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Abstract 
An original approach is proposed in order to achieve the 

fitting of ultra-wideband complex frequency functions, such 
as the complex impedances, by using the so-called ACO 
(Ant Colony Optimization) methods. First, we present the 
optimization principle of ACO, which originally was 
dedicated to the combinatorial problems. Further on, the 
extension to the continuous and mixed problems is 
explained in more details. The interest in this approach is 
proved by its ability to define practical constraints and 
objectives, such as minimizing the number of filters used in 
the model with respect to a fixed relative error. Finally, the 
establishment of the model for the first and second order 
filter types illustrates the power of the method and its 
interest for the time-domain electromagnetic computation. 
 

 

1. Introduction 
In the optimization area, some classical gradient descent - 
based methods have been developed since several decades. 
These approaches, i.e. the gradient and derived (conjugate 
gradient) method, the simplex, and so on [1] can be qualified 
to be deterministic. They are based on the definition of a 
path, starting from a unique initial point towards the 
optimum to be found. As these methods start from only one 
point, the best efficiency is reached when this point is 
situated not far from the searched one. Moreover, since a 
multivariable function can present many local minima, only 
the solution located near the starting point will be attained. 
More recently, the heuristic approaches based on the 
numerical miming of biological phenomena have 
successfully been applied in optimization processes. In this 
case, the principle is very different; this process starts from a 
family of points randomly chosen in a previously defined 
research area. Clearly, it seems evident that the probability 
to attain the global optimum is increased. The most famous 
among all these is the genetic algorithm method, which 
considers the evolution of a population through some 
generations. This approach is based on the work of Holland 

and Goldberg [2],[3] for the binary coding, as well as on the 
approach developed by De Jong [4] using a more general 
coding. In all the cases, this kind of approach starts from a 
population of individuals, which represent the parameters to 
be optimized in the form of a string. These strings are 
assembled on the so-called chromosomes that constitute the 
characteristic of each individual. Then the method is based 
on three main phases: the initialization, the selection and the 
reproduction. Along an iteration process on different 
generations, the variables, modeled as chromosomes, are 
more and more in accuracy with an objective fixed 
beforehand.  

Like the Genetic Algorithm approach, some other methods, 
which are so-called metaheuristics, have been developed to 
solve the complex problem that corresponds to the class of 
the NP complete problem. Mathematically, it means that the 
computational time needed to solve such problems, versus 
the number of parameter, increases more quickly than a 
polynomial function over time. Among these approaches, 
the most famous are the Simulated Annealing [5] and the 
Particle Swarm Optimization (PSO) |6]. More recently the 
ant colony method initiated by Dorigo [7], [8], [9], [10] has 
been the subject of studies in different domains. The first 
algorithms were developed to solve a combinatorial 
problem, which corresponds to finding an optimum path 
between discrete points; this problem is clearly directly 
connected to the graph theory. As the original approach 
deals with discrete parameters, some recent modifications of 
the algorithm have been made to extend continuous 
variables to the mixed ones. One of the most contributions in 
this domain is the works of Socha [11]-[14].  

In this paper, the ant colony approach is detailed for both 
discrete and continuous optimization. It is shown how to 
perform the fitting of complex frequency functions such as 
transfer function, input impedances and to automatically 
minimize the number of filters. Moreover, on the contrary to 
the direct approaches such as Vector Fitting [15], the 
objective is not to fit as accurately as possible the original 
curve, since it can result from measurements which can be 
noisy.  
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The resolution of the electromagnetic wave propagation in 
dispersive media using a time domain method is a 
frequency-dependant problem that can be solved efficiently 
if the complex frequency function is expressed under the 
first and second order filters expansion. Hence, the fitting of 
the curve in a set of filters results in some auxiliary ordinary 
differential equations that is solved by numerical temporal 
method. In such a case, we understand the importance of 
limiting the number of filters in order to reduce the time 
computation. Thus one of the objectives is to admit a fixed 
deviation of the fitted curve around the original curve and to 
include this constraint in the optimization process. 

