
ADVANCED ELECTROMAGNETICS, VOL. 5, NO. 2, SEPTEMBER 2016

Metric entropy in linear inverse scattering

Maria Antonia Maisto, Raffaele Solimene, Rocco Pierri

Dipartimento di Ingegneria Industriale e dell’Informazione,
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Abstract

The role of multiple views and/or multiple frequencies
on the achievable performance in linear inverse scattering
problems is addressed. To this end, the impact of views and
frequencies on the Kolmogorov entropy measure is studied.
This way the metric information that can be conveyed back
from data to the unknown can be estimated. For the sake
of simplicity, the study deals with strip scatterers and the
cases of discrete angles of incidence and/or frequencies.

1. Introduction
Linear inverse electromagnetic scattering problems amount
to inverting an integral equation of the first kind for an
object function which is related to the scatterer’s features
like the shape, the support, the dielectric contrast, etc..
[1]. As is well known, this problem is ill-posed in the
sense of Hadamard [2]. Indeed, since the kernel function
is a square integrable function, the integral operator is of
Hilbert-Schimdt class and hence compact [3]. This en-
tails that the inverse operator is not continuous and in order
to obtain meaningful solutions some regularisation method
must be employed [4]. Therefore, while in principle an ob-
ject can be perfectly reconstructed when the operator is in-
jective, actually due to the noise and uncertainties one must
content of approximate solutions resulting from a trade-off
between accuracy and stability imposed by the adopted reg-
ularisation scheme [5].

As known, the achievable performance in the recon-
struction can be improved by probing the scattering scene
at different angles of incidence (multi-view configuration)
or at different frequencies (multi-frequency configuration).
When only view or frequency diversity is exploited the cor-
responding operators are denoted as Av and Af .

In order to work out the impact of the diversities on the
related scattering/inverse scattering problems, the mathe-
matical features of the relevant scattering operator should
be analysed. To accomplish such a task the singular value
decomposition (SVD) of the involved operator is a natural
and fundamental tool . Indeed, determining/estimating the
singular value behaviour allows to foresee the number of
significant singular values (i.e., the so-called number of de-
grees of freedom, NDF [7], or the essential dimension [8])
and hence to estimate the dimension of the space within
which the unknown will be stably reconstructed [6]. Also,
knowing the singular values permits to estimate the infor-

mation that can be conveyed back from data to the unknown
[9].

Of course, a criterion for identifying the significant sin-
gular values must be given. It is clear that this question
belongs to the more general realm of regularisation theory.
Here, we implicitly adopt a regularisation method that is
based on a spectral cut-off strategy [10]. However, unless
the singular values exhibit a step-like behaviour (and this
is not the case herein) the choice of the cut-off (truncation)
threshold is not so obvious. Indeed, some a priori informa-
tion is usually required. Here, we follow the same philos-
ophy as in [11], therefore it is assumed that bounds about
the norm of the noise as well as of the solution are known.
Accordingly, we have that

‖Aiχ− ẼS‖ ≤ ε, ‖χ‖ ≤ E (1)

where i ∈ (v, f) and ẼS is in general the noisy scat-
tered field. Of course, it is furthrmore assumed that the
set of object functions χ for which both constraints hold
true is not empty. By recalling that Ai are compact oper-
ators the choice of the truncation threshold can be pursued
within the framework of the topological information theory
in terms of the ε-entropyHε and the maximum number of ε-
distinguishable messagesMε that can be conveyed back on
the unknown space. In particular, the ensemble composed
by the maximum number of distinguishable messages that
can be sent back to recover an approximation of the un-
known solution, constitutes the backward information flow.
In [11], it has been shown that the cut-off threshold must be
chosen as Nε = max{n > 0 : σn(Ai) ≥ ε/E}, σn(Ai)
being the singular values. By further assuming E = 1, the
following estimates have been derived

Hiε ≥
Nε∑
n=0

log2 σn(Ai)/ε and Miε ≥ 2Hiε (2)

Equation (2) makes it evident that not only the num-
ber of singular values but also their magnitudes are impor-
tant. In [12], the focus was addressed on how the diversities
change both these attributes of the singular value behaviour.
In particular, mathematical arguments that allow to analyt-
ically estimate the singular values were developed. Here,
the aim is to exploit the results obtained there in order to
derive an analytical expression of the right side of equation
(2) in terms of the parameters of the configurations . That



Figure 1: A pictorial view of the scattering configuration
considered in this paper is sketched.

is, how the ε-entropy changes by varying of the scattering
parameters is addressed.

