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Abstract
The problem of detecting the breath activities of a human
subject is addressed. A CW signal is used to probe the scene
and the MUSIC algorithm is exploited to detect frequency
doppler modulation introduced by chest movements. For
this particular measurement configuration, the correlation
matrix results rank deficient. In order to restore the rank,
two decorrelation techniques are compared by exploiting
numerical data.

1. Introduction
The contactless heartbeat and respiration detection of a hu-
man subject via radar sensing is a problem that is relevant
in medical as well as security contexts (e.g. for apnea syn-
drome and baby monitor)[1] or for detecting human be-
ings trapped under snow or debris after avalanche or quake
events [2].

The underlying principle upon which those methods
are based is the Doppler shift. More in detail, once a hu-
man body is exposed to continuous-wave (CW) microwave
fields, the arising reflected signals turn out to be modulated
in frequency (or equivalently in phase) due to body move-
ments. Now, if the subject is at rest for some reasons, the
only relevant movement is the one due to chest displace-
ment owing to the breathing and heart beating. These move-
ments are essentially nearly periodic and hence can be de-
tected starting from the reflected field by adopting a suitable
demodulation/filtering scheme.

Vital signs’ detection is a complex task due to many im-
pairing factors. Leakage between the TX and RX channels,
null point problem, stability of local oscillator and strong
clutter coming from environment are among the problems
to be faced [3].

Most of breath frequency estimation approaches are
based on Fourier transform [4] algorithms which are of-
ten combined with proper demodulation schemes in order
to avoid some of the drawbacks mentioned above [5].

In this paper, in order to detect the Doppler shift, a MU-
SIC [6] based algorithm is adopted. The key idea is to
reach a particular spectral decomposition of the data corre-
lation matrix into the so-called signal and noise subspaces.
In particular, the noise subspace is employed to build the
pseudospectrum which ”peaks”, in the unknown space, just
in correspondence of the looked parameters.

Here, the MUSIC algorithm is properly tailored to take
into account that for the case at hand the received signal is

Figure 1: Scattering scenario: a human being is probed by
a CW radio signal.

not a linear combination of complex exponentials. More-
over, as the signals representing the vital signs are corre-
lated, a decorrelation stage has to be run before detection.
Otherwise, the achievable performance rapidly decays so to
cause missing detection.

In order to restore the rank of the correlation ma-
trix, two decorrelation methods are compared: the spatial
smoothing [7]-[8] and the Toeplitz based method [9].

Numerical examples are included in order to show how
two methods work.

2. Mathematic model

Consider the scattering experiment schematically described
in Figure 1. A human being is illuminated by the transmit-
ted signal T (t). Then the reflected modulated signal R(t)
arises and is collected in the receiving stage.

Neglecting amplitude variations, the transmitted signal
T (t) under CW regime can be expressed as

T (t) = cos (2πft+ φ(t) ) (1)

where t is elapsed time, f and φ(t) are the frequency and
the phase noise of the local oscillator, respectively.

This signal impinges on a human target located at a
nominal distance d0. The chest introduces a time-varying
displacement denote by x(t). Accordingly, after the trans-
mitted signal propagates back and forth for a total dis-
tance (between the transmitter and the receiver) equal to
2d(t) = 2d0 + 2x(t), the received signal is collected; its



expression is given by

R(t) ≈ cos

[
2πft− 4π(d0 + x(t) )

λ
+ φ

(
t− 2d0

c

)]
(2)

where c is the propagation velocity (the speed of light) and
λ is the wavelength in air, which equals c/f .

Chest movements are of course embedded in the phase
term related to x(t). Therefore, this is the factor that has to
be single out in order to detect (if any) and possibly charac-
terize the breath activities. Accordingly, the received signal
is processed by the receiving channel and a MUSIC-based
algorithm as depicted in Figure 2.

