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Abstract 
We investigate light spins for cylindrical 

electromagnetic waves on resonance. To this goal, 

we consider both a dielectric cylinder of infinite 

length immersed in vacuum and a cylindrical hole 

punched through a dense dielectric medium. In order 

for waves of constant frequencies to be established 

through lossless media, energy absorption is allowed 

in the surrounding medium to compensate for 

radiation loss. The dispersion relation is then 

numerically solved for an asymmetry parameter 

implying a balance in energy exchange. Numerical 

studies are performed by varying parameters of 

refractive index contrast, azimuthal mode index, and 

size parameter of a cylindrical object. The resulting 

data is presented mostly in terms of a specific spin, 

defined as light spin per energy density. This specific 

spin is found to be bounded in its magnitude, with its 

maximum associated with either optical vortices or 

large rotations. Depending on parametric 

combinations, the specific spin could not only 

undergo finite jumps across the material interface but 

also exhibit limit behaviors. 

 

 

1. Introduction 

Among various measures characterizing 

electromagnetic (EM) waves, energy density is the 

most fundamental one, but it is scalar. Several 

additional measures have so far been utilized in order 

to illustrate the vector nature of Maxwell’s equations. 

They are Poynting vector, angular momentum, and 

chirality (or helicity) for instance [1-14]. 

Polarizations and polarization ellipses are in between 

scalars and vectors, depending on their definitions 

[3,10,14]. The angular momentum (AM) of EM 

waves can be separated into its orbital and spin parts 

[12,15,16]. The orbital AM is extrinsic, since it 

depends on the distance vector between a coordinate 

center and the point of application. In contrast, the 

spin AM is intrinsic, since it is not required to 

specify such a distance vector [3]. 

The spin AM of EM waves is henceforth called 

the “light spin” in this study in order to be 

differentiated from the electron spin. Light spin is 

similar to electron spin in the sense that both are 

intrinsic from a macroscopic viewpoint. However, 

the light spin is different from the electron spin, since 

light spin takes on continuous values, whereas the 

electron spin takes essentially two discrete values 

(either an up-spin or a down-spin). For our 

cylindrical EM waves, light spin turns out to be 

proportional to the light-induced fictitious magnetic 

field, which has been recognized in the area of light 

trapping [8]. 

Traditionally, light spin has been suitably 

normalized by taking the energy density as a 

reference [3,10]. This light spin per energy density 

will be henceforth called the “specific spin” for short 

[9,17]. This specific spin turns out be bounded in its 

magnitude by unity so that it can be compared to the 

electron spin [13]. As an example for revealing 

typical features of a specific spin, we take cylindrical 

EM waves rotating around a cylindrical object [1]. 

For instance, optical fibers and nano-scale probes 

rely on wave propagations along the cylindrical axis 

[10,18]. Even when waves are allowed to propagate 

only on the cross-sectional plane of a wire, there are 

numerous technological applications, for instance, 

involving whispering-gallery modes [19,20].  

Most of these applications have been successfully 

analyzed as regards the energy transfer from a 

cylindrical object into its surrounding environment 

via the century-old radiation condition [8,21]. 

However, a rotational wave under our study cannot 

be maintained at constant frequency, because of the 

unending one-way radiation loss into the surrounding. 

In such a case, frequency is considered as a complex 

variable in order to account for wave attenuations 

even if all the participating media are lossless. 
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Difficulties arise for complex frequency, since many 

defining notions for EM waves get blurred. For 

instance, the cherished formula for time-averaged 

Poynting vector becomes useless. Even the formula 

for the energy density of EM waves gets fuzzy for 

lossy dielectric media and even more difficult for 

lossy metals. 

Our remedy for this difficulty is to admit both 

energy radiation and absorption between a cylindrical 

object and its surrounding medium [17]. In the 

context of exterior boundary value problems [21], not 

only outgoing waves but also incoming waves are 

assumed to exist [22]. With such two-way energy 

exchanges, we have recently carried out an 

investigation into plasmonic resonances around a 

lossy metallic nanowire [17]. As a result, we were 

able not only to obtain a useful explanation of wave 

dynamics but also to prove the aforementioned 

boundedness of specific spin. 

In fact, this coexistence of energy radiation and 

absorption is not an entirely new concept though. As 

an example, optical trapping of ions relies on energy 

supply from outside through laser illumination [8,23]. 

As another example, optical gain media for 

metamaterials act as energy sources, thus 

compensating energy dissipation by metallic 

constituents [6,7,24]. In a similar fashion, sunlight is 

absorbed from the environment onto solar cells, for 

which design scientists try to minimize the inevitable 

energy radiation associated with reflection and 

scattering [7,9,11,20]. 

Our focus here lies in presenting unusual 

behaviors of the specific spin for typical parameter 

sets. To this goal, two configurations are considered. 