In the following section, the ant colony method is presented, 
first for discrete optimization, followed by the  continuous 
problem. Afterwards, some results show how it is possible to 
optimize the fitting by fixing an error level while 
maintaining the number of filters as low as possible. Finally, 
the example of a conducting medium representation is 
established over a very large bandwidth. 

 

2. Ant Colony method 

 

2.1. Discrete problem 

In order to quickly present the principle of the classical ant 
optimization approach, it is more practical to illustrate it on 
a simple example. The most classical problem to be solved 
by such an approach is the Travelling Salesman Problem 
(TSP) that is shortly described below. Considering N towns 
to be visited, the TSP consists in visiting all towns one and 
only one time and to minimize the path for coming back to 
the starting point. We can easily show that such a process is 
similar to finding the spanning tree of a graph constituted by 
N nodes and junctions between these nodes [9]. This is a NP 
complete problem as the number of paths that has to be 
explored strongly increases as the power of the number of 
towns.  

The basic principle of the discrete ant colonies method is 
explained by the following steps. First we have to choose a 
starting point among the different towns to be visited. We 
also choose an initial number of ants that will be launched 
on the grid of the graph composed of all possible 
connections between towns. Then, in the first step, all the 
ants move in the grid randomly to a second town. After that, 
they move to the next one avoiding to come back to an 
already visited town. Finally they come back home making 
one loop after travelling all towns. Similarly to real ants, 
artificial ants will proceed to pheromone deposit, this 
pheromone will be useful to other ants in the iterative 
process because, the next ants will follow the way 
containing more pheromone. The pheromone quantity is 
proportional to the inverse of the path length. The shortest 
path is then preferred by the following ants. But on the 
contrary of real ants, the pheromone deposit quantity is 
evaluated at the end of the trajectory. After that, when each  

 

Figure 1.  From the discrete probability law to the continuous one  

ant has completed its solution, a pheromone deposit process 
along the edges of the grid is made. Let Lk be the length of 
the path after one complete tour for the ant number k. (i,j) 
denotes the edge connecting the i and j towns, the deposit 
for the kth ant on the (i,j) edge after one tour is given by 
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withTk being the trajectory of the kth ant at the time t. Q is a 
constant parameter to be defined. Moreover some 
pheromone evaporatesat each iteration, and then an 
evaporation coefficient  is defined. As a result at the first 
iteration, a quantity of pheromone on each branch along the 
path is given by 
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After, the ants begin a second iteration choosing different 
paths with a probability which is in direct connection with 
the quantity of pheromone along the different branches. The 
probability of choosing a path is given by the formula 
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Where  is the amount of pheromone deposit at the 
transition level between states x and y and  is the 
desirability of state transition which behaves as 1/d, d being 
the distance of a considered edge. 

Finally, we come back to the first step, taking into account 
the amount of pheromone along the branches of the graph in 
order to determine the probability of each ant to choose this 
path. Using such an algorithm, it becomes clear that the 
more ants take a path, the pheromone deposit will be more 
significant. It is also clear that the shortest the path is, the 
more pheromone deposit appears. As a result, such an 
algorithm always converges towards the shortest path. 
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2.2. Continuous problem 

In the case of continuous problems, the previous algorithm 
cannot be applied. To overcome this drawback, some 
authors have developed particular algorithms. More 
generally, it should be interesting to deal with continuous 
and discrete parameters in the same algorithm. As a 
consequence, a mixed method has been developed, firstly 
presented by Socha [11] that keeps the same concepts as the 
discrete ACO method.  

For the case of combinatorial optimization, the choices of 
the different paths of the graph are function of a discrete law 
of probability. In order to extend the process to continuous 
variables, Socha keeps the usual algorithm, but changes the 
discrete probability law into a continuous Probability 
Density Function (PDF) (figure 1) [11]. That is the principle 
of the ACOR (Ant Colony Optimization for Reals) method. 
As it is not possible to obtain all the values of the parameters 
in the continuous case, a table called solution archive is 
defined 
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The dimensions of the table are K by N where K is the ant 
number and N the number of parameters to be optimized. In 
the solution archive table, the si

k value represents the actual 
solution for the ith parameter of the kth ant. Two extra vectors 
are also defined to help finding the best ants: f(sk) represents 
the value of the objective function for the kth ant and k is a 
weight that corresponds to the “quality” of the solution. To 
define the  vector, the ants are classified into the table from 
the best one (lower objective function value in the case of 
the searching for a minimum) to the worst one. 

