
ADVANCED ELECTROMAGNETICS, Vol. 1, No. 3, October 2012

Sensitivity analysis to compute advanced stochastic problems in uncertain and
complex electromagnetic environments
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Abstract

This paper deals with the advanced integration of uncer-
tainties in electromagnetic interferences (EMI) and elec-
tromagnetic compatibility (EMC) problems. In this con-
text, the Monte Carlo formalism may provide a reliable
reference to proceed to statistical assessments. After all,
other less expensive and efficient techniques have been
implemented more recently (the unscented transform and
stochastic collocation methods for instance) and will be il-
lustrated through uncertain EMC problems. Finally, we will
present how the use of sensitivity analysis techniques may
offer an efficient complement to rough statistical or stochas-
tic studies.

1. Introduction

A large set of electromagnetic (EM) problems are currently
treated with a very high level of accuracy from numeri-
cal and/or experimental devices. Their deterministic design
may reveal quite convenient if input data are precisely con-
trolled. Due to the disturbed EM environment where most
of the radio systems evolves, the electromagnetic compat-
ibility (EMC) issues are rarely entirely known: from the
number of parameters impinging both the sources, victims
and/or coupling paths, the deterministic design of the prob-
lem appears utopian. In this context, a crucial point relies
on our ability to estimate the impact of different Random
Variables (RV) on given outputs.

1.1. Stochastic context

The Monte Carlo (MC) formalism remains one of the most
spread statistical technique to handle with stochastic treat-
ments. As explained in [1], the MC method needs few re-
quirements on the chosen random output. In an integration
approach, this technique is well suited for singular (irreg-
ular) kernels and it is not compulsory to access analytic
information on their statistical form. The “classical” MC
reveals independent of the problem dimension and can be
used for many stochastic issues involving a high numbers
of RV. Nevertheless, as pointed out in [2], the main disad-
vantage of MC remains its slow convergence rate. Thus,
it may appear computationally prohibitive (even for high-
dimensional problems) but is still interesting to access a

“reference” result. Finally, the difficulty remains to set the
threshold defining the MC convergence level.

Different stochastic techniques have been successfully
computed since 2002 in order to give a more realistic view
of EM simulations including uncertainties. We may for
instance cite the unscented transform (UT) [3, 4, 5] or
the “Lagrange” stochastic collocation (SC) [6, 7, 8, 9, 10]
methods, the kriging technique [11], the polynomial chaos
expansion [12, 13, 14], and the experimental design [15].
Far from appearing as an exhaustive review of stochas-
tic and statistical methods in electromagnetism, the pre-
vious quoted techniques were mainly applied to numer-
ical simulations including various EM domains: shield-
ing effectiveness [3, 4, 5, 9], scattering and propagation
[6, 9], susceptibility [9, 10, 11, 15] and/or (bio-)EMC/EMI
[7, 8, 12, 13, 14] problems.

1.2. Aims and motivations

From domains as environmental modeling, mechanics,
safety and reliability, the sensitivity analysis (SA) methods
are widely spread from twenty years. We may commonly
define the SA for a given physical model as a method used
to determine how various values of an independent variable
will impact a particular dependent variable under a given
set of assumptions. This is typically a deterministic view
regarding a mathematical expression as a function of “in-
puts” that produce “outputs”; deterministic means that the
same set of “input” variables gives always the same “out-
put” values. For a considered “output” quantity, the goal is
to determine the contributions from “input” and their inter-
actions with the model.

Various objectives are expected from SA: modelling
complex and combined phenomena, calibrating “input” pa-
rameters, simplifying a model (decreasing the number of
variables), organizing the “input” parameters both from
qualitative and quantitative points of view. Obviously, this
treatment may lead to a better understanding of the studied
system, to simplify it and to check its reliability.

Different techniques are available, and we may men-
tion, without exhaustiveness the screening techniques (to
access to the most influential inputs among a large number
from coarse sorting), and the variance based sensitivity in-
dices (measures of importance). Thus, both qualitative and



quantitative treatments are allowed chosing one of the pre-
vious techniques. Another way to present SA methods may
be to consider if the sensitivity needs require a local or a
global analysis. This is equivalent to consider respectively
the linearity hypothesis between “inputs” or to study the in-
teractions between parameters. In the following, we will
focus on global analysis.

2. Theoretical principles

This section is dedicated to the theoretical details of the
stochastic and SA methods used in this work.

2.1. Notations and approaches

In our models, a stochastic parameterZ will be given from
a RV û as follows:

Z = Z0 + û, (1)

whereZ0 is called the initial value (mean) and̂u is char-
acterized by a given statistical distribution law (zero-mean
with a certain variance). In the following, the random value
Z may represent different kind of parameters: geometrical
details, material values , and/or source characteristics.