Note that a quadrature demodulation scheme is ex-
ploited in order to avoid the null point problem. Hence,
the signal to be processed is given by

B(t) = BI(t) + BQ(t) = exp

(

4πx(t)

λ
+ θ(t)

)
(3)

where θ(t) = 4πd0
λ + ∆φ(t) and ∆φ(t) is the residual local

oscillator phase noise, which usually can be neglected [10].
As the spatial displacement x(t) is very small, it results

that

B(t) ≈ exp (θ)

(
1 + j

4πx(t)

λ

)
Actually, besides the signal in Equation (3), clutter con-

tributions are always present, specially when there is an ob-
stacle (i.e., a wall, etc.) between the person and the antenna
system.

Therefore, the actual demodulated signal is

B(t) = C + exp (θ)

(
1 + j

4πx(t)

λ

)
(4)

where C stays for the clutter and is not function of time t.
Note that the clutter introduces a static contribution (af-

ter demodulation) that can be eliminated by filtering out the
continuous component. This filtered signal is denoted as

B̃(t) = exp (θ)j
4πx(t)

λ
(5)

and represents the signal that is actually passed to the MU-
SIC stage.

From the theory of Fourier series, any time-varying pe-
riodic displacement x(t) can be viewed as the combina-
tion of a series of single-tone signals. Therefore, for the
ease of analysis and without loss of generality, it is as-
sumed that the chest movement x(t) is described as the
sum of xh(t) = Ah cos (2πfht), due to heartbeat, and
xr(t) = Ar cos (2πfrt) due to respiration.

3. MUltiple SIgnal Classification (MUSIC)
The MUSIC algorithm is a powerful method to estimate
frequencies embedded in a signal.

The standard formulation applies to a linear combina-
tion of complex exponentials. Therefore, here, it is need to
adapt this method to the problem at hand.

Figure 2: Schematic of the receiving stage.

Assume that the reflected signal is collected in corre-
spondence of L instants of time tn so that tn+1 − tn = ∆t
is the sampling interval. Say b̃ the data column vector cor-
responding to the time vector t. Then, Equation (5) can be
recast in a matrix form as

b̃ = Ca = [cos(2πtf1) . . . cos(2πtfd)]a (6)

where d is the number of harmonics and a the coefficient
column ai = exp(θ)j 4πAi

λ (in our case d = 2 and A1 =
Ah and A2 = Ar).

In order to build the pseudospectrum, the data
space is factorized in the so-called signal and noise
subspaces. To this end, it is noted that the ma-
trix C can be expressed as C = E− + E+ where
E− = [exp(−j2πtf1) . . . exp(−j2πtfd)] and E+ =
[exp(j2πtf1) . . . exp(j2πtfd)].

Accordingly, the signal subspace corresponds
to that range of C, i.e., R(C), which in turn
R(C) = R(E−) ∪ R(E+). Therefore, R(C) =
span{exp(−j2πtf1), . . . , exp(−j2πtfd), exp(j2πtf1),
. . . , exp(j2πtfd)}. The noise subspace is orthogonal to
bothR(E−) andR(E+). Hence, also for the case at hand,
the pseudospectrum can be achieved by considering as
steering vector only exponential like vectors (as in usual
MUSIC).

Formally, the pseudospectrum is as follows

Φ(f) =
1

‖P[exp (j2πft)]‖2
(7)

where P is the projection operator onto the noise subspace
which depends on the adopted decorrelation algorithm.

4. Decorrelation methods
For the particular scenario addressed herein, it is obvious
that the correlation matrix corresponding to (6) is rank defi-
cient. So the rank need to be restored by some decorrelation
techniques. In this section two different algorithms are de-
scribed.

4.1. Spatial Smoothing

In Spatial Smoothing technique (SS) the data, consisting
of L time samples, is separated in Md = L − N + 1
overlapped sub-arrays composed by N samples, so that
b̃k = B̃(tk, . . . , tk+N ), with k ∈ [1, 2, . . . ,Md], Md
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Figure 3: Synthetic data with acquisition time equal to 10s. Pseudospectrum comparison between SS (red line) and Toeplitz
(black line) methods by varying the number of samples and the decorrelation index: (a) L = 270, Md = 53, (b) L = 270,
Md = L/2, (c) L = 270, Md = 153, (d) L = 80, Md = 21, (e)L = 80, Md = L/2, (f) L = 80, Md = 61

