Inverse Scattering in a Multipath Environment

Main Article Content

A. Cuccaro
R. Solimene


In this contribution an inverse scattering problem is ad- dressed in a multipath environment. In particular, multipath is created by known ”extra” point-like scatterers (passive elements) expressely deployed between the scene under in- vestigation and the source/measurement domains. Through a back-projection imaging scheme, the role of the passive elements on the achievable performance is shown and com- pared to the free-space case. 


Download data is not yet available.

Article Details

How to Cite
Cuccaro, A., & Solimene, R. (2016). Inverse Scattering in a Multipath Environment. Advanced Electromagnetics, 5(2), 39-45.
Research Articles
Author Biographies

A. Cuccaro, Seconda Università di Napoli

Associate researcher, Dipartimento di Ingegneria Industriale e dell'Informazione

R. Solimene, Seconda Università di Napoli

Associate Professor, Dipartimento di Ingegneria Industriale e dell'Informazione


  1. I. Catapano, A. Randazzo, E. Slob and R. Solimene, GPR imaging via qualitative and quantitative approaches, in Civil Engineering Applications of Ground Penetrating Radar, Springer International Publishing, pp. 239–280, 2015.
    View Article

  2. R. Solimene, I. Catapano, G. Gennarelli, A. Cuccaro, A. Dell'Aversano and F. Soldovieri, SAR imaging algorithms and some unconventional applications: a unified mathematical overview, IEEE Sign. Process. Magaz. 31: 90–98, 2014.
    View Article

  3. M. Cheney and R.J. Bonneau, Imaging that exploits multipath scattering from point scatterers, Inverse Probl. 20: 1691–1711, 2004.
    View Article

  4. R. Solimene, M.A. Maisto, R. Pierri, Inverse source in the presence of a reflecting plane for the strip case, J. Opt. Soc. Am. A 31: 2814–2820, 2014.
    View Article

  5. R. Solimene, M.A. Maisto, R.-Pierri, Inverse scattering in presence of a reflecting plane, J. Opt. 18: 025603, 2016.
    View Article

  6. A. J. Devaney and M. Dennison, Inverse scattering in inhomogeneous background media, Inverse Probl. 19: 855–870, 2003.
    View Article

  7. M.L. Dennison and A.J. Devaney, Inverse scattering in inhomogeneous background media: II. Multifrequency case and SVD, Inverse Probl. 20: 1307–1324, 2004.
    View Article

  8. P.C. Chang, R.J. Burkholder, and J.L. Volakis, Model-Corrected Microwave Imaging through Periodic Wall Structures, Int. J. Antenn. Prop. ID 948365, 2012.

  9. L.L. Foldy, The multiple scattering of waves, Phys. Rev. 67: 107–119, 1945.
    View Article

  10. H. Lim, N. Nhung, E. Li, and N. Thang, Confocal microwave imaging for breast cancer detection: delaymultiply- and-sum image reconstruction algorithm, IEEE Trans. Biomed. Eng. 6: 1697–1704, 2008.

  11. G. Gilmore, I. Jeffry, and J.Lo Vetri, Derivation and comparison of SAR and frequency-wavenumber migration within a common inverse scalar wave problem formulation, IEEE Trans. Geosci. Remote Sensing 44: 1454–1461, 2006.
    View Article

  12. D. Cassereau and M. Fink, Time-reversal of ultrasonic fields part III: Theory of the closed time-reversal cavity, IEEE Trans. Ultrason. Ferroelectr, Freq. Control 39: 579–592, 1992.
    View Article

  13. C. Esmersoy and D. Miller, Backprojection versus backpropagation in multidimensional linearized inversion, Geophysics 54: 921–926, 1989.
    View Article

  14. R. Solimene, A. Cuccarao and R. Pierri, Back-Projection Source Reconstruction in Presence of Point Scatterers, J. Opt. 18: 065606, 2016.
    View Article

  15. J. G. Hagedoorn, "A process of seismic reflection interpretation," Geophys. Prosp. 2: 85–127, 1954.
    View Article