In this paper, we will consider a model for which an
“output”F is a deterministic function ofk “inputs” denoted
by u1, u2, . . .uk. We may sum up thek “inputs” in a row
vectoru

u = (u1, u2, . . . , uk) , (2)

and writeF (u) the global effect ofk “inputs” a priori
considered as RV for a computational (analytical and/or nu-
merical) modelF .

The aim of this study is to focus on two efficient meth-
ods: the UT [3] and the SC [9] techniques. These two
previous approaches rely on the same philosophy with the
simplicity of MC but faster convergence rates. Their main
advantage remains their high precision.

A sensitivity analysis technique widely spread in mod-
els of large dimension is the screening design proposed in
[16]. It deals efficiently with models containing a lot of
input factors and may lead to quick qualitative assessment
since the number of model evaluations is linear in the num-
ber of model factors. Obviously other techniques may be
used with different degrees of accuracy and efficiency to
rank RV by influence.

2.2. Stochastic methods foundations

In the following, we will detail theoretical principles con-
sidering 1-RV formalism. We may extend it to multi-RV
cases without any loss of generality.

2.2.1. UT basis

As explained in [3], the use of the UT method is similar to
the MC technique. The main difference relies on the num-
ber of realizations needed to obtain the statistical moments

of a given output. Thus, instead of several thousands of
repetitions, only a few selected ones are necessary.

Some conditions are required to compute UT for a sin-
gle RV: we may know both the moments of the RVû and
the nonlinear mapping of the random output (I(û)). Itsnth
order moment may be expressed as follows

E{I(û)n} =

∫

I(u)npdf(u)du, (3)

wherepdf (u) is the probability density function of the RV
û. A discrete equivalent of the relation (3) is used for the
integration

∫

I(u)npdf(u)du ≈
∑

i

ωiI(Si)
n, (4)

whereSi are the so-called sigma points (for the integration).
If the nonlinear mappingI(û) is well behaved, it could be
expressed from Taylor polynomial series (gj coefficients)
as

∫

I(u)npdf(u)du =

∞
∑

j=0

gj

∫

ujpdf(u)du. (5)

From the discrete sum (4), each integration term of (5)
may be expressed fromk+1 (k = 0, 1, 2, . . . ) equations as

∫

ukpdf(u)du ≈
∑

i

ωiS
k
i = E

{

ûk
}

. (6)

The nonlinear system depicted in (6) allows the computa-
tion of the sigma pointsSi and weightsωi from the mo-
ments of the RV̂u. As detailed in [3], the minimum number
of Si points for a given order of the UT technique may be
derived using the Gauss quadrature schemes. Indeed, con-
sidering (6), the solution is not unique and different sets of
(Si, ωi) may be obtained as illustrated in the following.

2.2.2. SC foundations

The idea of the technique is to choose a polynomial approx-
imation of a given outputI depending on a random param-
eterZ (1). In a first time, the functionS → I(Z0;S) is
expanded in Lagrangian basis functions of ordern

I(Z0;S) ≈
n
∑

i=0

Ii(Z
0)Li(S), (7)

with Li(S) =
n
∏

j=0
j 6=i

S−Sj

Si−Sj
. One of the most interesting prop-

erties of the Lagrangian basis relies on its reducing char-
acteristic:Li(Sj) = δij (Kroneckerδ) and we may write
Ii(Z

0) = I(Z0;Si). Then, the integration computation is
based upon the Gauss quadrature with identical pointsSi

than the ones previously needed by the UT method

∫

D

pdf(u)f(u)du ≈
n
∑

i=0

ωif(Si), (8)
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wherepdf is the probability density function introduced in
the previous section. Similarly to the UT case, the real num-
bersωi are called integration weights. From (7), we may
detailI with its polynomial approximation

E
{

I(Z0;S)
}

=

n
∑

i=0

Ii(Z
0)

∫

D

Li(s)pdf(s)ds (9)

From (9), we may straightforward compute weights follow-
ing

ωi =

∫

D

Li(s)pdf(s)ds. (10)

We will detail in the following the statistical moments com-
putation enabled by the pair(Si;ωi).

2.2.3. Multi-RV cases

Based upon the results obtained for a single RV, the UT Tay-
lor polynomial representation is still suitable for two RV. In
the two variables case, the system (6) may be written using
statistical moments cross terms [5] following

∑

i

ωi(S
1
i )

m(S2
i )

n = E{ûm
1 ûn

2}. (11)

The sigma points and weights are computed for the two
RV û1 andû2 and derived from the possible power combi-
nations ofm andn (natural numbers) with0 ≤ m+n ≤ 4.
Once more there are several possible solutions: in the fol-
lowing we will give different sets of sigma points and
weights solving the system (11).