Firstly, we consider a solid cylinder with its interior 

possessing a larger dielectric constant than that of its 

exterior. For instance, a silica cylinder is employed 

for light trapping [8]. Secondly, as a conjugate 

configuration to the solid cylinder, we consider a 

cylindrical hole with its interior having a smaller 

dielectric constant than that of its exterior. In this 

study, both dielectric media are assumed lossless for 

the sake of simplicity of analysis. In addition, the 

effects of the cylinder’s size with respect to the 

wavelength will be investigated. By this way, the 

jumps in the specific spin across the cylindrical 

dielectric-dielectric interface will be illustrated with 

varying parameters. In all our results to be presented, 

the rotational speed represented by the azimuthal 

mode indices is found to play a pivotal role in 

revealing distinct features of the specific spin. By 

this way, we will be naturally led to the concept of 

singularity and optical vortices [25]. 

 

 

2. Problem Formulation 

Figure 1(a) sketches a cross-section of a solid 

cylinder with a fixed radius R , whereas figure 1(b) 

shows that of a cylindrical hole. Figure 1(c) displays 

a transverse-magnetic (TM) wave with its non-zero 

field components ( ), ,
r z

E E Hθ  along with the 

cylindrical coordinates ( ), ,r zθ  and Cartesian 

coordinates ( ), ,x y z  [8]. We emphasize that only 

rotational waves propagating on the cross-sectional 

plane of a cylinder are under current investigation. In 

other words, we do not consider wave propagations 

along the axial z -direction for simplicity. Hence, we 

are dealing with two-dimensional wave problems, 

where all the field variables depend only on either 

( ),r θ  or ( ),x y  [21]. 

 

 
Figure 1: (a) A solid cylinder being optically denser 

than the exterior. (b) A cylindrical hole being 

optically rarer than the exterior. (c) A transverse 

magnetic (TM) wave under this study with non-zero 

field components. 

 

With non-magnetic dielectric media assumed 

throughout, figure 1 displays two different 

combinations optical media depending on the relative 

dielectric constant ε . All the dielectric media are 

assumed lossless in this study so that we can set 
2

nε ≡  with n  being positive refractive index [10]. 

In this notation, inn  refers to the interior over the 

range 0 r R≤ ≤ , whereas ex
n  refers to the exterior 

over the range R r≤ < ∞ . Hence, the cylindrical 

material interface is located at r R= . Whenever 

necessary, the superscripts in  and ex  refer 

henceforth respectively to the interior and exterior. 

The refractive index contrast can thus be defined to 

be 
in ex

n n  for convenience [20]. Therefore, 

1in ex
n n> =  in figure 1(a), whereas 1 in ex

n n= <  in 

figure 1(b). Besides, the exterior is vacuum in figure 

1(a), whereas the interior is vacuum in figure 1(b). 

In the absence of electric charges, consider 

Maxwell’s equations ( )2

0n tε∇× = ∂ ∂
� �

�� �  and 

( )0 0tµ∇× + ∂ ∂ =
� �
�� �  [1]. Both electric field 
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vector 
�
�  and magnetic field vector 

�
�  are real. 

The properties of vacuum are the electric permittivity 

0
0ε >�  and magnetic permeability 

0
0µ >�  [1]. All 

the field variables are assumed to follow the 

combined phase factor ( )exp im i tθ ω− , where m  

is the azimuthal mode index, ω  is frequency, and 

t  is time. We assume 0ω >  throughout this study 

for temporally non-attenuating waves, thereby 

leading to a requirement of an energy absorption 

from somewhere in order to compensate for the 

radiation loss [21]. 

As usual, 0,1, 2,3,m = ⋅⋅⋅  for azimuthal 

periodicity. For 1, 2, 3,m = − − − ⋅⋅⋅ , all the ensuing 

formulas will be appropriately understood with a 

reversal in the rotational direction. Under these 

assumptions, the normalized electric field vector E
�

 

and magnetic field vector H
�

 are defined through 

( ) ( )
1 2

0 Re expE im i tε θ ω
−

� �≡ −� �

� �
��   and 

( ) ( )
1 2

0 Re expH im i tµ θ ω
−

� �≡ −� �

� �
��  [12]. In terms 

of complex vectors E
�

 and H
�

, Maxwell’s 

equations now read 2

0H ik n E∇× = −
� �

 and 

2

0E ik n H∇× = −
� �

, respectively. Here, the vacuum 

wave number 
0

k  is defined by 
0 0

k cω≡ , where 

0
c  is the light speed in vacuum defined by 

0 0 01c ε µ≡ � � . Maxwell’s equations give rise to the 

following two auxiliary relations. 

 

2 2

0 0

1
, z

r z

dHm
E H E i

drn k r n k
θ= − = −

. (1) 

 

When equation (1) is plugged into Maxwell’s 

equations, 
z

H  is found to be governed by the 

following Helmholtz equation. 