As in the combinatorial ant algorithm, the convergence after 
several iterations can be attained due to the pheromone 
deposit as it is  shown below. The iterative algorithm is then 
made following the sequences hereafter. 

The first step consists in the initialization of the solution 
archive table. This is made by randomly choosing the s 
values for each parameter according to a selected 
distribution. In the initialization process, a uniform 
distribution of the mean values and a Gaussian distribution 
around these values is usually chosen. This Gaussian 

distribution is denoted g in the following. The initial chosen 
values, being uniformly distributed, they constitute the mean 
values for the next process in the iteration step. The 
probability for each variable will follow a multi-kernel law 
such as 
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In this formula, the means value and the standard deviation 
are chosen in order to cover the entire research domain 
according to the formula 
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Where ai and bi are respectively the lower and upper bound 
of the ith parameter. 

Then, the ACOR algorithm begins; it consists in ordering all 
the ants in the solution archive table according to their 
objective function value. The best ant will be the first, so we 
have 

 

 1 2 ... Kf f f   . (7) 
 

The  values correspond to the probability of selecting one 
ant. In the present case, a uniform or a Gaussian law can be 
chosen. For the particular presented case we consider a 
Gaussian distribution whose standard deviation is a 
parameter of the algorithm and the mean is equal to 1, which 
corresponds to the first ant in the table. The Gaussian 
distribution gives a weight according to the formula 
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Then the probability of selecting an ant in the following is 
given by 
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The process continues by selecting randomly m new ants for 
each parameter; the probability follows a multi-kernel law 
such as 

 



4 
 

 
1

( ) . ( , , )
K

i i i i
k k k

k

P x g x  


 . (10) 

 

The objective function is computed next. After that, the (k+ 
m) ants are reordered from the best to the worst one and the 
m last is taken out of the archive table. At this point, we can 
notice that this last process is similar to pheromone 
evaporation, it corresponds to cancelling some information 
that are not in agreement with the objective to be reached. It 
is also important to point out that the K ant values will be 
assimilated to the K mean values in the multi-kernel 
probability law, the standard deviation will also decreases 
when the iteration number increases following 
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where is a parameter of the algorithm, that can be in 
relation with the current iteration number i_iter (as 1/i_iter) 
so that the  value decreases as i_iter increases. 

 

 

3. Application to complex transfer function fitting  
 

3.1. Model and objective function 
In some EMC applications it is useful to have a 
mathematical representation function of frequency of 
impedances, material parameters or transfer functions, 
particularly in order to include the frequency dependent 
models for time domain numerical computations, such as the 
FDTD method. For example, a first or second order model 
of filter can be used to represent the Debye or Lorentz 
behavior of material, the summation of filters can represent 
a macromodel of the input impedance of a passive 
component. It is well known that a decomposition of a 
complex frequency-dependent parameter of Maxwell’s 
equations, such as () or () in a collection of first order 
complex filters, leads to a direct solving of a partial 
derivative system of first order without the need to calculate 
a convolution product. As a consequence, if we have some 
numerical or experimental issues of the frequency-
dependent parameter, we can use some fitting methods to 
extract an adequate model. In order to build the fitting of 
complex curves, the following process is often applied. First, 
a number of filters is selected, and the quality of the solution 
is determined by comparing the error that results from the 
difference between the two complex curves, i.e. initial data 
and reconstructed data. If this error is too high, the number 
of filters is increased. In a second part, the quality of the 
result relies on the best fitting of the initial data. This 
generally imposes an important number of poles in the fitted 
solution and, sometimes, the generation of non-physical 

filters to compensate some variations that are not in 
agreement with the initial data. 

