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Abstract 

The paper has two different objectives. The first one is to 
show that Ampere’s double layer method, which is equivalent 
to one of the Maxwell equations, leads to the integration of a 
simple closed form expression, thus avoiding the need to solve 
complicated partial differential equations. The second aim is 
to study the case of a zero volume defect in a NDE problem by 
a perturbation method and the introduction of a double layer. 
The combination of these two techniques leads to a very fast 
solution of the problem. A practical example including an 
experimental check is given. 
 
Keywords: Ampere’s double layer, eddy currents, fictitious sources, 
magnetic field evaluation, NDE, perturbation method, zero volume 
crack. 

1. Introduction 
The purpose of this paper is two-fold. Initially, we wanted to 
study the NDE detection of a zero volume crack in an 
aluminum plate. For us, on the hand, this problem was a 
practical, industrial problem. And on the other hand, it was a 
didactical electromagnetic problem. 
 
Indeed, the so called Maxwell equations are four partial 
differential equations which are the basis of most studies of 
electromagnetic systems. This is true for Non Destructive 
Evaluation methods [1 to 22]. The reason is that this model is 
considered as the “most beautiful” representation of 
electromagnetic phenomena or, at least the most general. The 
consequence is that most modern textbooks devoted to 
electromagnetic have banished the original expressions 
established by Ampere himself, which are closed from 
expressions. 

2. Presentation of an example 
Non Destructive Evaluation (NDE) can be considered as a 
method which allows to detect a flaw (here: a crack) in a 
metallic conducting plate, without modifying it. 
 
More specifically, if we create an alternating magnetic field in 
a metallic object, this leads to the creation of eddy currents, 
which in turn create a magnetic reaction field. Conducting this 
experiment first with a flawless reference object, then with 
another object, seemingly identical to the first one, differences  
 

 
 
between the reaction fields may reveal internal differences, 
essentially flaws. 
 
In the present paper, we consider a flawless aluminum plate 
whose dimensions are (100  𝑚𝑚×110  𝑚𝑚×5  𝑚𝑚), and 
resistivity 𝜌 = 5.82 ∗ 10!!Ω.𝑚 (AG3 alloy at 20°C). We 
create a uniform alternating field 𝐵!"# = 𝐵!cos  (𝜔𝑡)𝑂𝑥  
(amplitude  𝐵! = 6.74 ∗ 10!!𝑇, frequency  𝑓 = 180𝐻𝑧) (see 
figure 1 (a)), and we evaluate the field of the eddy currents. 
The skin depth of aluminum at 180Hz (9.11mm) is twice as 
large as the plate thickness (5mm).  
 
The question to be answered is: what would be the difference 
if we consider another plate of same dimensions and 
resistivity, but with a null volume crack as shown in  
figure 1 (b)? 

 

 
(a) 

 
(b) 

 
Figure 1: Description of a flawless plate (a) and a defective 
one (b) 
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3. Method of analysis 
3.1. Flawless plate 
The first step is to analyze the case of the flawless plate, and 
this is rather simple. Indeed, in the present case, the standard 
penetration depth in the plate at 180𝐻𝑧 is  9.11𝑚𝑚, which 
means that skin effect is negligible, so the induced currents are 
just proportional to the time derivative of the vector potential 
of the exciting field (see appendix 1). The current density in 
the flawless plate is shown in figures 2 (a) and 2 (b). 
 

 
                                          (a) 

 

 
(b) 

Figure 2: Description of the eddy currents densities (a) and 
lines (b) in the abcd plane, in the case of a flawless plate. 
(with Bexc) 
 
Note that the induced current is parallel to 𝑂𝑦 axis principally 
except at the extremities of the plate which are not shown on 
the figure 2 (b). 
 
The figures 2 (a) and 2 (b) represent the same situation in 
which the flawless plate is located in an external excitation 
field. The figure 2 (a) shows the schematic variation of the 
eddy current density (decreasing with z) and the  
figure 2 (b) illustrates the calculated eddy current lines for a 
flawless plate considered very large in y direction. 
 