 

( )
2

2 2 2 2

02

1
0z z

z

d H dH
n k r m H

r drdr

−+ + − =
. (2) 

 

It is appropriate to define the reduced radial 

coordinate r Rρ ≡ . Hence, 0 1ρ≤ ≤  in the 

interior and 1 ρ≤ < ∞  in the exterior, whereas 

1ρ =  refers to the cylindrical material interface. In 

addition, the positive size parameter q  is defined to 

be 2q Rπ λ≡  or 
0 0

q R c k Rω≡ ≡ , where λ  is 

the wavelength of EM waves. Since Maxwell’s 

equations are linear, the magnetic field can assume 

the following normalized forms respectively in the 

interior and exterior. 

 

( )
( )
( )

( )
( )
( )

,

,

, 1

, 1

in

min

z in

m

ex ex

m Aex

z ex ex

m A

J n q
H

J n q

G n q
H

G n q

ρ
ρ ρ

ρ
ρ ρ

�
� = ≤
��
�
�

= ≥�
��

.  (3) 

 

Hereafter, ( )m
J ⋅  is Bessel function of first kind 

[26]. In the exterior, let us define the following two-

wave-interaction function in the exterior. 

 

( ) ( ) ( ) ( ) ( ) ( ) ( )1 2

, 1 1
ex

m A m mG A H A Hα α α≡ − + + . (4) 

 

Here, either 
ex

n qα ρ≡  or 
ex

n qα ≡ . In addition, 

( ) ( )1

mH α  and 
( ) ( )2

mH α  are Hankel functions of 

first and second kinds, thereby implying waves 

respectively outgoing and incoming in the radial 

direction [20,26]. 

Therefore, A  is a complex asymmetry 

parameter so that we set A b ia≡ +  with ,b a  

being real. When 0A ≠ , A  denotes the deviation 

from a perfect balance between outgoing and 

incoming wave [17]. Through 
( ) ( ) ( ) ( )1,2

m m mH J iYα α α= ±  [21,26], ( ),

ex

m A
G α  can 

be recast into ( ) ( ) ( ),
2ex

m A m m
G J iAYα α α= −� �� � . 

 

 

3. Dispersion and Asymmetry Parameter 

Let us define the logarithmic derivative 

( ) ( ){ }log lnF d F d
β α

α β β
=

∂ ≡� � � �� � � �  [8,21,25]. For 

complex ( )F α , we can rewrite it to be 

( ) ( ) ( )expF F iα α φ α≡ � �� �  with ( )F α  and 

( )φ α  being respectively amplitude and phase 

functions. 

 

( ) ( ) ( )

( )
( )

( ) ( )
log

exp

1

F F i

d F d
F i

d dF

α α φ α

α φ α
α

α αα

≡ � �� �

∂ = +� �� �
. (5) 

 

Here, the second term ( )d dφ α α  on the right-

hand side is the phase gradient [25]. 

Across 1ρ = , there are three continuity 

conditions: ( ) ( )
2 2

in in ex ex

r r
n E n E= , 

in ex
E Eθ θ= , and 

in ex

z z
H H= . Via Equations (1) and (3), the desired 

dispersion relation 
M D

=� �  is obtained as follows. 
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( ) ( )

( ) ( )

log

log ,

1
, ,

1
, , ,

in ex

in in in

min

ex ex ex ex

m Aex

m n q J n q
n

m n q A G n q
n

=

� � �≡ ∂� � ��
�
� � �≡ ∂ � ���

� �

�

�

. (6) 

 

We notice that in
�  is real so that ex

�  should 

be real as well. Physically speaking, both dielectric 

media are assumed lossless so that waves are not 

attenuated and energy is conserved. This dispersion 

relation stems from setting the two interface 

impedances equal to each other, whereby the 

logarithmic derivatives are naturally show up [6,22]. 

With ( ),

ex

m A
G α  in equation (4), let us define the 

following intermediate parameters including 

Wronskian ( )m
W α+  [26]. 

 

( ) ( ) ( )

( ) ( ) ( )

( ) ( )
( )

( )
( )

2 22

2 21,2 1
,4

m m m

ex

m m A

m m

m m m

J A Y

H G

dY dJ
W J Y

d d

α α α

α α

α α
α α α

α α
±

�
Γ ≡ +�
�
�

= =�
�
�

≡ ±��

. (7) 

 

Therefore, ( ),

ex

m A
G α  satisfies 

 

( ) ( )

( )
( ) ( )

log ,

1

2

ex

m m A

m

m m

G

d
aW ibW

d

α α

α
α α

α
+ −

� �Γ ∂ � �

Γ
= + −

. (8) 

 

Because ( )log ,

D

m A
G α� �∂ � �  on the left-hand side of 

equation (8) is real for α  being real, we should 

take 0b =  on the right-hand side. As a result, 

A ia=  and 
2 2

A a= . As a reference, we notice 

that the phase ( )φ α  for ( )log ,

D

m A
G α� �∂ � �  is an 

integer multiple of the angle π  according to 

equation (5), which leads in turn to a phase gradient 

( )d dφ α α  being ill-defined. 

Going back to equation (6), in ex=� �  takes the 

following linear form with respect to a . 