Regarding the SC computing, the previous theoretical
elements may also be generalized to the multivariate case.
Therefore, by considering a two-variable random problem,
for instance involving two RV̂u1 andû2 standing for two
random parameters respectivelyY andZ, we may write
Y andZ from the relation (1) including two initial values
(Y 0 andZ0). From the same theoretical foundations, we
may project the function(s, t) → I(Y 0, Z0; s, t) on a La-
grangian basis

I(Y 0, Z0; s, t) ≈
n
∑

i=0

n
∑

j=0

Iij(Y
0, Z0)Li(s)Lj(t), (12)

with Iij(Y
0, Z0) = I(Y 0, Z0; si, tj). It is rather sim-

ple from (12) to compute the moments of the outputI
through a tensor product in each direction (i.e., for each
RV) based upon the generalization of (8).

Finally, in a further section one may find the details
of the statistical moments computation for a single RV
(Table 1). The principle remains quite the same both
for UT and SC in multivariate case since a new set of
points/weights are defined. As illustrated in Fig. 1, even if
the SC technique may appear heavier than the UT method
(tensor product), it presents two main advantages. Indeed,
the computation of new sigma points/weights sets is rather
simple and the efficiency/accuracy of the results remain par-
ticularly interesting. The Fig. 1 presents sigma/weight
points obtained from a standard normal distribution from
two UT sets and one SC computation.
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SC − (2+1)2 sigma points − n=2

Figure 1: Different sigma points distributions for two RV
(UT and SC).

2.2.4. Computing the sigma points/weights and the statis-
tical moments

Although the UT and SC appear very similar considering
the computation of their respective sigma points/weights,
they differ from their basis. From the different solutions
proposed for the one-variable case, the minimum num-
ber of pairs(Si, ωi), for a given ordern, is straightfor-
ward available by the Gauss quadrature scheme (identical
to the SC case). Therefore, the expression of the integra-
tion points/weights is similar for the UT [3] and SC [8],
and the results will be identical.

The Tab. 1 gives an overview of the points/weights
in single RV case following a standard normal distribu-
tion. We may construct similarly the multi-RV set of
points/weights for UT and SC. Based upon [5], it is possible
to extend the previous set of points (Tab. 1) to the numerical
examples presented in the following (two RV) including the
variances of the distribution laws. As explained previously
(Fig. 1), the UT solution is not unique when solving the
system (11) and we may obtain (for a same order) different
sets of sigma/weights points.

Table 1: Sigma/weights pairs(Si, ωi) for 1-RV case with a
standard normal law (UT/SC).

n Pt1 Pt2 Pt3 Pt4 Pt5

2
Si −

√
3 0

√
3 x x

ωi 1/6 2/3 1/6 x x

4
Si −2.857 −1.356 0 1.356 2.857
ωi 0.011 0.222 0.533 0.222 0.011

In order to illustrate the multivariate computing of the
(Si;ωi) sets, we may focus on a bidimensional RV case,
RV 1+RV 2 (see Fig. 1) whereRV 1 andRV 2 follow a
standard normal distribution (N(0; 1)).

The collocation technique gives the collocation points
(Si) and weights (ωi) necessary to compute, for instance,
the 1st and 2nd-order statistical moments of theF -mapping
given in section 2.1.

From previous notations (E(F ) for instance), in order to
simplify the discussion, the〈F 〉 andσ2

F symbols will stand
respectively for the mean and variance ofF .
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Table 2: UT/SC computation of statistical moments (1st
and2nd) for the 1-RV case.

Stat. moment Computation

Mean mean(F ) =
n
∑

i=0

ωiFi

Variance var(F ) =
n
∑

i=0

ωiF
2
i − [mean(F )]2

The formalism detailled in Tab. 2 is common to the
UT and SC methods for single RV. The computation of the
sigma points and weights (multi-RV) may be found respec-
tively in [5, 8]. In the following, we will present the numeri-
cal differences existing between the UT and SC multivariate
results.

2.3. Sensitivity analysis

In early 90’s, an approach was proposed by Morris [16]
to discriminate the “inputs” of a given modelling (for in-
stance a determined computational relationF ). This work
aimed to determine which “inputs” had important effects
on a given “output”. This model is widely used since it is
easy to compute and may reveal particularly efficient with
models containing hundreds of “inputs”. Thus, among the
numerous methods available to conduct SA, we use in this
paper the method introduced by Morris [16] (see [17, 18]
for a review of SA techniques).