Figure 4: Synthetic data by varying the acquisition time and the decorrelation index. Pseudospectrum comparison between SS
(red line) and Toeplitz (black line): (a) ∆tL = 5s, Md = 51, (b) ∆tL = 5s, Md = L/2 = 100, (c) ∆tL = 5s, Md = 151,
(d) ∆tL = 3s, Md = 11, (e)∆tL = 3s, Md = L/2 = 60, (f) ∆tL = 3s, Md = 101
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being the decorrelation index. Accordingly, the correlation
matrix is estimated as

SSS =
1

Md

Md∑
k=1

rk (8)

where

rk = b̃kb̃
H
k = DHkD

H (9)

is the correlation matrix calculated for the k-th sub-array,
D = [cos(2πtifh), cos(2πtfr), sin(2πtfh),
sin(2πtfr)] and (·)H denotes the complex conjugate trans-
pose. Hk is a 4 × 4 matrix. If the smoothing is properly
achieved then the rank of

∑Md

k=1 Hk should be 4.
In order to identify the signal and noise subspace, the

Singular Value Decomposition (SVD) is applied to SSS . By
checking singular values, the noise subspace is defined as
the set of singular values that get small with respect to the
first one. In particular, note that for the case at hand, due
to particular form of the matrix C, the number of the rele-
vant singular values (i.e., the signal subspace dimension) is
twice as the number of frequencies. Finally, the projection
operator P picks the corresponding left singular function
of SSS in order to build the pseudospectrum. Note that af-
ter the smoothing, data is as it were collected only over the
instants (7), with t = t(1, . . . , N).

4.2. Toeplitz based algorithm

This method is based on building up Toeplitz matrices for
each row of the correlation matrix r = b̃b̃H [9]. Its in-
troduction is motivated by the need to avoid reducing the
time interval used while constructing the pseudospectrum
that occurs in the Spatial Smoothing procedure.

The l-th Toeplitz matrix is defined as

Rl =


r
(
l, L2
)

r
(
l, L2 + 1

)
· · · r(l, L− 1)

r
(
l, L2 − 1

)
r
(
l, L2
)

· · · r(l, L− 2)
... · · ·

. . .
...

r(l, 1) r(l, 2) · · · r
(
l, L2
)

 =

= GSlG
H (10)

where G = [g(fr) g∗(fr) g(fh) g∗(fh)]
is the steering matrix where g(fd) =[
exp(j2πtL/2fd), exp(j2πtL/2−1fd), · · · , exp(j2πt1fd)

]T
(d = r, h) and Sl is 4 × 4 diagonal matrix that can be
shown to be full rank.

Then the SVD factorization is applied to the following
matrix

ST =

L/2∑
l=1

RH
l Rl (11)

with t = t(1, · · · , L/2) in (7).
It is noted that also this method entails a reduction of

the time interval. But in this case only half the time interval
is lost to achieve decorrelation.

It is interesting to compare both methods. This is the
main aim of this paper and will be achieved numerically
in the next section. However, we find interesting to show
some analytical arguments we found that establish a clear
link between them. More in detail, comparing the i, j-th
entry of SS correlation matrix

{SSS}ij =
1

Md

Md∑
k=1

bi+k−1b
∗
j+k−1 (12)

and that of Toeplitz correlation matrix

{ST }ij = F

L/2∑
k=1

bi+k−1b
∗
j+k−1 (13)

with F =
∑L/2
k=1 |bk|2, it is easy to note that, unless

unessential constant, the entries of both matrices are the
same when Md = L/2. This means that for Md = L/2
the two methods are practically the same. Also, this solves
the problem connected to the choice of Md in the SS algo-
rithm. Indeed, by choosing Md = L/2 one is sure that SS
fully recovers the rank.

5. Numerical Results
In this section the analysis is conducted with numerical
data. The comparison between the two decorrelation meth-
ods is carried out in terms of dynamic range and resolution
and with respect to the signal to noise ratio (SNR), number
of time samples and time interval duration.

