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Abstract

Soft magnetic composites (SMC) can be used as a replace-
ment material for laminated steel in many Electrical Engi-
neering applications since they offer low levels of eddy cur-
rent (EC) losses. However, appropriate tools are required to
determine the electromagnetic behavior of SMC. Standard
numerical techniques such as the finite element method can
indeed lead to high computational cost to incorporate the
material microstructure. Another difficulty lies in the high
property contrast between the matrix and the inclusions.
In this paper we propose a homogenization strategy to de-
fine the equivalent electromagnetic properties of SMC. The
strategy relies on the determination of an equivalent con-
ductivity and permeability for the material. These equiva-
lent properties can be used to calculate eddy current losses
or introduced into structural analysis tools to design elec-
tromagnetic devices.

1. Introduction

SMC consists in ferromagnetic inclusions embedded in a
dielectric polymer matrix. This microstructure explains the
low level of EC losses observed in these materials when
they are subjected to electromagnetic field. This is why
they are considered as a promising alternative to laminated
steel, for instance in motors [1, 2, 3, 4].

The optimization of material properties is key to the de-
sign of electrical machines using SMC. In order to reach
high effective magnetic permeability, pure iron or Fe-alloys
are often used as the particle material [5]. In order to limit
EC losses, epoxy is usually chosen as the dielectric coat-
ing. These constituents exhibit a very high conductivity and
permeability contrast. In order to properly design electro-
magnetic devices using SMC, accurate modelling tools are
required. The typical working frequency range for SMC
used in AC magnetic fields is usually below 10 kHz.

Finite Element Method (FEM) is a full-field approach
to solve electromagnetic problems, and provides detailed
information about the field distribution all over the study
domain. Effective permeability and EC losses can be read-
ily obtained from such an approach. If the microstructure
is complex, as in the case of SMC, efficient meshing pro-
cesses are required and the resolution procedures can bring

significant numerical complexity and instabilities. Numer-
ical homogenization strategies derived from standard FEM
have been proposed [6, 7] to reduce the computational time
and resources to a certain extent while maintaining accu-
racy. However, the flexibility of these techniques for in-
stance for parametric studies is still limited since it requires
multiple numerical computations.

Other homogenization techniques have been introduced
to tackle electromagnetic problems with different scales,
mainly by replacing composite periodical microstructures
by an equivalent homogeneous material [8, 9, 10]. From
this perspective, homogenization can be particularly suit-
able for SMC. The equivalent homogeneous material can
be used in standard structural analysis tools, with a reduced
numerical complexity.

Mean field analytical or semi-analytical approaches are
another homogenization strategy. These techniques have
for instance been developed for the determination of the ef-
fective magnetic permeability of ferromagnetic polycrys-
tals [11, 12]. They have also been used for the effec-
tive permittivity of composites for shielding applications
[13, 14, 15]. Préault er al. have developed a Dynamic
Homogenization Method (DHM) to extend homogenization
models to a wider frequency range by introducing the ra-
tio between the typical size of the microstructure and the
typical length of the electromagnetic wave [15]. Neverthe-
less, DHM, being an extension of Maxwell-Garnett (MG)
model, is restricted to composites with low property con-
trast. In this paper, an analytical homogenization strategy is
proposed to estimate the EC losses in SMC under standard
operating conditions for electrical machines by defining an
equivalent conductivity based on a loss equivalence.

In a first part, homogenization principles are briefly pre-
sented and the specificities of their application to SMC are
explained. In a second part, a strategy to handle these
specificities is detailed, defining an equivalent conductivity
based on an equivalence in EC losses. An example of the
homogenization implementation on complex components is
given and the validity frequency range is finally discussed.



2. Homogenization of losses in SMC

Homogenization can be a useful tool when the numerical
study of a device involves different scales, which would
lead to non-manageable numerical systems. The principle
of homogenization is to replace a heterogeneous material
with a fictitious equivalent homogeneous medium (EHM)
exhibiting the same macroscopic behavior. For SMC, the
parameters of interest are the effective magnetic permeabil-
ity and the level of EC losses.

Since this study is limited to frequencies below 10 kHz
and linear properties, the effective magnetic permeability
can be deduced from classical homogenization approaches
(Wiener or Maxwell-Garnett estimates), the magnetic field
induced by eddy currents being negligible. For a compos-
ite made of ferromagnetic inclusions with permeability 1o
embedded in a matrix with permeability p, the effective
anisotropic permeability (diagonal tensor) of the mixture is

vapiy (2 — 1)
pa A+ (1 —v1)Ni(p2 — p1)

where v5 is the volume fraction of the inclusions, NN; is the
depolarization factor in the ¢ direction [16] .

However, the approach is not applicable to the effective
electric conductivity because of the very different current
distribution in the heterogeneous and homogeneous cases.
To obtain a relevant loss estimate, an equivalent conductiv-
ity approach is defined, based on a total EC losses equiva-
lence.
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2.1. EC losses in SMC

The EC losses density U (J/m?) are defined as the Joule
losses dissipated per unit volume during a wave period:

(E*FE)
2f

where f is the frequency of the electric field E within the
considered domain and & is the electric conductivity tensor.
The operator (-) denotes a volume average over the domain
and the superscript * symbol refers to conjugate transpose.