 

 

( ) ( ) ( )

( )
( )

( )
( )

log

ex
ex ex in

m m min

ex ex

m m

ex ex

n
J n q aY n q J n q

n

dJ n q dY n q
a

d n q d n q

� � � �+ ∂� � � �

= +

. (9) 

 

Therefore, ( ), , ,in ex
a a m n n q=  can be readily 

evaluated. We call a state with such a computed a  

the “neutral” state [20]. For 1A = − , in ex=� �  is 

reduced to the much-studied dispersion relation 

( ) ( ) ( )1

log log

ex in in ex

m mn J n q n H n q� �� �∂ = ∂� � � �  in the 

presence solely of energy radiation [8,18,20].  

In the presence of both energy radiation and 

absorption, the particular dispersion relation 
in ex=� �  in equation (6) has been derived for the 

first time in [17], to the best of the authors’ 

knowledge. By this way, in ex=� �  on resonance 

does contain a kind of input-output relationship 

between the incoming and outgoing waves [20]. It is 

made possible through the afore-mentioned exterior 

boundary value problems [21]. 

 

 
Figure 2: The asymmetry parameter A ia=  with 

varying 0 m≤ ∈� . (a) For a solid cylinder, and (b) 

for a cylindrical hole. Note the scale change 

( )
0.25

sgna a a≡  in (b). The arrows indicate the 

direction of increasing m . 

 

Figure 2 plots the asymmetry parameter a  with 

varying m  as indicated by several integers for 

0,1, 2,3,m = ⋅⋅⋅ . As indicated in a box for ( ),in ex
n n , 

a solid cylinder is considered in figure 2(a), whereas 

a cylindrical hole is examined in figure 2(b). 

Numerically it turns out that a  undergoes several 

sign changes with increasing m . In both cases, a  

approaches zero as m → ∞ . The difference is that 

the rate of approach to the limit as m → ∞  is faster 

in figure 2(a) than that in figure 2(b). Physically 

speaking, the incoming wave falls in perfect balance 

with the outgoing wave as the rotational speed goes 

to infinity. For visual aid, figure 2 contains additional 

straight lines that connect two values of a  between 

two adjoining neutral states with m  and 1m + . 
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4. Energy Density and Light Spin 

For non-magnetic lossless media, the 

electromagnetic energy density W  and the light 

spin vector ( ), ,r zS S S Sθ=
�

 are defined respectively 

as follows [1,3,4,10,12,15,16]. 

 

( )2 2

2 2 2

2

2
r z

g
W nE H

g
nE nE Hθ

ω

ω

= +

� �= + +
� �

� �

.  (10) 

( )

( )

2 * *

2 *

Im
2

Im
r

g
S n E E H H

gn E Eθ

≡ × + ×

=

� � � � �

.  (11) 

 

Here, g  is a constant depending on the system of 

units. For equation (10), use is made of the 

relationships 
2 2 2*

r
E E E E Eθ= ⋅ = +
� � �

 and 

2 2

z
H H=
�

 for our particular cylindrical wave.  

For Equation (11), the term ( )*Im E E×
� �

 

implying the induction vector [8] is non-zero except 

for the linearly polarized electric field. Besides, the 

term ( )*Im H H×
� �

 vanishes identically, because of 

the single non-zero magnetic field 
z

H . 

Furthermore, ( )* * *

r r
z

E E E E E Eθ θ× = −
� �

 in 

cylindrical coordinates, since non-zero electric field 

components ( ),
r

E Eθ  lie on the cross-sectional 

plane. This leaves us only with the transverse light 

spin 0
z

S ≠ , whereas 0
r

S Sθ= =  identically [3,8]. 

As a result, ( ) ( )* *Im 2Im r
z

E E E Eθ× =
� �

, which is 

proportional to the fictitious magnetic field [8]. We 

remark that 0
z

S =  for 0m =  as seen from 

r
E m∝  in equation (1). 

Both figures 3 and 4 show the radial profiles of 

( )W ρ  and ( )z
S ρ  over the range 0 3ρ≤ ≤  with 

r Rρ ≡ . The material interface located at 1ρ =  is 

marked by the vertical straight line in brown color 

throughout this study. The azimuthal mode index is 

varied over 1, 2,4,10m =  throughout figures 3-5, 

where the respective curves are colored in the same 

way: solid green for 1m = , broken blue for 2m = , 

solid red for 4m = , and broken black for 10m = . 

Notice that each curve in figures 3 and 4 is 

normalized by the value on the exterior side of the 

material interface. This fact that ( )1 1ex
W ρ = =  and 

( )1 1ex

z
S ρ = =  can be most clearly seen from figure 

4(a) [10]. 

 

 
Figure 3:  (a) Energy density W , and (b) the light 

spin 
z

S  over the range 0 3ρ≤ ≤  for varying 

1, 2,4,10m = . On each panel, four curves are 

generated for 1, 2,4,10m =  in different colors. 

