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Abstract

The separation of variables procedure has been employed
for solving the problem of scattering from an infinitely long
homogeneous gyrotropic-type (G-type) elliptic cylinder,
when a uniform plane electromagnetic wave perpendicular
to its axis, illuminates it. Formulation of the problem
involves expanding each electric and magnetic field using
appropriate elliptic vector wave functions and expansion
coefficients. Imposing suitable boundary conditions at the
surface of the elliptic cylinder yields the unknown
expansion coefficients related to the scattered fields and the
transmitted fields. To demonstrate how the various G-type
materials and the size of a cylinder affects scattering from
it, plots of scattering cross sections are given for elliptic
cylinders of different sizes and permittivity/permeability
tensors.

1. Introduction

In recent years, research on scattering from two-dimensional
(2-D) objects made of gyrotropic-type (G-type) materials
has received a great deal of attention, owing to the invention
of new materials and technologies, and also since they can
be exploited to accomplish unique scattering and/or
radiation characteristics. Exact solutions to problems
associated with scattering of a normally incident plane
electromagnetic wave by circular gyrotropic cylinders have
been presented in [1] — [8] and by coaxial circular ferrite
cylinders in [9]. Scattering of an obliquely incident plane
wave by a gyrotropic circular cylinder was considered in
[10], but results presented only for normal incidence of the
wave. Two-dimensional scattering of an obliquely incident
plane electromagnetic wave from an infinite homogenous
anisotropic circular cylinder has been investigated in [11]
and [12] using a formulation involving integral equations,
with results for a G-type cylinder at normal incidence also
included. For analyzing 2-D scattering from a homogeneous
gyrotropic cylinder of a non-circular cross section that is
excited by a plane wave, a method based on the extended
integral equation [13] has been presented in [14], and results
have been given for elliptic ferrite cylinders. In [15] and
[16], such an analysis has been conducted using a combined-
field surface integral equation formulation for 2-D
anisotropic objects of arbitrary shape, with results provided

for a circular ferrite cylinder also. In [17], 2-D scattering of
a transverse electrically polarized normally incident plane
electromagnetic wave from a weakly lossy homogeneous
gyrotropic elliptic cylinder has been examined, by
expressing the electromagnetic fields inside the cylinder
using integrals involving Mathieu functions and Fourier
series developed in [18], and then employing a first-order
Taylor series expansion to calculate Mathieu functions
having complex arguments. A formal series solution to the
problem of scattering from an infinite homogeneous
anisotropic elliptic cylinder excited by a normally incident
transverse magnetically polarized plane wave was obtained
recently in [19], but when the permittivity and permeability
tensors of the anisotropic material referred to the elliptic
coordinate axes are biaxial and diagonal.

An exact series solution is reported here for the first time, to
the problem of scattering of a plane wave by an infinitely
long homogeneous G-type elliptic cylinder, for transverse
electric (TE) polarization of the incident wave, when the
plane wave is incident normal to its axis. The solution for
the transverse magnetic (TM) case is obtained using duality.
The originality of this research is in employing the method
of separation of variables to obtain a solution to the problem.
We have been able to achieve this by expanding all of the
fields associated with the problem using appropriate elliptic
vector wave functions (involving radial and angular Mathieu
functions and their first derivatives) that satisfy the
boundary conditions related to the problem, exactly. The
solution corresponding to the case of an incident wave of
arbitrary polarization can be obtained by exploiting the
solutions for the TE and TM cases. When a plane wave
illuminated elliptic cylinder is composed of an isotropic, a
uniaxial anisotropic, or a biaxial anisotropic material as in
[19], the electric field inside it can be expressed using only
angular Mathieu functions, similar to that for the electric
field of the incident plane wave. However, when the
cylinder is made of a G-type material, to express the electric
field inside it one needs both the angular Mathieu functions
and their derivatives. This is what renders this problem
novel and the solving of it more challenging.

The above mentioned solutions have been attainable mainly
due to the realization that for a material of gyrotropic type,
its permittivity/permeability tensor in relation to a Cartesian
or a circular cylindrical coordinate system is identical to



that in relation to the analogous elliptic cylindrical
coordinate system.