In addition to the geometry, EC losses in SMC are in-
tricately connected to the material microstructure. A model
of losses in SMC needs then to incorporate a description
of the microstructure. The microstructure is approximated
here as a periodic pattern of ferromagnetic grains embed-
ded in a dielectric domain. Fig. 1 gives a representation
of a plate structure made of SMC with this microstructure
and of an elementary cell consisting of a grain and its sur-
rounding matrix. All numerical applications have been per-
formed considering Iron (conductivity oo = 1.12 x 107
S/m, permeability po = 4000p0) as the inclusion material
and Epoxy (o; = 1.7x107'3 S/m, y1; = p) for the matrix.

A time-harmonic magnetic flux is imposed perpendic-
ularly to the domain (z direction). EC can be separated
into a part contained inside the ferromagnetic inclusions
(in-grain current linked to the microstructure) and another
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Figure 1: Periodic microstructure of composite with two
materials 1 (matrix) and 2 (ferromagnetic grains).

part flowing from grain to grain through the matrix (global
current linked to both microstructure and structure). For
the typical working conditions where the conductivity con-
trast between grains and matrix is high and the exciting fre-
quency low, the second contribution is negligible, as shown

in Fig. 2.
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Figure 2: EC distributions in a SMC microstructure at 1kHz
and 10MHz (horizontal center line).

The global losses are then limited to the sum of the
losses in all independent grains. For the microstructure con-
sidered here, EC losses in each elementary cell can be cal-
culated analytically.

2.2. Problematics with homogenization of SMC

Contrary to EC in the heterogeneous SMC, the induced EC
appearing in a homogeneous material is only a global cur-
rent. The distribution of this global current is linked to the
structure (geometry) of the material, as shown in Fig. 3.

The EC distributions are totally different in the hetero-
geneous and homogeneous cases and cannot be readily de-
duced one from the other. However an equivalence on the
total EC losses can be considered to define an effective elec-
tric conductivity.

3. Definition of the equivalent conductivity

In order to homogenize SMC, a particular definition of the
equivalent conductivity can be used in order to link the
losses between the composite and the corresponding ho-
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Figure 3: EC distribution in heterogeneous and homoge-
neous material for the plate presented in Fig. 1.

mogenized material, even though they have completely dif-
ferent EC distributions.
The homogenization strategy to determine equivalent

conductivity is indicated in Fig. 4.
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Figure 4: Homogenization strategy to keep consistency for
the evaluation of losses.

EC losses of the composite equals that of a cell. Then an
equivalent conductivity deduced from Ussryet = Ueeyr can
represent the conductivity of the composite from the point
of view of losses.

3.1. EC losses in the homogeneous structure

For laminated materials, the EC losses are proportional to
foB?[17, 18]. A detailed derivation can be found in [19].
From analytical deductions on simple shapes and substan-
tial numerical simulations on complex structures, we find
that, at low frequency range for arbitrary 2D structure, the
losses in a homogeneous material subjected to a magnetic
flux normal to the domain are always proportional to the
conductivity o, frequency f, and to the square of magnetic
field magnitude B and typical size L:

U=KfoB?L* 3)

where K is a shape coefficient concerning only the geome-
try.

For simple shapes such as a circle, a square and a plate,
with the low frequency assumption, the EC losses can be
mathematically approximated[19, 20],

% foB%L? for a square (side L)
U=1{ = foB’L for a plate (width L) 4)
%2 foB2R? for a circle (radius R)
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where the formulas for circle and plate are exact but the one
for square is estimated from numerical calculations.

3.2. EC losses in the cell

In the case presented in Fig. 1, an elementary cell is made of
two materials with different conductivities. Since EC only
appears in the inclusion, the determination of the losses in
the material reduces to the calculation of the losses in the
arbitrary-shaped grain of material 2:

(E*GE),
2f

where vy is the volume fraction of inclusion. The operator
(-), denotes a volume average over the grain. Based on
(3) and (4), the expression of EC losses in a cell can be
simplified into:

ucell = {

where Bs is the magnitude of the magnetic induction in
the grain (B; = B - ua/fi, with B the average magnetic
induction and /i, the Wiener effective permeability [12]).
For other shapes of inclusion, a FEM calculation on the
cell is needed to determine the shape coefficient for the mi-
crostructure.
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square (side Ls)
(6)

circular (radius R)

3.3. Equivalent Conductivity

A real component made of SMC is homogenized to be re-
placed by a material of equivalent conductivity 6.