Respective curves are presented such that 

( )1 1ex
W ρ = =  and  ( )1 1ex

z
S ρ = =  on the exterior 

side of the material interface located at 1ρ = . A 

solid cylinder with 2 1in ex
n n= > =  is under 

consideration. In addition, 2q π=  as a common 

data. 

 

Let us examine figure 3 for a solid cylinder and 

figure 4 for a cylindrical hole, for which the common 

data is 2q π= . From its definition 2q Rπ λ≡ , 

2q π=  translates into, say, 600R nm=  for 

600nmλ = . For instance, a nano-scale cylindrical 

object is hence under consideration. The first 

impression upon comparing the five panels in figures 

3 and 4 is that both energy density and light spin 

exhibit relatively larger magnitudes on the vacuum 

sides in comparison to those on the denser dielectric 

sides. This simple finding is understandable since 

EM waves feel more freedom in their excursions in 

vacuum than in denser dielectric media.  
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Figure 4: (a,b) Energy density W , and (c) the light 

spin 
z

S . Although similar to figure 3, a cylindrical 

hole with 1 2in ex
n n= < =  is under consideration. (c) 

An additional curve for 0m =  is added to the 

curves in (a), but displayed only in the interior. 

 

The effects of the varying m  in both figures 3 

and 4 are a bit contradictory, depending on the 

combinations of media. For instance, in
W  in figure 

3(a) undergoes relatively larger variations than ex
W  

for smaller 1,2, 4m = . In contrast, for larger 

10m = , ex
W  in figure 3(a) undergoes relatively 

larger variations than in
W . Turning attention to 

energy density in both figures 3(a) and 4(a), we find 

a bright spot with ( )0 0in
W ρ = ≠  for 1m = , but 

dark spots with ( )0 0in
W ρ = =  for 2, 4,10m = . In 

particular, figure 4(c) as an inset shows a bright spot 

(marked by a black circle) with ( )0 0in
W ρ = ≠  for 

0m = . 

 

 

5. Specific Spin 

The indeterminacy in the magnitudes of either 

W  or 
z

S  stems of course from the linear property 

of Maxwell’s equations [1]. Therefore, the specific 

transverse light spin 
z

σ  (to be henceforth shortened 

as “specific spin”) in the axial z -direction is defined 

with respect to energy density of electromagnetic 

waves [3,12]. 

 

( )

( )

2 *

2 2 22

2 Im rz

z

r z

n E ES

W n E E H

θ

θ

ω
σ ≡ =

+ +
. (12) 

 

Here, the denominator 

( )2 2 22 0z r zD n E E Hθ≡ + + >  satisfies the 

electromagnetic duality, which means that both 

electric and magnetic fields make contributions to 

z
D  on equal footing [4], [10], [dual13]. This 

specific spin corresponds hence to the light spin per 

photon [9]. 

In this regard, recall Cauchy-Schwarz inequality 

( )*Im
r r

E E E Eθ θ≤  for complex 
r

E  and Eθ . We 

can prove that its magnitude is bounded such that 

1
z

σ ≤  without actually plugging the relations in 

equation (1) among ( ), ,
r z

E E Hθ  into equation (12). 

Equation (12) leads thus to 

( ) 21 2
z z z r

D D n E Eθσ− ≥ − , which gives rise in 

turn to ( ) ( )
2 221

z z r z
D n E E Hθσ− ≥ − + . 

Consequently, 1
z

σ ≤  is proved. Recall that 

1
z

σ ≤  is true to both interior with 1in

z
σ ≤  and 

exterior with 1ex

z
σ ≤ . This inequality has been 

thoroughly analyzed in [17]. 

We can naively form a variety of “dimensionless 

light spins (DLSs)”. For example, 
z

σ  as one of 

such DLSs can be defined to be 

( ) ( )
1

2 2 *
2Imz r rE E E Eθ θσ

−

≡ +  by following the 

way the polarization ellipse is handled on the basis 

only of electric field. Of course, 1
z

σ ≤  can be 

easily proved, by defining ( )2 22
0z rD n E Eθ≡ + >  

and showing that ( ) ( )
221 0

z z r
D n E Eθσ− ≥ − ≥ . 

In a similar manner, the conventional degree of 

polarization ,2rθΠ  of second order is defined to be 

( ) ( )
2 2

,2r r r
E E E Eθ θ θ

−
Π ≡ + −  on the rθ -plane. 

Its first-order cousin ,1rθΠ  can be defined in a 

similar fashion to be 

( ) ( )
1

,1r r r
E E E Eθ θ θ

−
Π ≡ + − . However, all of 

z
σ , ,2rθΠ , and ,1rθΠ  do not satisfy the 

electromagnetic duality because of the absence of 

magnetic fields in their respective definitions [10, 

11,16]. 