As it is defined in the above figures, we consider an excitation 
induction field 𝐵!"# parallel to 𝑂𝑥 axis (see figure 1), and we 
study the currents produced in the planes which are parallel to 
plane 𝑎𝑏𝑐𝑑, and therefore normal to 𝑂𝑥. The currents 
densities described in figure 2 (a) are governed by the 
fundamental Maxwell’s equations: 
 
       𝜕𝑗!/𝜕𝑦 + 𝜕𝑗!/𝜕𝑧 = 0 (∇. 𝚥 = 0)                                   (1) 

 
In fact, The Maxwell Ampere equation is given by:  
 

                          ∇⋀𝐵 = µμ!𝚥 + µμ!𝜀!
!!
!"

,                                (2) 
 

and we have also: 
 

                     ∇.𝐵 = 0, and  ∇⋀𝐸 = − !!
!"

.                              (3) 
 
Besides: 
 
                      ∇⋀(∇⋀𝐵) = 𝑔𝑟𝑎𝑑 ∇.𝐵 − ∆𝐵.                      (4) 
 
These equations allow reaching the following expression: 
 

       µμ!∇⋀𝚥 = −∆𝐵 + µμ!𝜀!
!!!

!"!
  (with   µμ!𝜀! =

!
!!

 )               (5) 
 
Therefore, the equation (5) is deduced from the equations 2, 3 
and 4 with the presence of an external excitation field and it is 
related to the figures 2 (a) and 2 (b). 
 
In our case, the magnetic excitation is along 𝑂𝑥 direction and 
the sample is located in the uniform part of the excitation 
magnetic field. For a flawless plate, the eddy currents are 
unperturbed as shown on figure 2. The magnetic field created 
by the eddy currents along x axis and opposite to excitation 
field (Bexc) is very small comparing to the Bexc.  
 
Besides, as the frequency of this excitation magnetic field is 

very low (180Hz) and as !
!!

 is very small, so the term µμ!𝜀!
!!!

!"!
 

is approximately zero.    

3.2. First approach to the analysis of a defective plate: 
Introduction of a perturbation method 
The second step is to determine the currents in the defective 
plate. Two possibilities exist. Indeed, we may either directly 
evaluate the currents, or directly evaluate the difference 
between the currents in the flawless and in the defective 
plates. In both cases, we shall have the choice between using a 
double Fourier series expansion or a finite element (or finite 
difference) method. We have chosen to evaluate directly the 
perturbation introduced by the crack in the induced currents. 
And we shall see that any finite difference or finite element 
method leads directly to the characterization of Ampere’s 
layer and to an evaluation of the crack effect. 

3.3. Introduction of a numerical determination of the 
perturbation currents 
The existence of the zero volume crack defect between A’ and 
B’ as shown in figure 1 (b) is considered equivalent to a 
fictitious source of currents (see figure 3) whose current 
densities values are opposite to the values of the current 
densities existing at the same place in the flawless plate [23 
and 24]. This method belongs to the set of so called 
“perturbation methods”, as the well-known methods of 
Thevenin or Babinet. 
 
In fact in this case the external excitation field is zero (Bexc=0) 
so the equation (5) can lead to ∇⋀𝚥 = 0 from which the 
equation (6) can be deduced. 

 
                     𝜕𝑗!/𝜕𝑧 − 𝜕𝑗!/𝜕𝑦 = 0                                       (6)  

⊙   𝐵!⃗ !"# 
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The equation (6) is related to the figures 3 and 4 where Bexc=0 
and the zero volume crack defect is considered as a fictitious 
source of current. 
 
Equations (1) and (6) are both satisfied if there exists a 
function 𝑄 (called: current function) such that:  
 

       
    𝑗! = −𝜕𝑄/𝜕𝑧
𝑗! = 𝜕𝑄/𝜕𝑦                                                                (7) 

 
with: 
 
       𝜕!𝑄/𝜕𝑦! + 𝜕!𝑄/𝜕𝑧! = 0.                                             (8) 

 
Note that equation (7) is obtained from (1) and equation (8) 
from (2). 