In order to tackle the problem under the simplest con-
ditions, a canonical configuration is considered. In more
detail, the scattering domain is assumed to be a strip illu-
minated by plane waves whereas the scattered field is as-
sumed to be collected in the far zone. Invariance is assumed
along the plane wave polarisation direction which in turn is
orthogonal to the strip. Accordingly, the study is devel-
oped for the two-dimensional scalar configuration sketched
in Figure 1.

2. View diversity
Consider the geometry sketched in figure 1. Let I = [−a; a]
be the scattering domain which is assumed to lay along the
x-axis and Ωo = [−umax;umax] the observation angular
corner with uo = sin θo ∈ Ωo. Moreover, thanks to view
diversity the scattered field is collected for different inci-
dence directions uv = sin θv ∈ Ωv with Ωv ⊆ Ωo. Let
us assume that Ωv be a discrete subset of Ωo. In particular,
say M the number of views which are taken by uniformly
sampling Ωo.

The pertinent scattering operator then writes as

Av : χ(x) ∈ L2
I −→ ES(uo, uv) = Avχ ∈ L2

(Ωo×Ωv)

(3)
with

Avχ =

∫ a

−a
exp [jk0(uo − uv)x]χ(x)dx

k0 being the wavenumber at single frequency adopted in the
scattering experiment.

In order to estimate the singular system of equation (3),
it is convenient to study the eigenspectrum of the associated
operator A†vAv , with A†v being the adjoint operator of Av .

In this case it results that

A†vAv =
M∑
m=1

2π

k0
PIBΩmPI (4)

Figure 2: The case of three angles of incidence Ωi =
{−umax, 0, umax}. The top panel gives a pictorial view of
the frequency bands which now overlap. The bottom panel
shows how the spectrum of the kernel can be still given in
terms of disjoint bands.

where PI and BΩ denote the spatial limiting and the
band limiting projectors over the spatial I and frequency
Ωm intervals, respectively and Ωm = [−k0umax +
k0uim, k0umax + k0uim]. The operator A†vAv can be con-
veniently rearranged as (see Figure 2 for a graphical expla-
nation)

A†vAv =
M−1∑
m=1

2π(M −m)

k0
[PIBΩ̃m

PI +PIBΩ̂m
PI ] (5)

where Ω̃m = [(m− 1)∆,m∆] and Ω̂m = [−m∆,−(m−
1)∆], with ∆ = 2k0umax

M−1 . In this way, Ω̃m and Ω̂m for each
m ∈ {1, ...,M − 1} are disjoint bands.
Let be λn[A†vAv] the eigenvalues of A†vAv . They are not
known in closed form. However, as shown in [13], if the
spatial-bandwidth products of each single operator in equa-
tion (5) (cM = a∆/2 ) are greater than 4, the eigenval-
ues of A†vAv can be very well approximated by the union
of those associated to each single operator, the latter being
extensively studied in literature [14]-[15]. Therefore, the
eigenvalues of λn[A†vAv] can be given in terms of those as-
sociated to the prolate spheroidal wave-functions (λl(cM ))
as {

λn[A†vAv]
}∞
n=0
'

M−1⋃
m=1

2π(M −m)

k0
[{λl(cM )}∞l=0 ∪ {λh(cM )}∞h=0] (6)
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Figure 3: Singular value behavior for six angles of inci-
dence, Ωo = [−1, 1] and a = 20π/k0. As can be seen, the
foreseen five steps are well evident.