For example, as for a real square-shaped component
with the side length L, letting L = N L;, made of SMC
configured as Fig. 1, the equivalent conductivity & is ob-
tained by equalizing (4) and (6). This leads to the definition
of equivalent conductivity:

L2 2 Lo 2 1 2 2

N 3

= - 7)) = 7
o Vo202 (~2) ( ) Vo092 B) (~Z> ( )

This equation indicates that for a given component, the
smaller this cell is (i.e. a bigger V), the smaller equiva-
lent conductivity should be, which would lead to less EC
losses. It is consistent with classical observation for SMC.

For more complex geometries, a FEM computation with
homogeneous conductivity is necessary to identify the pro-
portionality coefficient for /. Generally, the inclusion is of
simple shape such as square or circle, where the shape co-
efficient K is one of (4). The equivalent conductivity can
then be determined.

3.4. Practical Implementation

The homogenization model is applied to three different con-
figurations :

(a) acircular component with square inclusions,

(b) aplate composed of ellipsoidal inclusions,



(c) ahexagonal component with circular inclusions.

The geometry is given in Fig. 5

()

Figure 5: Three configurations components of SMC to im-
plement homogenization model.

For case (a), both the sty et and U can be readily
obtained analytically from (4) and (6). The equivalent con-

ductivity is
9 Ly\?
&a = — V209 (u2 2) (8)
[

For case (b), Ustruet can be selected from (4), while
ULy should be calculated from FEM. Set 1 = 20 ym and
ro = 24 uym and do FEM on this homogeneous ellipse, it is
easy to retrieve that the shape coefficient K..;; = 2.4167.

Since

Ueett = V2K ey foa B3riTa, 9

now we can deduce the equivalent conductivity for this con-
figuration,
 6riropud
- m2L2a2
where 7175 represents the size square stated in (3).
For case (c), Us¢ryuct has to be computed numerically.
Given Ly = 2050 um, the corresponding K. is K, =
1.975. The equivalent conductivity is

. 2 HoT 2
Oc = —— Va0 =
4K, *"* \ QLo

Set structure length to be about 2 mm (R
2005 pm, LY = 2000 ym and L§ = 2050 ym), and cell
length at 50 pm. EC losses as a function of frequency, ob-
tained from a full FEM performed on the heterogeneous
structure - for validation purpose - and from the homoge-
nized model are indicated in Fig. 6. The two plots indicate
that at low frequency (here less than 10 kHz) the homoge-
nization model provides accurate losses estimate, with er-
rors less than 1%. At high frequency such as f=10 kHz,
the homogenization model does not apply. Besides, for the

U2Kcellg2 (10)

(11)

hexagon case, the size of the inclusion 42 pm is bigger than
the other two cases, so that the valid frequency range is
more narrow, as will be demonstrated in the following dis-

cussion section.

1072
E
~ 1078
% — (a)-ana
2.l » (a)-FEM
5 10 )< --- (b)-ana
= s + (b)-FEM
10-5] — (0-ana
g s+ (c)-FEM
10 102 103 10
Frequency (Hz)
5 T T T T T T T T T "“‘
A —case (a) ,
i ---case (b) Do
= o3 = ) -
= 2 —
€2
1 [ N
0 .i.?.:.,......,.‘.j.m.h.é..._‘...g]__,‘.,rg ‘ L A
10 10 10 10

Frequency (Hz)

Figure 6: EC losses from homogenization model: compar-
ison to FEM results and corresponding errors.

4. Validity range

In the previous part, a low frequency assumption was made,
meaning that the skin depth was quite big compared to the
grain size. The induced current distribution could then be
approximated with simple linear functions. At higher fre-
quency, because of skin effect, the current is restricted to a
very thin layer near the conductor surfaces, as can be indi-
cated in Fig. 7. When this assumption is not valid anymore,
the current distribution can be described from Fourier series
or Bessel functions [19].

From substantial simulations on homogeneous 2D ge-
ometry, we find that at frequency around f, which is when
skin depth is 6 = R/2, the EC losses reach its extreme.

Thus,
4

fs = 7o R?
where R is the typical size (radius for circle and half the

(12)
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Figure 7: Distribution of electrical density of a circular
from center to boundary. Material: Iron. Radius, R =
25 pm, Magnetic induction: 10 mT.

side length for square). We find that f < 0.1f, provides
a frequency criterion for what we describe as ‘low fre-
quency’.

5. Conclusions

A homogenization strategy is proposed to define the equiv-
alent conductivity for SMC based on an estimate of EC
losses. In this approach, only one analytical or numerical
calculation on a heterogeneous cell and one numerical com-
putation on a homogenized structure are needed to calculate
the EC losses. The equivalent conductivity can be obtained,
and then used to analytically compute EC losses for SMC
with different loadings and different properties. An imple-
mentation example is given with typical SMC composition
and with complex structures. The valid frequency range
for this homogenization model is determined depending on
conductivity, permeability and size of the ferromagnetic in-
clusions.

Even if real SMC is roughly made of ellipsoid inclu-
sions, we have only considered infinitely long cylinders in
this paper in order to simplify the equations involved. How-
ever, the theory and method can be similarly applied to el-
lipsoidal inclusions.
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