 
The boundary conditions are specified in figure 3, with 
𝜕𝑄/𝜕𝑦 = 0 (symmetry with respect to 𝑂𝑧 (i.e. 𝑗! ≡ 0)) and 
also 𝑄 is a parabolic function of 𝑧 between 𝐴! and 𝐵! for 
𝑦 = 0. In fact, this current function Q which is a primitive of 
the current density (linear function) becomes a parabolic 
function.  
 

 
Figure 3: Fictitious source of current equivalent to the zero 
volume crack between A’ and B’ (with Bexc=0) 
 

 
Figure 4: Currents lines generated by the fictitious source 
representing the zero volume crack between A’ and B’ 

 
The figures 3 and 4 correspond to the same situation of a plate 
with a zero volume crack defect with Bexc=0. The figure 3 
shows the schematic variation of the eddy current density 
(decreasing with z) and the figure 4 illustrates the calculated 
eddy current lines for the fictitious source of current 
representing the defect. 
 
Also 𝑄 ≡ 0 along the two limits 𝑧 = ±𝑐/2. These data and 
conditions suffice to determine the values of 𝑄(𝑦, 𝑧) all over 
the plane by use of any numerical method (series 
development, finite elements or finite differences methods).  

When 𝑄(𝑦, 𝑧) is known by any of these well known numerical 
methods, the lines 𝑄 𝑦, 𝑧 = 𝑐𝑡𝑒 are the current lines shown 
in figure 4. It is clear that Q is dependent absolutely on the 
crack geometry as it represents the defect as an equivalent 
fictitious current source. 
 
The combination of the current lines of the unperturbed plate 
(cf. figure 2 (b)) and of the fictitious source (figure 4) yields 
the resultant current lines in the defective plate (figure 5) 
according to the superposition method. 
 

 
Figure 5: Currents lines in the plate with a perpendicular zero 
volume crack between A’ and B’ which represent the 
additional combination of figures 2 (b) and 4 
 
The induced current is parallel to 𝑂𝑦 axis principally except at 
the extremities of the plate which are not shown on the  
figure 5. It seems that, from this point, it is easy to evaluate 
the field created by the induced currents. In fact, this is not so, 
because of the complicated shape of the current lines. This is 
why recourse to Ampere’s double layer of magnetic masses 
has been made [25]. 

3.4. Introduction of Ampere’s magnetic masses 
The basis of Ampere’s magnetic field theory is that a small 
current loop whose intensity is 𝐼, is equivalent to two 
magnetic masses ±𝑑𝑚, separated by a distance 𝛿, in such a 
way that 𝛿𝑑𝑚 = 𝐼𝑑𝑆, 𝐼 being the loop current, 𝑑𝑆 the loop 
surface, 𝛿 the distance between the two masses  
(cf. figure 6 (a)).  
 
It is customary to call 𝑃 = 𝛿. [𝑑𝑚/𝑑𝑆] the “power” of the 
double layer. Therefore the “power” of the double layer is 
equal to the loop current. The scalar magnetic potential 
created by a magnetic mass 𝑑𝑚 at distance 𝑟 being 𝑑𝑚/4𝜋𝑟, 
the scalar magnetic potential created by the magnetic dipole 
(figure 6 (b)), or by the current loop is equal to: 
 
    𝑉 = 𝛿. 𝑑𝑚/4𝜋 . 𝑠𝑖𝑛𝜃/𝑟! = 𝐼𝑑𝑆/4𝜋 . [𝑠𝑖𝑛𝜃/𝑟!].       (9) 
 
The radial magnetic field is (expressed in A/m): 
 
 𝐻! = −𝛿. 𝑑𝑚/2𝜋 . [𝑠𝑖𝑛𝜃/𝑟!] = −[𝐼𝑑𝑆/4𝜋]. [𝑠𝑖𝑛𝜃/𝑟!], (10)  
 
and the tangential magnetic field it is (expressed in A/m): 
 