The same holds also true for the singular values of the
scattering operator ,denoted by σn[Av], that are the square
root of such eigenvalues. In particular, as the behaviour of
[{λl(cM )}∞l=0 ∪ {λh(cM )}∞h=0] is a step-like one with the
knee at the index [4cM/π], the singular values ofAv exhibit
M − 1 steps where the first knee occurs at N1 = [4cM/π].
The successive m-th step is comprised between the in-
dexes Nm = N1 +

∑m−2
l=0 l[4cM/π] and Nm + [4cM/π],

for m ∈ {2, 3, · · · ,M − 1}. Moreover, on each step
the singular values are equal to

√
(M −m)2π/k0 with

m ∈ {1, 2, · · · ,M−1}. An example confirming this result
is reported in figure 3.

By exploiting the results obtained for the singular val-
ues of Av , an upper bound of the ε-entropy in equation (2)
can be analytically obtained. Assume that the bound about
the norm of the noise ε is known. Hence, the cut-off thresh-
old must be chosen as Nε = max{n > 0 : σn(Av) ≥ ε}.
As the σn(Av) exhibit a M − 1 steps behaviour, estimating
Nε entails evaluating how many steps are above ε. Accord-
ingly let m̃ε = max{m : (M − m)2π/k0 ≥ ε2} be the
number of steps above ε, then

Hvε ≥
4cM
π

m̃ε∑
m=1

log2

√
(M −m)(2π/k0)

ε
M ≥ 2

(7)
By substituting cM = ak0umax/(M−1), it can be obtained
an estimate of the ε-entropy in terms of the parameter of
scattering

Hvε ≥
4ak0umax
(M − 1)π

m̃ε∑
m=1

log2

√
(M −m)(2π/k0)

ε
M ≥ 2

(8)
In figure 4, a comparison between the metric entropy evalu-
ated from the exact singular values and the one estimated by
the equation (8). In particular, it can be appreciated how the
estimation given by the equation (8) works very well. Let
Hε be the ε-entropy for the single view /single frequency
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Figure 4: A comparison between the metric entropy evalu-
ated from the exact singular values and the one estimated by
the equations (8) for the view diversity when I = [−10, 10]
m,Ωo = [−1; 1] and M = 3.

configuration. Its expression in terms of the parameter of
the configuration is

Hε ≥
2ak0umax

π
log2

√
2π/k0

ε
(9)

As expected, to collect the field for different angles
of illumination entails an increasing on ”the information”
that can be conveyed back from data to the unknown with
respect to the single view case and this improvement, if
ε2 < 2π/k0, can be quantified as

Hvε/Hε ≥

 2 M = 2

2[1 + 1
(M−1)

log2

√
(M−1)!

log2

√
2π/k0
ε

] M > 2

(10)
In [12], it has been shown that in order to obtain the

maximum number of measures ’linearly independent ’ two
extremal views (i.e., having angles corresponding to the
edges of Ωo) are sufficient. Accordingly, multiple views
can be considered redundant. From the equation (10), it
can be concluded that also the redundant views yield an in-
creasing on ”the information” that can be conveyed back
from data to the unknown. In fact, the redundancies ”am-
plify” some spectral components of the data against the
noise. This suggests that the optimal strategy of data col-
lection would be to illuminate the object by two extremal
views and probing the scene more times for each view. In
this way a maximisation of the NDF and of the ε-entropy
is obtained, contemporaneously. When ε2 > 2π/k0, Hε is
zero and only collecting the data for M > 2 views allows
to reconstruct the unknown.

3. Frequency diversity
In this section, the role of frequency diversity is studied.
Therefore, let us assume to probe the field by varying the
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frequency of the incident waves within the discrete interval
Ωk = {kmin, kmax}. In this case the scattering operator
particularises as

Af : χ(x) ∈ L2
I −→ ES(uo, k) ∈ L2

(Ωo×Ωk) (11)

Afχ =

∫ a

−a
exp (jkuox)χ(x)dx

where now uo = sin θo and ui has been assumed equal to
zero (normal incidence).