The strategy defined above is generally efficient but the 
result is an overestimation of the number of poles, which can 
penalize the solving system that includes such a model. 
When the initial data is obtained, for example, from 
measurements, the fitting process does not match perfectly. 
Hence a more efficient strategy has to be chosen. To present 
our approach, we choose a model that is expressed as a 
summation of filters that can be resonant or (RC) law-pass 
ones. Figure 2 shows a typical example of resonant filter that 
is similar to the one used in the vector fitting approach. 

 
Figure 2.  Resonant filter model.  

 

As, in this case, this impedance is composed of a series of 
parallel circuits, we can easily give the analytical expression 
of the admittance of each component. The expression (12) 
gives a resonant filter as defined in the Vector Fitting 
approach. In the case of first order filters the expression (13) 
is generally used to represent relaxation phenomena 
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Then the total impedance is the summation in series of such 
parallel circuits, and then is expressed as 

 1( )
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Z
Y




 . (14) 

In order to fit curves, we start from a complex dataset, called 
Zref(). Then we impose two main constraints. The first one, 
which is our main objective, consists in making a fitting 
using a minimum number of filters of each kind (resonant or 
law pass) The second constraint consists in fixing the 
accuracy of the fitting by controlling the global error on the 
whole bandwidth. This is made by imposing an accuracy of 
the mean square value on the whole bandwidth. Since 
different objective functions can be chosen two of them will 
be tested in the following; it is shown that the behavior is 
different according to this choice. 

In the first approach, the objective is to find the minimum 
number of filters with the constraint that the error is lower 
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than the fixed level on the whole bandwidth. 
Mathematically, this can be written as 
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with Nmax the maximum number of filters, n the current 
number of filter and p the expected value of the relative 
error, in percent over the bandwidth. The error term called 
err is defined as 
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with Z(i) the evaluated value of the impedance at a given 
frequency, Zref(i) the exact value to be fitted at the same 
frequency,  a fixed level of error for the relative error. The 
summation operation is made on the values whose relative 
error is greater than the fixed threshold. In this first 
approach, as pointed out in the above formulas, the objective 
function value has to be lower than a precise value on the 
global bandwidth. Consequently, we expect the global 
behavior of the curve to be lower than the given level of 
error. 

The second way that is investigated has a different objective. 
In this case, we aim to have an error around a fixed value. In 
this case, the constraint is quite different 
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The minimization procedure is quite the same as the 
previous one, the notable difference is the err term (eq-18) 
that must be as lower as possible, that is to say, the relative 
error has to be close to the fixed value. In fact, the relative 
error will oscillate around the fixed value: 
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3.2. Application to resonant input impedance fitting 
In order to illustrate the process, we choose to fit a simple 
input impedance of a simple loaded transmission line. For 
this application, we have chosen a line of length 50 cm, 

whose characteristic impedance is 50 . A lossless line has 
been chosen, the input impedance of the transmission line 
loaded by 200  real impedance is considered over [10 kHz 
- 1.1 GHz] bandwidth. 

The input impedance contains five resonant filters over the 
considered frequency bandwidth. Now we apply the first 
optimization process defined above for different error level 
suited on the whole bandwidth. For this application, the 
model is established with second order filters only. Then, 
two error levels are chosen. First, a 10% error in the 
reconstruction is fixed. Figure 3 shows a good fitting of the 
curve, the error is equal to or lower than -20 dB (equivalent 
to p10%) on the whole bandwidth, as expected. In the 
present case, five filters are founded to give such a result. 
Then, still using the first objective function, a 1% error has 
been fixed. In this case a good result is also founded. As 
expected, the number of filters is greater than in the previous 
cases, because 9 filters are needed to have a proper 
reconstruction with relative error lower than -40 dB over the 
frequency bandwidth (figure 4). 

The second criterion is now tested with the same relative 
error levels. Figures 5 and 6 show the results. The errors 
oscillate respectively around -20dB and -40 dB as expected. 
The numbers of filters necessary to obtain these results are 7 
and 10, respectively.  

As a conclusion, we can say that the first solution is  more 
efficient in terms of computational resources when applied 
in time domain electromagnetic codes such as FDTD. 
Moreover, it is important to notice that using the classical 
Vector Fitting would not allow to control the error around 
the expected function. In fact, some peak of error would 
appear due to the lack of filters. 