The main idea from [16] was, among a large variety
of “inputs”, to reasonably compute which may be consid-
ered negligible, additive and linear, non-linear and/or in in-
teractions with other “inputs”. With this objective, a “dis-
cretized” approach was originally proposed by Morris. In-
deed, the factorial sampling plan proposed in [16] is com-
posed of individual randomizations named “one factor-at-a-
time”. The elementary influence of theith “input” is com-
puted for a discrete number of values called “level” (given
by theith factor varying range). Letu be a given RV vec-
tor containingk random “inputs” as depicted in the relation
(2). We may set a varying range depicted by their minima
and maxima values for each RV respectivelyumin

1 , umax
1 ,

. . . , umin
k , umax

k defining the definition domainΩ. Orig-
inally, the sensitivity approach requires to samplep levels
for eachith RV through a givenδi parameter. From [16],
the k “inputs” were given over[0; 1] range. In this work,
we propose an elementary influence criterionci, for a given
u value, withδ a predetermined multiple ofδi

ci (u) =
F (u1 . . . ui−1, ui + δ, ui+1 . . . uk)− F (u)

δ
× χi,

(13)
whereχi is a given normalization coefficient depend-

ing on the[umin
i ;umax

i ] range. In the following,Di will
stand for the finite distribution of elementary influence cri-
terionci (i = 1, . . . , k) obtained from randomly sampling
a numbern of differentu vectors.

Obviously, the choice ofδi may influence the quan-
titative results proposed by [16]. Indeed, the number of

discrete “levels”p + 1 given directly represents the sam-

pling sharpness (δi =
umax
i −umin

i

p ). The principle used in
[19] requires to uniformly sample thek-dimensional paral-
lelepiped standing for theu potential values fromΩ. Given
a numbern of starting points, we may definen u-vectors
following the simple rule “one-factor-at-time”. This means
moving fromu = u1, u2, . . . , uk to u + δei, whereei is
a zero vector with a unit as itsith component. We may
ensure that the “translated” pointu + δei is still in the def-
inition domain. From an iterative process, we may obtain
the discreteDi distribution from the relation (13).

As explained in [19], each RV is evaluated regarding
two distinct measures:µi andσi, being respectively the
estimated mean and standard deviation ofDi. From a prac-
tical point of view, it should be better to compute a measure
enabling to integrate the potential non-monotonic model
behaviour by defining a rougher criterion. Thus, letµ∗

i

stands for the mean of the distributionEi of the absolute
values ofci parameter.µ∗

i will be more restrictive than
µ sinceDi may contain elements contrary signed. They
may vanished from the influence estimate and lead to erro-
neously considered corresponding parameters as negligible.
Thus, we may write

µi =
1

n

n
∑

i=1

ci, (14)

µ∗

i =
1

n

n
∑

i=1

|ci| , (15)

σi =

√

√

√

√

1

n

n
∑

i=1

(ci − µi)
2
. (16)

Practically, the “Morris” screening design enables to
rank RV from a quantitative point of view. It aims to repre-
sent the random parameters from a{µi (or µ∗

i ) / σi} repre-
sentation. A high value of “µi” reprents an “input” with a
high overall impact. A high value of “σi” stands for a pa-
rameter highly involved in interaction with other factors. In
the following, we will detail results from theµ∗

i criterion.
Obviously, different parameters from this screening design
technique may impact the reliability and efficiency of treat-
ments. Thus, the sampling sharpness may be a crucial point
since the grid used to quantify RV elementary effects may
be too coarse. In most cases, the discretization grid is set to
p = 100 or 1000 levels. In order to improve the reliability
of results, the relations (14; 15) are evaluated several times
in order to produce a cloud ofN points. From a computing
efficiency point of view, the “Morris technique” requires
n × (k + 1) × N calls to the computational relationF in
order to entirely compute results.

The Morris analysis may be presented throughout an
analytical test functionf depending onu = (u1, . . . , u11)

f(u) = u1u2 +
5

u3 (u11 + 0.5) + cos(u4) + 0.1

+4u3
5 + 4u6 − u7 + u8 exp(u9) + 0.2u10,

(17)
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Figure 2: RV ranking from screening design.

with ui, i = 1 . . . 11 ∈ [0; 1]. In this case, the initial
“Morris” parameters are set following:n = 10, p = 1000
andN = 100. Thus, the whole process requires12, 000
calls to analytical functionf from the relation (17).

As expected comparing relation (17) and Fig. 2, the
u6, u7 andu10 parameters appear as linear ones and may
be set apart. Contrary to other values,ui (i = 3, 4, 5) ones
may not be neglected (inner interactions inside model). Ob-
viously, their characterization only offer a qualitative ap-
proach and it is necessary to proceed to a precise and effec-
tive quantitative computation to obtain influence orders.