The exact solution obtained in this paper is beneficial to the
electromagnetics community for several reasons. Firstly, it
can be applied as a benchmark for validating solutions to
analogous problems derived wusing numerical or
approximate procedures (which would have to be done
experimentally, otherwise, at a high cost). Secondly, this
solution can be used for demonstrating that the method of
separation of variables can be employed to solve this type
of problems effectively, in contrast to what has been
reported in [14] regarding the impossibility of obtaining
such a solution. Thirdly, it can be made use of to enhance
the collection of canonical solutions for scattering from an
assortment of elliptic cylinders, such as those composed of
isotropic, uniaxial anisotropic, gyro-electric, gyromagnetic,
and gyrotropic-type materials, since there aren’t very many
articles in the open literature that explore plane wave
scattering by elliptic cylinders, using the separation of
variables technique. Furthermore, the analysis presented in
this paper, enables one to obtain exact solutions to
scattering problems involving objects composed of any of
the above materials, which could be modeled using elliptic
cylinders of proper axial ratios.

To verify the software used for calculations and the
analysis, normalized bistatic widths for a TE polarized
plane wave illuminated G-type elliptic cylinder with an
axial ratio 1.0001 have been calculated first at a number of
scattering angles, and compared with comparable results for
an analogous G-type circular cylinder given in [12], and
shown that they are in superb agreement. Next, we have
carried out a similar calculation for a gyromagnetic elliptic
cylinder excited via a TM polarized plane wave, compared
the results obtained with the equivalent results provided in
[14], and shown that the agreement between the results is
exceptional.

2. Formulation

Consider an infinitely long elliptic cylinder comprised of a
G-type material, excited by a TE polarized plane wave of
unit magnetic field amplitude, incident normally to its axis.
The semi-major and semi-minor axis lengths of this
cylinder are denoted by a and b, respectively, and its axis is
along the negative z axis of a Cartesian coordinate system
x,V, z, which has the center O of the elliptic face (see Fig.
1) as its origin. The angle ¢; is that which the incident plane
wave makes with the negative x-axis in Fig. 1. An elliptic
co-ordinate system having the same origin O and denoted
by u,v,z, is also specified to assist in the analysis. If F
denotes the semi-focal length of the above elliptic cylinder,
then we can write x and y in terms of u and v as x =
F coshucosv and y = Fsinhusinv. Even though a time
dependence of exp(jwt) has been assumed throughout the
paper, it has been suppressed for convenience.

The analysis given below is conducted using elliptic vector
wave functions L, M, and N, defined by L% = Vl/;g,)“
MY =193, and N© = k-1(vxMY)), where p) is the
elliptic scalar wave function, with @ = e denoting the even
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function and @ = o the odd function, Z is the unit vector in
the +z-direction, and k is the wavenumber. The function

5,‘,2 can be written in the form wé‘,{ = Ra,(f)(kF,E)San(kF,n),
where Rag) is the even or odd radial Mathieu function of the i-th
kind and order n of argument é = coshu, and Sa, is the
even or odd angular Mathieu function of order n and
argument n = cosv.

Figure 1: Geometry of the problem.

2.1. Incident and scattered fields

The magnetic fields of the incident and scattered waves can
be expanded, respectively, in terms of Nfﬁl) and Nfﬁz) as [20]

H™ = " ) g NG (e, 6m)

(1)
q=e,o n=0

s = Z Z B NS (c, &) 2)
q=e, o n=0

in which £ = coshu, n = cosv, ¢ = kF with k being the
wavenumber of the medium exterior to the cylinder, 4,4, are
the known incident field expansion coefficients [21], B, are
the unknown scattered field expansion coefficients, and a
bold character denoting a vector. The analogous expansions
for the electric fields can be obtained from (1) and (2), by
replacing H by E and N by —jZM, with Z being the wave
impedance of the medium exterior to the cylinder.

2.2. Transmitted field

With reference to a right-handed 7, g, z coordinate system,
the tensors corresponding to the G-type material’s relative
permittivity/relative permeability can be defined as

cr,n' (r,ro’ 0
{_r = _{r,ro {r,‘rr 0 (3)
0 0 G

T0Z

for { = &,u. The above tensors are generally expressed
relative to either a Cartesian coordinate system designated
by T = x, 0 = y or a circular cylindrical coordinate system
designated by T = p, 0 = ¢. Using (A3)-(A14) in [19], it
can be shown that the elements of (3) in a Cartesian or a



circular cylindrical coordinate system are identical to those
in a corresponding elliptic coordinate system designated by
T = u, 0 = v. Thus, relative to an elliptic coordinate system,
(3) can be written as

Zrl

_ Zr,uu Cr,uv 0 51"2 0
{_r = _Zr,uv gr,uu 0 = [_Zrz le 0 ]
0 0 (r,zz wz 0 0 (T3

In view of (4) for { = ¢, p, the first two Maxwell’s equations
in the region within the G-type material can be written as