Let Ωk consists of M frequencies km taken uniformly
between [kmin, kmax] at a step of ∆k = (kmax −
kmin)/(M − 1). Accordingly, it results that

A†fAf =
M∑
m=1

2π

km
PIBΩmPI (12)

where now Ωm = [−kmumax, kmumax]. For the sake of
simplicity, from now on, we assume that umax = 1 so that
Ωm = [−km, km].

The operator A†fAf can be conveniently rearranged as
(see figure 5 for a graphical explanation)

A†fAf =
M∑
m=1

2π

km
PIBΩ1

PI+

+
M∑
m=2

M∑
l=m

2π

kl

(
PIBΩ̃m

PI + PIBΩ̂m
PI
)

(13)

where Ω̃m = [kmin+(m−1)∆k, kmin+m∆k] and Ω̂m =
[−kmin −m∆k,−kmin − (m− 1)∆k].

Now, A†fAf is in a suitable form to apply the results
reported in [12]. Hence, it has been shown that as long as
cM = a∆k/2 � 1 and akmin � 1 the λn[A†fAf ] exhibit
M steps with knees occurring atNm = [2kmina/π]+(m−
1)[2a∆k/π]. Moreover, on the m-th step the numerical
value is

∑M
l=m 2π/kl, with kl represents the lth frequency

in Ωk . An example confirming this result is reported in
figure 6.

The following analytical estimation for the ε-entropy
Hfε follows

Hfε ≥
2kmina

π
log2

√∑M
l=1(2π/kl)

ε
+

+
2(kmax − kmin)a

π(M − 1)

m̂ε∑
m=2

log2

√∑M
l=m(2π/kl)

ε
(14)

where m̂ε = max{m :
∑M
l=m(2π/kl) ≥ ε2}. Also here,

this estimation works very well (see figure 7).
As expected, collecting data for different frequencies

below kmax entails an increasing of the information as
compared to the single frequency k0 = kmax case. This
improvement, if ε2 < 2π/kmax, is estimated as

Figure 5: Illustration of how to rearrange the frequency
bands to obtain (13).
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Figure 6: Singular value behavior of Af for the case of
M = 3 frequencies k0min, 1.5k0min and 2k0min, k0min =
2πm−1 and a = 20π/k0min.

Hfε/Hε ≥ 1+
(kmax − kmin)

(M − 1)kmax

log2

∏M−1
m=2

√
1 +

∑M−1
l=m

kmax
kl

log2

√
2π/kmax
ε

+

+
kmin
kmax

log2

√∑M
l=1

kmax
kl

log2

√
2π/kmax
ε

(15)

In [12], it has been concluded that while the maximum
number of measurements ’linearly independent ’ depends
on the highest adopted frequency kmax, by using more fre-
quencies (lower than the highest one) shapes the singular
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Figure 7: A comparison between the metric entropy esti-
mated by the exact singular values and the one estimated
by the equation (14) for the frequency diversity when I =
[−10, 10] m,Ωo = [−1; 1], M = 3 and Ωk = {π, 6π}m−1

.

value behaviour so that it resemble a staircase. From equa-
tion (14), it can be observed that the presence of multiple
frequencies yield an increasing of the ε-entropy and this im-
provement depends on the parameters of the configuration.
Also here, an optimal collecting strategy of the field can be
reached by illuminating the object at the frequency kmax
and probing the scene more time at the same frequency. In
this way a maximisation of the NDF and of the ε-entropy is
obtained, contemporaneously.

4. Comparison between the diversities
The expressions obtained in the previous sections allow to
obtain an estimation of the ε-entropy in terms of the scat-
tering parameters. In this section, such results are used to
compare the different configurations considered herein.