From the data of figures 3 and 4 with 2q π= , 

figures 5(a) and (c) are constructed for the profiles of 

the specific spin ( )z
σ ρ  over the range 0 3ρ≤ ≤  

for varying 1, 2,4,10m = . In addition, figures 5(b) 

and (d) are produced with a smaller size parameter 

0.2q π= . The parameter set is such that 
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( ) ( ), 2,1in ex
n n =  on (a) and (b) for solid cylinders, 

whereas ( ) ( ), 1, 2in ex
n n =  on (c) and (d) for 

cylindrical holes. Notice that the up-spin with 

0
z

σ >  can be interpreted as a down-spin with 

0
z

σ <  by a simple reversal in the rotational 

direction from the counter-clockwise to the 

clockwise directions. 

Figure 5 shows that 1
z

σ ≤ , because of the 

positive term 
2

z
H  in 

( )2 2 22

z r zD n E E Hθ≡ + +  in equation (12). 

Therefore, the only chance for 1
z

σ →  occurs as 

r
E Eθ=  and 0

z
H → . This situation takes place 

only at the cylindrical axis at 1ρ = , which is optical 

singularity [7,26]. In comparison, a similar situation 

that 
r

E Eθ=  and 0
z

H →  takes place across a 

material interface in case of helical metamaterials 

[10]. 

 

 
Figure 5:  The specific spin ( )z

σ ρ  over the range 

0 3ρ≤ ≤  for varying 1, 2,4,10m = . The parameter 

set is such that ( ) ( ), 2,1in ex
n n =  on (a) and (b) for 

solid cylinders, whereas ( ) ( ), 1, 2in ex
n n =  on (c) and 

(d) for cylindrical holes; 2q π=  of larger radius for 

(a) and (c); 0.2q π=  of smaller radius for (b) and 

(d). 

 

The desired proof that 1
in

z
σ →  as 0ρ →  can 

be easily made by looking at the profile ( )in

z
H ρ  in 

equation (3). To this goal, we can set 
in

n qα ρ≡  in 

the argument of ( )in

m
J n qρ . Furthermore, we resort 

to the asymptotic formula that 

( ) ( ) ( )
1

! 2
m

m
J mα α

−
→  as 0α →  for 0α >  

[26]. Equation (12) is now examined for its limit as 

0ρ →  in the following manner. 

 

( )
*

22
2

1
2Re

1

m
m

in

z
m

m in m

m d

q q d
s

m d

q q d

ρ
ρ

ρ ρ

ρ
ρ ε ρ

ρ ρ

� �
	 

� �=

� �

 �+ +

 �
� �

. (13) 

 

Therefore, 
2

2 2

2

2 2 2 2 2 2
2

2 2

2 m

in

z m m
in m

m

q
s

m m

q q

ρ

ρ ρ
ε ρ

−

− −
→

+ +

. (14) 

 

Here, we employed equation (1) in equation (13). 

Besides, we took advantage of the equality 

( ) ( )Im Reiγ γ=  for any complex γ . In addition, 

the common factor ( )
2

22 !in m
m qε

−

 has been 

canceled in the limit process in equation (14). The 

last term 
2in mε ρ  in the denominator of the limit 

process is much smaller than the two leading terms 
2 2 2 2m

m q ρ− −
 as long as 

2 2 2 2 2in m m
m qε ρ ρ− −<<  for 

0ρ → . In terms of the field variables, the axial 

transverse magnetic field makes a negligible 

contribution to the energy density in comparison to 

the combined electric-field contributions as long as 
in

n q mα ρ≡ <<  for 0
in

n qα ρ≡ → . 

Under this condition, the limit process in 

equation (14) would be independent of in
n  even for 

lossy dielectric medium with either complex in
n  or 

complex inε . At the same time, it is remarkable that 

both cross-sectional electric-field components 
in

r
E  

and 
in

Eθ  make equal contributions to W  as 

0ρ →  as can be seen from the denominator of 

equation (14). In terms of Cartesian coordinates, both 
in

x
E  and in

y
E  make equal contributions to W . In 

other words, perfect circular polarization prevails as 

0ρ →  [10,25]. 

Consider next figures 5(c) and (d) prepared with 

0.2q π= , which is one decade smaller than 2q π=  

for figures 5(a) and (b). For 600nmλ = , 0.2q π=  

translates into 60R nm= , thereby being on the deep 

nano-scale. In comparison, 600R nm=  for 2q π=  

is barely on nano-scale [7]. As the most striking 

difference among the four panels in figure 5, 
z

σ  in 

figures 5(a) and (c) experiences sinusoidal sign 

changes over the radial range, whereas 
z

σ  in 
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figures 5(b) and (d) hardly suffers such sign changes. 

For larger m → ∞ , the story would turn out similar 

as will be shortly discussed. We notice also in figure 

5 that the cylindrical holes treated in figures 5(c) and 

(d) exhibit rather uniform distributions of 
in

z
σ  in the 

interior in comparison to the solid cylinders 

considered in figures 5(a) and (b). This feature is 

again in accordance with the more freedom in 

vacuum than in solid.  