3. The stochastic EMC issue

3.1. Setup and initial parameters

In this work, the case of a transmission line illuminated
by a plane wave with multiple random parameters is used
from [11]: attenuation constantα, diameterd, frequencyf ,
lengthL, heighth above an infinite ground plane. The ex-
citation source is a plane wave linearly polarized (Fig. 3).
An analytical formulation can be obtained for the currentI
at loadZL = 1kΩ (Z0 is set to50Ω), and we may write

I = I(L, h, d, ZL, E0, α, Z0, f, θp, θe, φp) + Ip, (18)

with Ip a randomly distributed disturbing current
adding to the formula proposed in [11].

Table 3: Initial sets of parameters for the stochastic study.

Value L(m) h(mm) d(mm) ZL(Ω) E0(V/m) α
Min 1.2 8 0.6 996 996 0.
Max 4.5 32 1.4 1004 1004 0.01

Value Z0(Ω) f (MHz) θp(rad) θe(rad) φp(rad) Ip(A)
Min 46 1 −0.3 −0.3 −0.3 0.15
Max 54 50 +0.3 +0.3 +0.3 0.25

The purpose of adding in (18) the currentIp is to input
a linear RV into the global model. Even if the problem ap-
pears relatively simple, the complexity, here, comes from
the number of RV and there is no use facing straightfor-
ward this issue considering MC. Obviously, some sparse

Figure 3: Transmission line illuminated by a plane wave
[11].

grid techniques [12, 20] may improve considerably the ef-
ficiency of stochastic techniques but this may reveal quite
restricted if, independently, each RV needs not less than 4
or 5 collocation points. The aim of this study is to propose
a two-steps work. First, based upon a qualitative analysis,
our aim is to rank the RV from their relative effect and to
reduce their total number by setting the least influential pa-
rameters to deterministic values. Then, the use of stochas-
tic techniques fits well with a quantitative analysis of the
parameters sensitivity.

3.2. Stochastic techniques accuracy and efficiency

Since the Taylor polynomial expansion is still usable for
two random variables, the UT technique may be used to
achieve multivariate stochastic problem. Moreover, as il-
lustrated in [8], the single-variable SC method may be gen-
eralized to multi-RV problems. As explained previously, by
choosing sigma points from the Gauss quadrature, the UT
and SC techniques might appear quite similar with identi-
cal integration points and weights. Based upon their dis-
tinct foundations, for multivariate case, the different two
RV (Si, ωi) sets jointly with the different moments compu-
tation involve variations around the numerical results.

In this section, we have arbitrarily chosen the line length
L and the source frequencyf to achieve a stochastic pro-
cessing of the EMC problem (Fig. 3). TheL andf param-
eters will be both given by two independent RV (respec-
tively û1 and û2) following a zero-mean normal distribu-
tion respectively with variancesσ2

û1
= 2.083.10−4 (m2)

andσ2
û2

= 2.083.1010 (Hz2). From the expression (1), the
two random parameters may be written

L = L0 + û1 (19)

f = f0 + û2,

with L0 andf0 the length and frequency means. The
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Fig. 4 shows how straightforward the current variance may
be obtained for a large set of points. The previous ran-
dom variations are applied to each element of the set (L0

i

∈ DL = [1.2m; 4.5m]; f0
j ∈ Df = [1MHz; 50MHz]).

The SC convergence and the sensitivity of the model are
first showed in Fig. 4. The results depicted in Fig. 4 show
the convergence of the SC method (from theI variance).
Considering the SC accuracy for32 and52 points (respec-
tively SC3 and SC5), the two data sets almost overlap.

In Fig. 5 and 6, the results from UT fit very well with the
“converged” data from SC. Thus, Fig. 5 shows the agree-
ment for〈I〉 between SC3 and the approximation from the
UT (2nd order) involving5+1 points (UT5). A great agree-
ment appears also from Fig. 6 considering the slight differ-
ences existing between a same UT accuracy (2nd order) in-
volving 5 + 1 or 8 + 1 points (respectively UT5 or UT8).
The UT5 and UT8 differences rely on the non-uniqueness
of the solution as detailled in [5].