  𝐻! = 𝛿. 𝑑𝑚/4𝜋 . [𝑐𝑜𝑠𝜃/𝑟!] = [𝐼𝑑𝑆/4𝜋]. [𝑐𝑜𝑠𝜃/𝑟!].     (11) 
 
Therefore, the magnetic field of the eddy currents is extremely 
easy to evaluate by the repetition of a closed form formula. 
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(a) 

 
(b) 

Figure 6: Definition of Ampere’s equivalent magnetic masses 
 

Now, consider a current loop (𝐶), as sketched in figure 7 (a). 
We do not modify the system by adding additional lines 
carrying simultaneously two opposite currents +𝐼 and −𝐼. 
This system of currents is equivalent to the set of small current 
loops depicted in figure 7 (b) and 7 (c), with all the currents in 
the loops being equal to 𝐼. Thus, outside the double layer, the 
magnetic field is the same as the field of the double layer of 
magnetic masses if its density is equal to ±𝐼/𝛿. Ampere has 
experimentally demonstrated that relationship, which is 
equivalent to the expression  𝐼 = 𝑟𝑜𝑡𝐻, introduced by 
Maxwell, who called it “Ampere’s theorem” as a token of 
admiration to his predecessor (see appendix 3). 

3.5. Relationship between 𝑸 and the loop currents densities 
In the present case, an important remark is that the function 𝑄, 
as defined above, happens to be proportional to the loop 
currents densities y (see figure 8).  
 
𝚥.𝑑𝑙 = 𝑗! − 𝑗! + 𝑗! − 𝑗! + 𝑗! − 𝑗! + 𝑗! .𝐴𝐵 =!

!
!
!
𝑗!.𝐴𝐵 =   𝑄! − 𝑄! = 𝑄! with 𝑄! = 0.                                (12) 
 

3.6. Field created by the fictitious source 
We can now come back to figures 1 and 5. Figure 5 shows the 
lines of currents in any plane parallel to 𝑎𝑏𝑐𝑑 of figure 1(b). 
Therefore, the current loops in figure 5 represent, in fact, small 
solenoids parallel to the crack (figure 9 (a)). Each one has to 
be divided into elementary loops parallel to plane 𝑎𝑏𝑐𝑑. Each 
loop is equivalent to two layers of opposite signs, so that every 
layer is cancelled by the next one, except the two extreme 
ones (see figure 9 (b)).  
 
Therefore, the field of the currents density is equivalent to the 
field of magnetic masses laying on the two planes 𝑎𝑏𝑐𝑑 and 
𝑎!𝑏!𝑐!𝑑!. At each point, magnetic mass density and 𝑄 are 
equal (expressed in A/m):  

 
                  !"

!"
= !

!
= 𝑄 (see appendix 3),                            (13) 

 

where 𝐿 is the plate length parallel to 𝑂𝑥 axis. The field of 
magnetic masses, being Newtonian, is rather easy to evaluate 
as explained above. 

 
(a) 

 

 
(b) 

 

 
(c) 

Figure 7: Set of small current loops equivalent to a large one 
 

 
Figure 8: Equivalence of function 𝑄 and small loop currents 
densities 

 
(a) 

Figure 9 (a): Small solenoids parallel to the zero volume 
crack corresponding to the current loops shown in figure 4 

(𝐶) 

(𝐶) 

(𝐶) 
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(b) 

Figure 9 (b): Reduction of the currents to two layers of 
magnetic masses at faces 𝑎𝑏𝑐𝑑  and 𝑎!𝑏!𝑐!𝑑! 

3.7. Experimental verification 
The theoretical formulation given above has been checked 
experimentally, with the data given in the introduction. The 
depth of the crack was  𝑑𝑒𝑝𝑡ℎ = 𝐴!𝐵! = 2𝑚𝑚. The 𝑧 
component of the magnetic field of both the flawless plate and 
the cracked one are zero at the center of the plate (𝑥 = 0). For 
the case 𝑥 = 45𝑚𝑚, the magnetic field is represented by 
figure 10. The difference of experimental (see appendix 2) and 
theoretical values is very small (2%), as shown in figure 10. 