The demodulated signal taken into account is

b̃ = Arcos(2πfrt) +Ahcos(2πfht) + n(t) (14)

with Ar = 1.5mm, Ah = 0.001mm , fr = 0.3Hz and
fh = 1.2Hz, n(t) denotes the noise which is assumed to
be AWGN.

In all the following examples, the pseudospectra are
plotted in log-scale: the blue line indicates the MU-
SIC pseudospectrum without decorrelation step, instead,
red and black lines show the pseudospectra with SS and
Toeplitz decorrelation methods, respectively.

The reflected signal is collected at most over L = 400
samples for an interval of time of 10s.

As first example, noiseless data are considered while
the number of samples is reduced at 270 (Figure 3(a)-(c))
and then at 80 (Figure 3(d)-(e)). The analysis is conducted
by varying the correlation index Md in the SS method (red
line) in order to appreciate the differences with respect to
Toeplitz technique (black line).

As can be noted, in panel (b) and (e), when Md is cho-
sen equal to L/2, the performance are the same in perfect
agreement with the discussion reported above. On the other
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Figure 5: Synthetic data with L∆t = 10s and L = 400. Comparing SS (red line) and Toeplitz (black line) methods by varying
the SNR level and the correlation index: (a) SNR = 20dB, Md = 101, (b) SNR = 20dB, Md = L/2, (c) SNR = 20dB,
Md = 301, (d) SNR = 10dB, Md = 101, (e) SNR = 10dB, Md = L/2, (f) SNR = 10dB, Md = 301, (g) SNR = 5dB,
Md = 101, (h) SNR = 5dB, Md = L/2, (i) SNR = 5dB, Md = 301
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hand, when Md = 53 < L/2 (panel (a), (d)) the SS decor-
relation performs better than the Toeplitz method in terms
of resolution, whereas when Md = 153 > L/2 (panel (c),
(f)) the opposite is true. This clearly occurs because Md

actually dictates the effective length of the time interval in-
volved in the pseudospectrum formation.

In Figure 4 the role of time interval is studied keeping
fixed the sampling step. In detail, in panels (a)-(c) the ac-
quisition time is reduced to 5 seconds (L = 200) whereas
in panels (d)-(f) to 3 seconds (L = 120). Of course, as the
overall acquisition time has been reduced the pseudospectra
tend to enlarge. Furthermore, the same trade as above as far
as Md is concerned is practically observed. However, now,
when Md < L/2 (here Md = 11, see Figure 4(d)) the SS
also exhibits a loss in the dynamic range. This is because in
this case the smoothing procedure does not work perfectly.
Whereas, when Md > L/2 (Md = 101, see Figure 4(f)),
the SS shows a dramatic loss of resolution.

Finally, we turn to address the effect of noise on data.
In Figure 5 the results retuned by the two methods at

hand are displayed by varying the Signal to Noise Ratio
(SNR). In particular, in the panels (a)-(c) SNR is equal to
20dB, in (d)-(f) the SNR = 10dB and in (g)-(i) SNR =
5dB.

As expected, the presence of noise does not allow to
detect the heartbeat harmonic due to its very low ampli-
tude Ah. Also, both the methods appears relatively stable
against noise, even though the dynamic range reduces as
compared to the noiseless case. Finally, it is noted that
whether Md < L/2 or Md > L/2 the SS returns lower
or higher (than the Toeplitz method) pseudospectra. This
can be explained that when Md > L/2 Equation (8) entails
a more ”strong” averaging that tends to reduce the noise.
However, the cost to pay is a loss of resolution.

6. Conclusions
In this paper, two different decorrelation methods for vi-
tal sign detection have been compared. In particular, the
analysis has been conducted in terms of dynamic range and
resolution for Spatial Smoothing and Toeplitz methods.

It has been demonstrated that the SS and Toeplitz tech-
niques show the same performance with a suitable choice
of decorrelation index, in particular when it is equal to half
of number of the available samples (L/2).

The performance of SS method depends by the choice
of decorrelation index. Indeed, the results have shown that
whenMd < L/2 the pseudospetrum have a loss of dynamic
range and an increasing of resolution and forMd > L/2 the
opposite holds true.
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