VXE = —jkoZofl, - H (5)
VxH = j (ko/Zo)& - E (6)
where k, and Z, are the wavenumber and the wave
impedance in free space. Since the variation of all the field
components in the z-direction (0/0z) is zero, using (5) and

(6), one can express the field components inside the G-type
cylinder as

“)

uvz

gt 1 OH  OH
Y jweoh(eZ, + €3) frigy TE2 Ty Q)
1 OH! OH! (8)

Ef=—————~{&n > — &1

jweoh(er, + €5) ov du

1 d 0

Hf = —— |— (hEL) — — (hE! ]

£ = o 5y (ED) — 5 (RED) ©

where h = Fvcosh? u — cos? v. Substituting for E} and Ef
in (9) from (7) and (8) yields the Helmholtz equation for H.
expressed in elliptic coordinates as
62H ' 92HL
ov? 2 ou?
where

+ cZ,(cosh? u — cos? vV)HE = 0 (10)

Ci12 = \/Co (e + eB)ira/ ert (11)

with ¢y = koF . Referring to the solution of (10), the
magnetic field within the cylinder can be expressed as

HO = ) G NG (e 1)

q=e,o n=0

(12)

in which C,,, are the unknown expansion coefficients. Using
(12) in (7) and (8), the electric field within the cylinder can
thus be written as

Acxrapd >
C L ,
CO(£r1 + 51-2) qn [STZ qn(Clz f 77)

=e,0 n=0

E'=—
(13)

+ &r1 qu (C12' fi 7])]

The involvement of the elliptic vector wave function L in
(13) renders this problem novel and solving of it more
challenging.

3. Analysis

3.1. Imposition of the boundary conditions

Boundary conditions at the elliptic cylinder surface & = &
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require the continuity of the tangential magnetic and electric
fields, given by Hf = HI"® + H$ and E} = EI"° + ES. After
substituting for the different field components via the above
vector wave function expansions expressed in terms of the
radial and angular Mathieu functions and their derivatives,
then multiplying both sides of each of these equations by an
angular Mathieu function of argument c, integrating over v
from 0 to 2m and considering the orthogonality of the
angular Mathieu functions, yields two sets of equations as in
[19], which can be written as

Z an Rq(l) (CIZ' Es)quw (CIZ' C)

[quRq(‘” (6, &) + AgyRa(’ (6, €D Ngy(c)  (14)

kZ
° Z an rl/(‘grl + Srz) Rq(l) (C12' fs)quw (612' C)

kZ .
- Z an r2/(€r1 + grz) Rq(l) (CIZI gs)quw(CIZ' C)

(15)

..and ¢ = e,o0, with § = o when q = e and
(¢, &) in (15) is the derivative of the radial
Mathieu function of the i-th kind and order p with respect to
U, Mg,y (€12, ¢) and Ng,, (c) in (14) and (15) are defined in
[19], and

= [BawRaS (¢, &) + AqwRaS (¢, €N (0)
forw =0,1,2,.

vice versa. Rq(l)'

2m
quw(clz,c)=f 5§, (1, cosv) Sq,,(c,cosv)dv  (16)
0

with SG;,(¢y2, cos v) denoting the derivative of $§,,(c;5, cos v)
with respect to v. Solving (14) and (15) yields the unknown
coefficients By, and Cyp,. The solution for the TM case can
be obtained in a similar manner, using duality.

3.2. Far fields

By calling to mind that the amplitude of the incident
magnetic field is unity, the normalized bistatic width can be
written as described in [20], as

a(¢)

oo 2
= 1D [BenSenle, cos §) + BunSou(e,cos ]| (17)
n=0

in which A = 2m/k. Substituting ¢ = ¢; in (17), yields the
normalized backscattering width.

4. Results and Discussion

As can be seen from (11), the analysis is dependent only on
&1, &, and w5 for the case of TE polarization. From
duality, we can see that for the TM polarization situation,
the analysis is dependent only on fi,q, ly5, and &,3.

