Vortexlike Power Flow at the Interfaces of Metamaterial Lens

Main Article Content

K. Fang
Y. W. Zhang
L. W. Zhang

Abstract

The metamaterial lens with DPS/DNS/DPS structure has been realized by using the two-dimensional (2D) isotropic transmission line approach. We studied the vortexlike power flow at the interfaces of metamaterial lens and validated by the finite-difference time-domain (FDTD) simulator. The computational results showing its different conditions near DPS/DNS and other kinds of interfaces are obtained by CST STUDIO SUITE at different frequencies, and demonstrate the intuitionistic power location at the metamaterial lens interfaces.

Downloads

Download data is not yet available.

Article Details

How to Cite
Fang, K., Zhang, Y. W., & Zhang, L. W. (2012). Vortexlike Power Flow at the Interfaces of Metamaterial Lens. Advanced Electromagnetics, 1(2), 71-74. https://doi.org/10.7716/aem.v1i2.92
Section
Research Articles

References


  1. V. G. Veselago, The electrodynamics of substances with simultaneously negative values of ε and μ, Sov. Phys. Usp. 10: 509-514, 1968.
    View Article

  2. J. B. Pendry, Negative refraction makes a perfect lens, Phys. Rev. Lett. 85(18): 3966-3969, 2000.
    View Article

  3. D. R. Smith, J. B. Pendry, M. C. K. Wiltshire, Metamaterials and negative refractive index, Science 305: 788-792, 2004.
    View Article

  4. A. Grbic and G. V. Eleftheriades, Overcoming the diffraction limit with a planar left-handed transmissionline lens, Phys. Rev. Lett. 92(11), 117403, 2004.
    View Article

  5. G. V. Eleftheriades, Negative refraction and focusing in hyperbolic transmission-line periodic grids, IEEE Trans. Microw. Theory Tech. 53(1): 396-403, 2005.
    View Article

  6. P. Alitalo, S. Maslovski, and S. Tretyakov, Threedimensional isotropic perfect lens based on LC-loaded transmission lines, J. Appl. Phys. 99, 064912, 2006.
    View Article

  7. T. J. Cui, Q. Cheng, W. B. Lu, Q. Jiang, and J. A. Kong, Localization of electromagnetic energy using a left-handed-medium slab, Phys. Rev. B 71, 045114, 2005.
    View Article

  8. C. Caloz and T. Itoh, Electromagnetic metamaterials, transmission line theory and microwave applications, Wiley, New York, pp. 133-170, 2006.

  9. G. V. Eleftheriades, K. G. Balmain, Negativerefraction metamaterials: fundamental principles and applications, Wiley, New York, pp.214-219, 2005.
    View Article

  10. J. Bucay, E. Roussel, J. O. Vasseur, P. A. Deymier, AC. Hladky-Hennion, Y. Pennec, K. Muralidharan, B. Djafari-Rouhani, and B. Dubus, Positive, negative, zero refraction, and beam splitting in a solid/air phononic crystal: Theoretical and experimental study, Phys. Rev. B 79, 214305, 2009.
    View Article

  11. Y. Wang, Y. Zhang, L. He, H. Li, H. Chen, F. Liu, C. Caloz, Time-domain study of vortexlike interface mode in metamaterials, Appl. Phys. Lett. 91, 221907, 2007.
    View Article

  12. L. Zhou, and C. T. Chan, Vortex-like surface wave and its role in the transient phenomena of meta-material focusing, Appl. Phys. Lett. 86, 101104, 2005.
    View Article

  13. I. V. Shadrivov, A. A. Sukhorukov, and Y. S. Kivshar, Guided modes in negative-refractive-index waveguides, Phys. Rev. E 67, 057602, 2003.
    View Article

  14. A. K. Iyer, P. C. Kremer, and G. V. Eleftheriades, Experimental and theoretical verification of focusing in a large, periodically loaded transmission line negative refractive index metamaterial, Opt. Express 11(7): 696- 708, 2003.
    View Article

  15. A. Grbic, and G. V. Eleftheriades, Periodic analysis of a 2-D negative refractive index transmission line structure, IEEE Trans. Antennas Propag. 51(10): 2604- 2611, 2003.
    View Article

Most read articles by the same author(s)