The accuracy of each stochastic formalism (UT/SC) is
defined from MC simulations reference. First, it is neces-
sary to determine a reference set of〈I〉 values: empirically,
the MC convergence appears for105 realizations. Then, in
order to compute the error due to stochastic treatments, a
criterion is defined standing for this relative error

erri,j = 100×

∣

∣

∣
u
SC/UT/MC
i,j − uMCref

i,j

∣

∣

∣

∣

∣

∣
uMCref
i,j

∣

∣

∣

, (20)
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Figure 6: Mean(I) from UT5 and UT8.

consideringerri,j stands for the relative error for each
pair (Li, fj) ∈ DL × Df . The reference MC values are
given for 106 simulations and are depicted previsouly by
uMCref
i,j . u

SC/UT/MC
i,j represents the elementary(i, j)-

value obtained respectively from SC, UT and MC (105 re-
alizations).

The Fig. 7 shows the relative error given for the set of
points(Lk, fk) (k = 1, . . . , Np with Np the total number
of length/frequency points). The MC convergence may be
considered for105 simulations since the error level remains
almost everywhere lower than 0.04% from106 MC real-
izations. Obviously, the UT/SC time and memory saves ap-
pear clearly from previous example since the stochastic for-
malisms need less than 10 realizations compared to the MC
technique which requires about 100,000 simulations. In
comparison with those MC simulations, the UT/SC curves
fit very well and sometimes better precisions are obtained.
This perfectly justifies viewing UT/SC as a smart way to
proceed to MC. Moreover, for a comparative number of
simulations (SC3/UT8 need exactly 9 realizations), the SC
method reveals more accurrate than the UT model. Of
course, it is possible to improve the UT efficiency by a good
choice of the sigma points and weights (and reducing this
example to only 6 simulations). The precision levels re-
main comparable betwen UT and SC but some subdomains
show a better accuracy (more than 30 times). The major ad-
vantage of SC techniques (high level of accuracy) is clearly
illustrated in the Fig. 7.

Furthermore, it would be possible to improve the SC
efficiency using techniques from [21] to reduce the number
of SC realizations needed, it could be particularly interest-
ing for multivariate stochastic problems involving4, 5, . . .
RV where the SC tensor products lead to some numerical
limitations [13]. A numerical problem (and especially a
stochastic EMC one) with several RV may appear complex
to solve due to the large number of variables. Neverthe-
less, a solution may be to reduce the number of variables to
a minimum regarding their relative influence. Based upon
[3], the comparison of results (mean, variance, . . . ) from
one RV simulation with those involving a set of RV pro-
vides information on the significant parameters and a view
of the model sensitivity.

Finally, the aim of this section was to validate different
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stochastic techniques (UT/SC) facing results with MC ones.
The following part will be dedicated to quantifying the sen-
sitivity influence of different random parameters from the
SC method. As depicted previously, without any loss of
generality, the same kind of work could be achieved from
UT techniques since the UT and SC accuracy were quite
similar.

4. Sensitivity and stochastic studies

4.1. A preliminary sensitivity analysis

In this part, we will put the focus on the use of the SC
method in order to lead preliminary sensitivity analysis.
From previous definition of the multi-RV issue, we may
wonder if the straightforward computing of first statistical
moments provides information about the relative sensitivity
of RV. Thus, arbitrarily choosingL andf parameters, the
Fig. 8 shows that〈I〉 including RV1 and/or RV2 as random
parameters may not allow to distinguish the most influen-
tial parameter from the previous 2RV-set. Indeed, very few
differences appear between stochastic treatments involving
independently RV1, RV2 and combiningL andf parame-
ters.

Obviously, similarly to [3], the variance computing
from Tab. 2 may provide more reliable results to distinguish
properly the most influential parameters. Indeed, regarding
the Fig. 9, differences exist between the three characteris-
tic random treatments involving respectively RV1, RV2 and
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RV1+RV2. Obviously, it is possible to better quantify the
influence of each parameter from “relative” error criteria
considering the 2-RV problem as a reference. However one
issue remains particularly constraining since this work is
based upon a rough hypothesis assuming the most relevant
parameters are well known. That is the reason why, we will
detail, in the following paragraph, how the “classical” SA
Morris method may offer a reliable and efficient solution.

4.2. Most influential subset of RV from SA

From previous theoretical aspects and relation (21), the
“Morris” influence criterionci (13) may be derived from
various expressions since theχi normalization coefficient
has not been defined yet. In the following, we will put the
focus onχi equivalent to theith range length

χi = umax
i − umin

i , (21)

where[umin
i ;umax

i ] stands for the range ofith RV.
Considering the relation (18), a screening design model

[16] enables us to arrange the set of parameters (Fig. 10)
by influence. The model parameters are set top = 100
sampling levels,n = 100 starting points (i.e. 100 u-
vectors) andN = 100 pairs (µi, σi) in influence clouds
(i = 1, . . . , k; k = 12 RV). Thus, the impact of thef andL
parameters appear quite similar (relatively most influential
ones) and some dependency exists between them (physi-
cally understandable). Their effect should not be neglected,
contrary to most parameters which appear negligible. As
expected from (18), the linear “coupling” currentIp may
behave linearly to other variables and we may set it apart.