 
                (A) 

 
                 (B) 

Figure 10: Theoretical (a) and experimental (b) values of 𝐵! 
in the case of the flawless plate (A), and of the defective (B) 
one for 𝑥 = 45𝑚𝑚 

4. Conclusion 
In this paper, we have examined the expression of the 
magnetic field of induced currents under two different forms. 
The first is Maxwell’s formulation which is a partial 
differential equation which has to be solved. The second one is 
Ampere’s expression which consists of closed form 
differential elements which just have to be added up. The 
latter formulation considerably simplifies the computation 
process and reduces the computing time.  

 
We have also pointed out that the magnetic masses are easily 
defined by a current function 𝑄 whose spatial derivatives are 
the current densities. 

 
We have also given an example of a zero volume crack which 
can be easily represented by an equivalent fictitious source of 
currents, following the well known Thevenin’s or Babinet’s 
principle.  
 
The results have been carefully checked with our experimental 
set up. Good agreement between theory and experiment has 
been found. 

APPENDIX 1: Induced currents in the flawless plate  
For figure 1 (a) and figure 1 (b), we choose a direct reference 
frame Oxyz with Ox parallel to the induced field and Oz 
denoting the vertical direction. Thus the potential vector, 
created by the excitation field inside the plate, at point 
M(  M!,M!), is directed in the Oy direction and its value is:  

 
A(  M!,M!) = B ∗M!  . 

 
Since the skin depth of aluminum at 180𝐻𝑧 is twice as large 
as the plate thickness, the corresponding current  
density is: 
 

j!(M!,M!) =
!
!
!!(!!,!!)

!!
= !

!
B!M!sin(ωt), 

 
which means that the current lines are parallel to  
Oy [26 to 30]. As the thickness of the plate (5mm) is very 
small compared to its length (100mm), the plate can be 
considered analytically as infinite according to its y-
dimension.  
 

 
Figure APPENDIX 1: Determination of the induced eddy 
currents density j! 
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APPENDIX 2: Short description of the experimental  
set up 
The excitation field is created by a Helmholtz coil pair 𝐻, with 
a cross section of 12  𝑚𝑚×15  𝑚𝑚 each, an external diameter 
of 240𝑚𝑚 and with a spacing of 120𝑚𝑚. The aluminum 
plate 𝑃 is mounted on a horizontal stage, thus allowing 
movement along the 𝑥 and 𝑦 directions. The vertical 
component of the induction field is measured by a sensor 𝑆 
which, in the present case, is a Hall effect micro-sensor [31], 
associated with a lock-in amplifier which allows a 
synchronous detection. 

 
Figure APPENDIX 2: Instrumental set-up 

APPENDIX 3: Equivalence between the Ampere’s and 
Maxwell’s statements 
Consider a current loop 𝐼, equivalent to a double layer made of 
positive and negative charges. The absolute value of the 
charge density is !"

!"
= !

!
. Consider a closed circuit divided in 

𝐴𝐵 and  𝐵𝐴, where the distance between 𝐴 and 𝐵 may become 
infinitesimally small (figure Appendix 3). According to 
Poisson’s theorem, 

 
𝐻𝑑𝑙 =(!) 𝐻!𝑑𝑙 +

!
! 𝐻!𝑑𝑙 = 0!

! . 
 

Now, 𝐻! =
!"
!"

 is oriented form 𝐴 to 𝐵, and 𝐻!𝑑𝑙 = − !"
!"
𝛿!

! , 

so that 𝐻!𝑑𝑙 = − 𝐻!𝑑𝑙 = + !"
!"
𝛿!

!
!
! = 𝐼, which is 

Maxwell’s expression 𝐻𝑑𝑙 =(!) 𝐼, if the distance between 𝐴 
and 𝐵 is becoming infinitesimally small. 

 
Figure APPENDIX 3: Equivalence between Ampere’s and 
Maxwell’s expressions of the Ampere’s theorem 
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