Assume that the bound about the norm of the noise ε is
known and equal to ε = 0.21 and that the observation do-
main is Ωo = [−1, 1]. For the single frequency case (which
means for both the single-view /single-frequency and multi-
view/single-frequency configurations) the object is illumi-
nated at the spatial frequency k0 = kmax.

Equation (9) normalised with respect to a becomes

H̄ε ≥
2kmax
π

log2

√
2π/kmax
ε

(16)

where H̄ε denotes the normalised ε-entropy.
When the multi-view configuration is considered, the

scattering scene is probed at M different angles of inci-
dence. Accordingly, equation (8) normalised to a becomes

H̄vε ≥
4kmax

(M − 1)π

M−1∑
m=1

log2

√
(M −m)(2π/kmax)

ε
M ≥ 2

(17)
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Figure 8: A comparison between the normalized upper
bounds of the ε-entropy associated to the three different
configurations, as kmax varies in the interval [10, 100]m−1,
whenM = 2. The blue line refers to single view /single fre-
quency configuration, the red and green line to multi-view
and multi-frequency configuration, respectively .

From equation (17) it can be observed that in order to
obtain better performance in terms of ε-entropy only kmax
and M play a role. For multi-frequency configuration only
normal incidence is considered. In this case, also kmin en-
ters and affects the ’information’. Equation (14) normalised
is

H̄fε ≥
2kmin
π

log2

√∑M
l=1(2π/kl)

ε
+

+
2(kmax − kmin)

π(M − 1)

M∑
m=2

log2

√∑M
l=m(2π/kl)

ε
(18)

In order to perform the comparison let us assume
kmin = 2π m−1. This way, the different configurations
can be compared by varying kmax and M only.

In figures 8 and 9, the normalised upper bound of the
ε-entropy is shown as a function of kmax for each configu-
ration, whenM = 2 andM = 3, respectively. In particular,
the blue line is associated to single view/ single frequency
configuration (that is when no diversities are employed),
while the red an the green lines are associated to the multi-
view and multi-frequency configurations, respectively.

As expected, there is a gain in terms of ε-entropy
obtained by exploiting the diversities with respect to the
single-frequency/single-view configuration. This is always
true as the scattering parameters vary .

Furthermore, as can be seen, the multi-view configura-
tion allows to obtain better results than the multi-frequency
one and this improvement increases as more views or fre-
quencies are introduced.

However, this cannot allows to state that the multi-view
configuration is the optimal one because in general the ε-
entropy depends on the chosen kmin as well. Indeed, for
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Figure 9: A comparison between the normalized upper
bounds of the ε-entropy associated to the three different
configurations ,as kmax varies in the interval [10, 100]m−1,
whenM = 3. The blue line refers to single view /single fre-
quency configuration, the red and green line to multi-view
and multi-frequency configuration, respectively .

some parameters the multi-view configuration can be better
than the multi-frequency one (as in this case) and for other
parameters the opposite is true.

So, the presented analytical analysis allows to get the
answer to what is the optimal configuration when the pa-
rameters have been fixed according to some constraints that
one may have.

5. Conclusion
The impact of view and frequency diversities on the Kol-
mogorov entropy measure has been studied in the frame-
work of linear inverse scattering problems.

Canonical strip-like scatterers have been considered.
This has allowed to determine and estimate the ε-entropy
for all the considered configurations. Also, these expres-
sions clearly make it evident the role of the scattering pa-
rameters (i.e., observation corner, number of views, fre-
quencies, etc.). Numerical checks of such estimations
showed that they are in very good agreement with the actual
entropy.

As expected, the use of diversities increases the infor-
mation content. Also, some numerical examples have been
run to compare the view and the frequency diversities. It
is shown that, for the considered parameters, view diversity
outperforms the frequency one. However, in general this
cannot be the case.

The main results of this paper is to provide a tool to
foreseen the information content once the configuration pa-
rameters have been fixed. Conversely, the reported estima-
tions can be used to set the configuration parameters in or-
der to maximise the achievable information content.
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