From the Fig. 10, we may conclude that our numerical
problem with several random parameters may be character-
ized by a smaller subset of 2 RV: stimulation frequencyf
and line lengthL.

The SA technique requiredn× (k+1)×N = 130, 000
calls to the analytical formula (18). The global stochastic
collocation cost may be evaluated ensuring the convergence
of the method (SC3 and SC5), and50 = (32+3∗2)+(52+
5 ∗ 2) calls were necessary. Those130, 050 realizations
may be compared to the106 MC simulations needed con-
sidering the two previous RVf andL. A straightforward
SC approach would have revealed useless since312 + 512
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Figure 10: RV ranging from screening design.

Figure 11: RV ranging from screening design based upon
Tab. 4.

calls to the relation (18) would be far less efficient than
MC approach. Moreover, the sensitivity study proposed en-
ables lightening the post-treatments since the most influen-
tial variables are highlighted as explained in the following.

The SA technique is based upon the initial problem de-
fined. Thus, a different definition of initial RV ranges of
variation leads to a distinct issue and involves different re-
sults. In this context, we may wonder the quantitative in-
fluence effects due to moving initial values from Tab. 3 to
Tab. 4.

Table 4: A different set of initial ranges for RV (Fig. 11).

Value L(m) h(mm) d(mm) ZL(Ω) E0(V/m) α
Min 2.0 8 0.6 900 996 0.
Max 4.0 32 1.4 1100 1004 0.01

Value Z0(Ω) f (MHz) θp(rad) θe(rad) φp(rad) Ip(A)
Min 46 890 0.0 0.0 0.0 0.2
Max 54 910 1.5 1.5 1.5 0.8

As depicted in Fig. 11, a distinct set of initial param-
eters ranges will lead to different conlusions from screen-
ing design (most influential parameters: incidence direction
throughθp andφp angles, and lengthL). Thus, the defini-
tion domain of theu random vector appears as a crucial
point.

As explained previously, the aim of this part was to
highlight the potentially most influential parameters from a
sensitivity analysis. In order to propose a result physically
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Figure 12: Influence ofL parameter (RV1).

understandable, we gave a classical physical interpretation
from a well-known global transmission line example. De-
spite this, the Fig. 11 shows the high impact of the levels
of the initial values regarding the sensitivity analysis. Due
to the complexity of the problem, different sets of influen-
tial parameters may be underlined and the solution is not as
straightforward as the common sense view. Based upon ini-
tial parameters from Tab. 3, the following section aims to
validate quantitatively the result from the qualitative Morris
ranking (Fig. 10).

4.3. Quantitative impact of RV

This part illustrates the SC ability to achieve a reliable sen-
sitivity analysis in a random EMC problem. Among all the
variables depicted in Fig. 3, we will focus on the line length
and frequency excitation. Based upon previous SA, theL
andf RV need to be included in the stochastic model (other
variables may be set to determinsitic mean values). We may
rely on the stochastic techniques (SC and/or UT) to lead an
entire sensitivity analysis to quantify the impact of one pa-
rameter to another.

An influence criterion was defined in [3] to character-
ize the sensibility of one RV. Based upon the SC results, a
similar parameter is

InZi
= − log

(∣

∣

∣

∣

1− var (I(Zi))

var (I(Z1, Z2, . . . , Zk))

∣

∣

∣

∣

)

, (22)

with var (I(Zi)) and var (I(Z1, Z2, . . . , Zk)) the vari-
ances of the currentI given respectively from one RVZi

(i = 1, . . . , k) andk RV. As depicted previously, the two
random outputs are given considering two RV, respectively
RV 1 for L andRV 2 for f .

The influence of each parameter is shown in Fig. 12 and
Fig. 13. As expected, the relative behaviour of each param-
eter appears similar since the two parameters are dependent
on a physical point of view. The computation of the in-
fluence from (22) lays emphasis on the dominant effect of
length at low frequency (influence levels greater than1dB).
In comparison withf -influence (Fig. 13), the maximum
levels are greater regardingL-effect (In < 1.4dB for the
frequency).
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In order to better understand the relative effect of each
parameter, we may define a relative influence criterion from
previousInZ1

and InZ2
parameters (respectively forL-

RV 1 andf -RV 2) following

ĨnZi
=

InZi

k
∑

j=1

InZj

. (23)

The Fig. 14 gives an overview of the relative influence
of parametersL andf following the relation (23). As ex-
pected, the physical dependence between the two random
parameters involves a well-balanced distribution between
L andf . Indeed, based upon the given domain sampling,
a quick counting distinguishing major effects of length or
frequency shows an influence rate respectively of 55.64%
and 44.36% forL andf . Obviously, this last remark might
have been expected from Fig. 10 since the two parameters
representation (interaction clouds) were closed. Neverthe-
less, no quantitative information might be extracted since
the “Morris” SA only provides “qualitative” results.