 
Figure 3.  Impedance seen from the input of the line for a -20 dB error 
constraint.  



6 
 

 
Figure 4.  Impedance seen from the input of the line for a -40 dB error 
constraint. 

 
Figure 5.  Impedance seen from the input of the line for a -20 dB error 
constraint. 

 
Figure 6.  Impedance seen from the input of the line for a -20 dB error 
constraint. 

3.3. Application to lossy media  fitting on a very large 
bandwidth 
In the electromagnetic compatibility, antenna and radar 
domains we usually have to consider lossy media such as 
soils and non-perfectly conductive material sheets. Here the 
problem posed is to take into consideration such a material 
in time domain codes with time-dependent characteristics. In 
such a case, it is necessary to compute some extra equations 
in every discretization cell. As a result we understand the 
importance of decreasing the number of equations (i.e. the 
number of filters) to solve in each computational cell. The 
method is applied for the first constraint set (15), (16) and 
on a very large frequency bandwidth. We start from the 
surface impedance of a conductive thin material described 
by the following analytical expression 

 

 coth( )m
S m

jkZ jk d


 , (20) 

Where  is the material conductivity, d is the thickness of 
the material, km is the complex wavenumber, being given by 
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In order to fit the surface impedance we will consider the 
model proposed by Jansson et al [16], who suppose the 
surface impedance can be decomposed as 
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It is easy to show that each filter in the summation is nothing 
else than a (RL) filter. Then, it can be written as 
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The first part is the low frequency resistor 

 

 0
1R
d

 . (23) 

 

The fitting of the surface impedance has been made over [10 
MHz – 10 GHz] bandwidth for a 10% expected accuracy. 
Figure 7 shows that the red curve is situated between the two 
black ones that give the maximum deviation value +/- 10%. 
The frequency model response oscillates around the 
reference one given by (20). To obtain such a result, only 
four filters have been used. 

We have seen that the method gives the expected results, but 
an important error on the result (10%) is observed in the 
present case. With this result, we can ask what is the 
consequence of such a difference on the solutions provided 
by the electromagnetic simulation ? This problem is 
illustrated next for a cavity application. A rectangular cavity 
with lossy walls is studied. The conductivity of the walls is 
106 S/m and the thickness is 1 mm. The cavity is fed by a 
monopole and the problem is solved using a FDTD 
approach. The dimensions of the cavity and the different 
geometrical characteristics are given in the figure 8. 
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Figure 7.  Fitting of the surface impedance and approximation error.  

 

 
Figure 8.  The enclosure excited by a monopole a=28cm, b=3.8 cm, 
d=42cm, h1=1 cm Q=1000 

The field in the cavity is observed for two situations: a very 
accurate fitting case where the number of filters is chosen to 
have a relative error lower than 1% and the fitting with four 
filters and an error of 10% determined above. 

Figure 9 shows a very good agreement between the two 
results. As a consequence it appears that if an error of about 
10% can be admitted; there is no significant propagation 
error between the input values (the surface impedance) and 
the output (the electromagnetic field). As a very small error 
is observed, therefore, the number of filters to be considered 
has decreased, consequently the computational time and 
memory will also decrease.  

 

 
Figure 9.  Field in the enclosure for a perfect and a 4 filters fitting of the 
surface impedance.  

 

4. Conclusions 
In this paper we showed the ability of the continuous ant 
colony optimization approach for the fitting error control of 
the complex curves such as localized impedances and 
frequency-dependent material parameters. Such an approach 
allows us to handle various objective functions. Particularly, 
the possibility of introducing the number of filters was 
showed, used in order to construct the solution, as the 
objective function to minimize. Such resulting models can 
be used in numerical time domain method such as the 
FDTD. The decrease in the number of filters provides a 
limitation of computational time, particularly for solving 
structure with frequency-dependant media. This point is 
more pertinent since a mitigated accuracy of fitting does not 
really impact the accuracy of solutions in many applications. 
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