In case of a solid cylinder, movie 1 exhibits a 

continuous transition including that from figure 5(c) 

to figure 5(a) as q  is increased. To this goal, we 

examined the three-decade range 

( ) ( )0.01 2 10 2qπ π≤ ≤  in irregular steps. By 

comparing the first frame of movie 1 with 

( )0.01 2q π=  to the last frame with ( )10 2q π= , 

the spatial undulations get more vigorous. In this 

aspect, notice that the range 2q π>  has been 

studied in Ref. [19]. For a proper interpretation of the 

results in this movie 1, we remark however that the 

location 1ρ =  refers to an increasing radius with 

increase in q . It is because 2q Rπ λ≡  or 

0
q R cω≡  refers to increasing radius R , once the 

wavelength λ  and frequency 
0

2 cω π λ≡  are 

considered held fixed. 

Returning back to figure 5, let us focus either on 

( )1in

z
σ  on the interior side of the material interface 

or ( )1ex

z
σ  on the exterior side. For instance, ( )1in

z
σ  

for 1m =  is marked in figure 5(b) by the empty 

circle in blue color, whereas ( )1ex

z
σ  for 1m =  is 

marked in figure 5(b) by the empty circle in brown 

color. We then find that the minimum either in 

( )1in

z
σ  or in ( )1ex

z
σ  begins to take on a negative 

value before 2q π=  in figure 5(a) as q  is 

increased from 0.2q π=  in figure 5(b). Movie 1 

shows that the crossing over the line 0
z

σ =  starts 

with 1m =  as q  increases. As seen from figure 

5(b), ( )1ex

z
σ  for 1m =  crosses this line earlier 

than ( )1in

z
σ  for 1m = .  

 

 

6. Jumps in Specific Spin 
For quantitative assessment of the jumps in 

specific spins across the material interface, let us 

define 
z

σ∆  by ( ) ( )1 1ex in

z z z
σ σ ρ σ ρ∆ ≡ = − = . 

This jump is related to spin-orbital interactions (SOIs) 

[3,9,12]. See in particular equation (3) of Ref. [8]. 

This jump 
z

σ∆  is similar to the polarization 

rotations occurring with chiral materials [10]. Figure 

6(a) and (c) with 2q π=  shows 
z

σ∆  based on 

figure 5(a) and (c), whereas figure 6(b) and (d) with 

0.2q π=  displays 
z

σ∆  based on figure 5(b) and 

(d). Here in figure 6, the azimuthal mode index m  

is increased over 1,2, ,9,10,12,15,20,100m = ⋅⋅⋅  in 

varying increments. In the limit as m → ∞ , all the 

cases in figure 6 exhibit asymptotic value of 
z

σ∆  in 

the negative. When comparing the pair of figures 6(a) 

and (c) for 2q π=  to the other pair of figures 6(b) 

and (d) for 0.2q π= , cylindrical objects of smaller 

radii seem to feature rather uniform trends in 
z

σ∆ . 

 

 
Figure 6: The jump in the specific spin 

z
σ∆  across 

the material interface as m  is increased over 

1,2,3,4,5,6,7,8,9,10m =  in equal increments and 

for 12,15, 20,50,100m = . The parameter set is such 

that ( ) ( ), 2,1in ex
n n =  on (a) and (b) for solid 

cylinders, whereas ( ) ( ), 1, 2in ex
n n =  on (c) and (d) 

for cylindrical holes; 2q π=  of larger radius for (a) 

and (c); 0.2q π=  of smaller radius for (b) and (d). 

 

It is obvious from figure 6(a) and (b) that 

0
z

σ∆ =  or the specific spin is continuous across the 

material interface for a particular combination of 

system parameters. For instance, for 1m = , 1in
n = , 

and 2ex
n = , 

z
σ∆  is plotted in figure 7 as the 

modified size parameter 2q Rπ λ≡  is varied over 

0 2 3q π≤ ≤ . Figure 7 shows multiple roots of 
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2q π  for 0
z

σ∆ = . For instance, the first root is 

indicated by the blank circle in blue color in figure 7, 

its exact value being 2 0.2159q π ≈ . 

 

 
Figure 7: The jump in the specific spin 

z
σ∆  across 

the material interface as 2q Rπ λ≡  is increased 

over 0 2 3q π≤ ≤ . 

 

Whether spin flips or sign changes in 
z

σ  take 

place across the material interface is determined by 

examining the sign of ( ) ( )1 1ex in

z z
σ ρ σ ρ= =  [6], 

[bliokh15]. Numerically, it turns out from examining 

all the parameter combinations that 

( ) ( )1 1 0ex in

z z
σ ρ σ ρ= = >  as expected, since both 

media are dielectric and they are of the same 

character. There is hence no spin flips across material 

interfaces in our study. We expect that spin flips can 

take place for cases, say, with metals in the interior 

and vacuum in the exterior. In this regard, we find 

that the discontinuity across a material interface can 

be made to disappear by metasurface engineering 

[27]. 