4.4. Influence of an additional RV

From the Fig. 10, in the previous section, we laid emphasis
on two random parameters: the line lengthL (geometry)
and the stimulation frequencyf (disturbing source). In-
deed,L andf appeared clearly in Fig. 10 as the most influ-
ential variables and needed to be defined in the stochastic
model. One parameter was considered as negligible: the

height from the ground planeh. In this part, we would like
to check the validity of our previous SA assessment. Thus,
h is quantitatively included in our stochastic issue.

Based upon the relation (22), a third influence criterion
may be defined forh with a new RV (RV 3). RV 3 may be
given as depicted in (1) witĥu3 following a normal distri-
bution with a varianceσ2

û3
= 2.083.10−10 (m2). Conse-

quently, we may write

h = h0 + û3, (24)

with h0 the height mean withh0 ∈ Dh =
[8mm; 32mm] according to Tab. 3. Without any loss of
generality, different statistical distributions may be defined
for û1, û2 andû3. In this paper, these RV only differ from
their variances in accordance with their varying ranges.

In order to simplify the display of results, in this 3-RV
study, we propose to represent data by pairs (regarding each
time two RV amongL, f andh). Thus, the criteria from the
relations (22) and (23) were slightly modified by consider-
ing an averaged value over one of the three RV

Inj
Zi

= 〈InZi
〉j , (25)

with 〈.〉j standing for the mean value ofInZi
for Zj ∈

DZj
(j = 1, . . . , k).

Comparatively to (25) and relying on the relation (23),
we may define

Ĩn
j

Zi
=

〈

ĨnZi

〉

j
, (26)

whereĨn
j

Zi
represents a mean value overZj-dimension

of theZi parameter relative influence (i, j = 1, . . . , k; in
this partk = 3).

As expected, the parametersL andf remain the most
influential from a quantitative point of view. Although
the results presented in Fig. 15 are not fully displayed
(considering mean values overh and a representation over
DL × Df domain), the major influence of the line length
and source frequency appears obvious. As explained previ-
ously, in order to get a finer and clearer view of the relative
impact of each of the 3 RV, the Fig. 16, 17 and 18 based
upon the relation (26) are given. Considering the three
previous figures, the relative influence ofL andf values
seems huge comparatively toh-parameter. Apart regard-
ing the resonance effect in Fig. 16, the impact of height is
minor, less than0.1dB from (25). Moreover, it is possi-
ble to distinguish major effects ofL, f andh from a quick
counting. The respectiveL, f andh impact rates are about
55.27%, 43.91% and 0.82% over the whole domain from
the relation (25). This quantitatively justifies the prelimi-
nary choice achieved from SA (Fig. 10): the length and
frequency remain the most influential parameters.

5. Conclusion and prospects

In this contribution, a sensitivity analysis (SA) technique
jointly with stochastic methods were presented to solve
EMC problems. The use of unscented transform (UT) and
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stochastic collocation (SC) have been fully justified from
their high simplicity and accuracy. Uncertainties involv-
ing source parameters (frequency) and geometry of a trans-
mission line (length) have been defined considering var-
ious random variables (RV) UT/SC efficiency and preci-
sion were detailled regarding this stochastic EMC issue in
multi-RV case. Since the UT and SC methods are sim-
ilar to well chosen MC simulations, their efficiency ap-
pears to be an important advantage compared with Monte
Carlo (MC): minimizing computing time more than 20,000
times. Moreover, one of their main advantages relies on
their non-intrusive characteristic: similarly to MC, the tech-
niques only need to achieve numerical measurements for
particular input parameter values (without causing deep al-
teration in electromagnetic codes). Unfortunately, the ef-
ficiency may drastically decrease when the number of RV
increases. That’s the reason why we proposed a SA method
to determine what are the most important variables. Based
upon SA results, only significant parameters were studied to
quantitatively compute their influence domains. This may
be particullarly interesting to optimize EMI/EMC tests and
to improve EMC equipments design. The whole process
may perfectly apply oneself to other electromagnetic sim-
ulation/experimental tools. Recent studies are nowadays in
progress in order to validate the use of stochastic techniques
in an experimental EM complex environment [22, 23].
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