence that are necessary for analyzing the emergence of
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classicality from quantum domain, the exact formula of
Wigner transformation is necessary. Hence, let us consider
Wigner transformation of the form

W (q+, p, t) =
1√
2π~

∫ ∞
−∞
〈q|ρ(t)|q′〉

× exp(−
√

2ipq−/~)dq−. (B1)

Executing the integration after inserting Eq. (3) into the
above equation yields

W (q+, p, t) =
Πq√

2πµ−−~
exp(−µ++q

2
+)

× exp

[
− (µ+−q+~/

√
2− p)2

2µ−−~2

]
. (B2)
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