 

 

7. Discussions 

The transverse-electric (TE) wave is also 

admissible as long as energy supply is maintained 

from the radial far field. Since the TE wave is 

demanding more of such energy supply, it is harder 

to be established than the TM wave. Therefore, we 

have focused solely on TM waves in this study. In the 

presence of both energy radiation and absorption, a 

TE wave with non-zero field variables ( ), ,
z r

E H Hθ  

leads to its own dispersion relation 

( ) ( )log log ,

in in ex ex ex

m m An J n q n G n q� � � �∂ = ∂� � � �  instead of 

( ) ( )log log ,

ex in in ex ex

m m An J n q n G n q� � � �∂ = ∂� � � �  in equation 

(6). Likewise, the factor 
ex in

n n  for a TM wave on 

the left-hand side of equation (9) should be replaced 

by its inverse 
in ex

n n  for a TE wave. We hope to 

elaborate on the TE wave in the near future. 

Let us make a brief discussion on Poynting 

vectors for our cylindrical waves [17]. The energy 

flow of electromagnetic waves is described by 

Poynting vector ( ), ,r zP P P Pθ≡
�

 with 

( )*ReP E Hε≡ ×
� � �

 [1], [13]. This formula is valid 

in a time-averaged sense for 0ω > . Let us evaluate 

each component of P
�

 for our TM wave with non-

zero field components ( ), ,
r z

E E Hθ . Firstly, it is 

trivially found that 0
z

P = . Secondly, by 

( ) ( )* * *Re Re
z z z

E H E H E Hθ θ θ− = , 

 

( )*

*

2

0

*

0

Re

1
Re

1
Im

r z

z

z

z

z

P E H

dH
n i H

drk n

dH
H

k n dr

θε=

� �
= 
 �

� �

� �
= − 
 �

� � .  (15) 

 

In the interior, 
in

z
H  is real according to in 

equation (3), thereby leading to 0
in

r
P = . In the 

exterior, recall the asymmetry parameter A ia=  

with a  being real. As a result, ( ),

ex

m A
G α  in 

equation (4) is reduced to 

( ) ( ) ( ),
2ex

m A m m
G J iAYα α α= −� �� � . Furthermore, with 

A ia= , ( ) ( ) ( ),
2ex

m A m m
G J aYα α α= +� �� �  for either 

ex
n qα =  or 

ex
n qα ρ=  being real. Notice that 

standing waves in the exterior are represented by 

( ) ( )m m
J aYα α+ . Consequently, 

ex

z
H  in the 

exterior gets real as well, thereby leading once more 

to 0
ex

r
P = . Therefore, the sole non-zero component 

is Pθ  in the angular direction, which is not of much 

interest. 

We have seen optical vortices at the cylindrical 

axis from figures 5 and 6. In this regard, notice that 

the energy density vanishes or 0in
W →  as 0ρ →  

as long as 2m ≥  as seen from figures 3(a) and 4(a). 

Therefore, there exist only a few photons near the 

cylindrical axis, for which we hope to work out 

quantum optical formulation as well. For space 

reasons, polarizations are not discussed in this study. 

See some results in Ref. [17]. As discussed for 

equation (12), the specific spin 
z

σ  is similar to the 

conventional degrees of electric-field polarization, 

namely, ,2rθΠ  and ,1rθΠ , but they are not equal 

[3,4]. In addition, our numerical results show that the 

effectiveness in achieving circular polarization 

increases with increasing azimuthal mode index as 
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m → ∞  and decreasing cylinder’s radius as 0q →  

[10]. 

In the case of our cylindrical EM waves, the 

energy supply from the radial far field could 

eventually lead to axial wave propagations, which 

would complicate but enrich the dynamics under 

considerations [9,15]. As regards equation (11), we 

should remark that light spin would not be 

proportional to the fictitious magnetic field, if 

( )*Im 0H H× ≠
� �

 or duality prevails. The case 

( )*Im 0H H× ≠
� �

 involves in general a complex 

asymmetry parameter A  unlike A ia=  valid in 

our case. The case ( )*Im 0H H× ≠
� �

 takes place in 

the presence of either material losses or axial 

propagations of EM waves [8,18]. The first case of 

material losses may be incurred by realistic metals or 

lossy dielectric media. The second case of axial 

propagations in the presence of energy exchange will 

be investigated in the future study. 

 

 

8. Conclusion 
In summary, we have examined both energy 

density and light spin of cylindrical electromagnetic 

waves. During problem formulation, the presence of 

both energy absorption and radiation was 

necessitated for maintaining time-periodic wave 

propagations without wave attenuations. By this way, 

we came naturally up with the light spin per energy 

density, namely, the specific spin. After establishing 

the bounded property of the magnitude of the specific 

spin, we have examined various characteristics of the 

specific spin for two geometries: the solid cylinder 

and cylindrical hole. In addition, we found that the 

specific spin is very sensitive to the size parameter, 

thus pointing out the peculiarity of nano-scale 

cylindrical objects. All the analytical tools we have 

developed in this study would serve as stepping 

stones on which we could build more delicate 

formulas as problem complexities increase and hence 

solutions to Maxwell’s equations get harder to be 

obtained. 
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