Numerical results for G-type elliptic cylinders located in
free space, with the definitions of fi, and/or &, tensors as in
(4), are given as normalized bistatic and backscattering
widths, when a plane wave of TE/TM polarization is
exciting these cylinders. To verify the analysis and the



software used for computations, the normalized bistatic
width has first been calculated for a G-type elliptic cylinder
with an axial ratio of 1.0001 and a normalized semi-major
axis length kga = w/2, along with &, =4, &, =2, and
Ur3 =2, when excited by a TE polarized plane wave
incident along the negative x-axis (i.e. at 0°). In Fig. 2, we
have compared these results, with the analogous results
computed for an equivalent G-type circular cylinder,
obtained using equations (24d) and (25b) of [12], for
scattering angles in the range 0° to 360°. As evident from
Fig. 2, the results obtained for the elliptic cylinder are in
superb agreement with the analogous results for the circular
cylinder, validating the veracity of the software used for
computations and the analysis, for the TE case. A further
proof has been realized by reproducing the results in Figs.
3.3 and 3.4 of [17] associated with elliptic cylinders
composed of weakly lossy gyrotropic-type material, but are
not shown here, for brevity.
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Figure 2: Variation of the normalized bistatic width with the
scattering angle, for a G-type elliptic cylinder of axial ratio
1.0001 and kga =m/2, with e, =4, &, =2, and p,3 =2,
when excited by a TE polarized wave incident at 0°. Circles
show results for an analogous circular cylinder given in [12].

To verify the validity of the analysis and the software used
for calculations for the TM case, we have reproduced the
results presented in Figs. 6, 8, and 10 of [14] for an elliptic
ferrite cylinder of axial ratio a/b = 2 and kya = 1 excited
by a TM polarized plane wave incident at 0°,30°,60°, and
90°, and the results in Table I of [14], using our formulation,
but have presented them in Fig. 3 and Table I, respectively,
only for the ferrite cylinder in [14] that has its material
parameters described by ues/po = 0.6786, py/uy = 03571,
and e, = 10, to save space. W, (¢) and W,(¢) in Table I, are
echo width per wavelength (or normalized bistatic width)
given in equation (27a) of [14], and that given in (17),
respectively.

-60 0
¢ (deg)

ta0 RET) 180
Figure 3: Normalized bistatic width versus scattering angle,
when an elliptic ferrite cylinder of axial ratio 2, kga = 1, as
well as .y = 7/9, 4, = —j5/18, and €,5 = 10, is excited by a
TM polarized plane wave, for 4 distinct angles of incidence.

Table I: Echo width per wavelength of the elliptic ferrite
cylinder of Fig. 3, whose relative tensor permeability is i,
(columns 2 — 3) or its transpose fi’ (columns 5 — 6), for a
few typical directions of incidence ¢; and observation ¢

(9.9) wWi(¢) | W,(P) (9u.9) W, (¢) W, (¢)
(0°,45" [ 0.1378 | 0.13781 | (45°,0°) | 0.13812 | 0.13781
(0°,90° [ 0.7369 | 0.73693 | (90°,0°) | 0.73695 | 0.73693
(45°,0 [ 0.1458 | 0.14538 | (0°,45°) | 0.14539 | 0.14538
(45°,90°) | 0.6226 | 0.62262 | (90°,45%) | 0.62263 | 0.62262
(90°,0 [ 0.7790 | 0.77898 | (0°,90° | 0.77896 | 0.77898
(90°,45%) | 0.6866 | 0.68662 | (45°,90°) | 0.68672 | 0.68662
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According to the reciprocity theorem for scattered waves,
interchanging the directions of incidence and observation,
and transposing the permittivity/permeability tensor, should
retain the observed scattered wave unchanged [22]. We have
used this theorem also, to verify the validity of our analysis
and software. Results in Table I show that this theorem is
satisfied for the cylinder in Fig. 3. When referring to Table I,
one can observe that W,(¢)in columns 3 and 6 obtained
using our formulation are identical, whereas W;(¢) in
columns 2 and 5 obtained in [14] are not, signifying the
better accuracy of our results. Similar results have been
obtained for the TE case also, but are not shown here, for
brevity.

When discussing the results in Fig. 6 of [14] (which are also
given in Fig. 3), it is mentioned in the footnote of [14] page
S, that “The standard separation of variables procedure
cannot be applied to this case because of imperfection of
those properties of Mathieu function which concerns
orthogonality”. However, we would like to point out that we
have been able to calculate the various correlation factors
Mynw(c',¢) and Mgy, (c’,c) in (14) and (15), containing
angular Mathieu functions and their derivatives with respect
to v, of different arguments and orders, successfully, to
overcome the difficulties stated in the footnote of [14] page
5, and solve this type of a problem efficiently in this paper,
using the standard separation of variables procedure.
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Figure 4: Normalized bistatic width against the scattering
angle, when a gyroelectric elliptic cylinder with an axial
ratio 2, kga = 0.4m, with &4 =4, &, = —j2, and p,5; = 2, is
excited by a plane wave of TE polarization, for 4 different
angles of incidence.

Plots of normalized bistatic widths versus scattering angle
are shown in Fig. 4 for a gyroelectric elliptic cylinder of an
axial ratio of 2 and kga = 0.4m, together with ., =4,
&, = —j2, and p,5 = 2, when this cylinder is excited by a TE
polarized wave which is incident at 0°, 30°, 60°, and 90°.
For all of the incident angles considered, the patterns
resemble each other and the scattering angle at which the
maximum normalized bistatic width occurs steadily
increases with the incident angle. Also, the magnitude of the
peak normalized bistatic width steadily decreases as the
incident angle increases.
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Figure 5: Variation of the normalized bistatic width with the
scattering angle, when a gyroelectric elliptic cylinder having
an axial ratio of 2 and kya = 0.47, as well as g4 = 4, 3 = 2,
and g,, = —j0,—j1,—j2,—j3, is excited by a plane wave of
TE polarization, incident at 0°.

Figure 5 shows how the normalized bistatic width for a
gyroelectric elliptic cylinder of axial ratio 2, kga = 0.4,
with ., = 4, u,5 = 2, and for &, = 0,—j1,—j2,—j3, changes
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with the scattering angle, when excited by a TE polarized
plane wave incident along the negative x-axis. In Fig. 5,
each of the four plots has its maximum at ¢p = 180°, and this
magnitude (which is the normalized forward scattering
width) is largest for €,, = 0 depicting an uniaxial anisotropic
elliptic cylinder, when compared with the analogous
magnitudes for the other 3 values of €., which characterize
3 gyroelectric cylinders. Also, as &,, changes from —j0 to
—j3, the normalized bistatic width decreases virtually for all
scattering angles, the largest decrease being at ¢ = 180°. Out
of the 4 curves, the one for ¢,, = —j0 is exactly symmetrical
about ¢ = 180°, while the others are only more or less so.
Results provided in Fig. 6 are for elliptic cylinders having
identical dimensions and &4, fi,53 values as for the cylinders
considered in Fig. 5, but with ¢, =0,1,2,3, when a TE
polarized plane wave incident at 0° excites them. In this case
we observe the symmetry of the curve corresponding to
& = 0 characterizing a uniaxial anisotropic cylinder, with
its peak at ¢ = 180°, and the asymmetry of the other 3 curves
for the G-type cylinders, which is more prominent as ¢,,
changes from 1.0 to 3.0, with the peaks of these 3 curves
occurring at scattering angles slightly less than 180°. Also,
the maximum normalized bistatic width magnitude steadily
rises with .

S ST s |/ M S0

180 240 300

¢ (deg)
Figure 6: Normalized bistatic width versus scattering angle,
when a G-type elliptic cylinder with an axial ratio of 2,
koa = 0.47, as well ase, =4, u,5 =2,ande,, =0,1,2,3, is
excited by a plane wave of TE polarization incident at 0°.

Figure 7 demonstrates the variation of the normalized back-
scattering widths against the angle of incidence of a plane
wave of TE polarization, for 4 gyroelectric elliptic cylinders
of axial ratio 2 and kya = 0.4, 0.57, 0.6, 0.7m, with
&1 =4, &5 =—j2, and 3 = 2. All plots are symmetric
about ¢; = 90° as expected, due to the symmetrical nature
of the object, and the magnitude of the highest normalized
backscattering width increases with the size of the cylinder.
Also, the curves become more oscillatory as the cylinder
becomes larger.
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Figure 7: Variation of the normalized backscattering width
with the incident angle for gyroelectric elliptic cylinders of
axial ratio 2 and 4 different values of kya, for &, =4,
&9 = —j2, U3 = 2, when excited via a TE polarized plane
wave.

5. Conclusion

Using the separation of variables procedure, an exact series
solution to the problem of scattering from a plane wave
excited G-type elliptic cylinder has been obtained. Results
have been provided as normalized scattering cross sections
for cylinders of various G-type materials and sizes, to
demonstrate how the type of gyrotropic material and the size
of the cylinder affects scattering from the cylinder. The
scattered field is a function of i or € tensor of the G-type
substance. Since this tensor for a gyroelectric/gyromagnetic
material depends on the applied magnetic dc field, scattering
by this type of an object can be controlled using this field.
Results provided in Section 4 can be used in the form of
benchmarks, to confirm the accuracy of similar results
which can be obtained via other methods such as numerical
or approximate techniques. The solution has been made
efficient by expressing the correlation factors which appear
in (14) and (15), in terms of a simple series.
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