Unified multiconductor transmission-line model of multiple-shields multiconductor cables: evaluation of shield connections performances
Main Article Content
Abstract
This paper presents a transmission-line model of a multiple-shields multiconductor cable. This unified model includes at the same time the propagation and cross-coupling characteristics of the electrical wires and of the cable-shields. It also includes the electromagnetic characteristics of the shields (in terms of transfer impedance and transfer admittance). It is derived in compliance with the multiconductor-transmission-line theory and it is valid whatever the connection configurations at the shield ends are. Therefore, it makes it possible the modelling of realistic connection problems ranging from ideal 360° shield connections to simple bonding wires. In addition, it is suitable for both electromagnetic susceptibility and emission problems. The paper proposes a physical explanation of the derived per-unit-length matrices. This unified model is also used to define the required conditions for being able to calculate the response of a shielded-cable in a two-steps model in which the shield problem and the inner shield problem are solved in sequence. Finally, the paper illustrates an application of the model in order to evaluate performances of a shielded-cable-link on crosstalk configurations with respect to various electrical bonding techniques of the shield.
Downloads
Article Details
This work is licensed under a Creative Commons Attribution 4.0 International License.
Authors who publish with this journal agree to the following terms:
- Authors retain copyright and grant the journal right of first publication with the work simultaneously licensed under a Creative Commons Attribution License that allows others to share the work with an acknowledgement of the work's authorship and initial publication in this journal.
- Authors are able to enter into separate, additional contractual arrangements for the non-exclusive distribution of the journal's published version of the work (e.g., post it to an institutional repository or publish it in a book), with an acknowledgement of its initial publication in this journal.
- Authors are permitted and encouraged to post their work online (e.g., in institutional repositories or on their website) prior to and during the submission process, as it can lead to productive exchanges, as well as earlier and greater citation of published work (See The Effect of Open Access).
References
E. Vance, Coupling to shielded-cables, Editor : John Wiley & Sons Inc, 1979
Metallic Communication Cable Test Methods - Part 4-15: Electromagnetic Compatibility (EMC) - Test Method for Measuring Transfer Impedance and Screening Attenuation - or Coupling Attenuation With Triaxial Cell, IEC 62153-4-15:2015, Dec. 4, 2015.
Demoulin and L. Kone, Shielded-cables transfer impedance measurement, IEEE EMC Soc. Newslett., vol. 2010, no. 227, pp. 38-45, 2010.
Metallic Communication Cable Test Methods: Part 4-6: EMC - Surface Transfer Impedance - Line Injection Method, IEC 62153-4-6: 2006, May 9, 2006.
Z. E. Mohamed Chérif, G. Andrieu, G. Alerto, N. Ticaud, C. Julien, Transfer Impedance Measurement of Shielded-cables Through Localized Injection, IEEE Trans. Electromagn. Compat., vol. 60, no. 4, pp. 1018-1021, Aug. 2018.
J. P. Parmantier, F. Issac, I. Junqua & al, An application of Electromagnetic Topology on the Test Bed Aircraft EMPTAC Interaction Note 506 - November 1993. available at: http://ece-research.unm.edu/summa/notes/
J. P. Parmantier, S. Bertuol, and I. Junqua, CRIPTE: Code de réseaux de lignes de transmission multiconducteur, User's guide - Version 5.1, ONERA/DEMR/T-N119/10 - CRIPTE 5.1 2010.
C. E. Baum, T. K. Liù, F. M. Tesche, On the Analysis of General Multiconductor Transmission-Line Networks, Interaction Notes, Note 350, November 1978, [Online]. available at: http://ece-research.unm.edu/summa/notes/
J-P. Parmantier, Numerical coupling models for complex systems and results, IEEE Trans. Electromagn. Compat., vol. 46, no. 3, pp. 359-367, Aug. 2004.
L. Paletta, J-P. Parmantier, F. Issac, P. Dumas, J.-C. Alliot, Susceptibility analysis of wiring in a complex system combining a 3-D solver and a transmission-line network simulation, IEEE Trans. Electromagn. Compat., vol. 44, no. 2, pp. 309-317, May 2002.
S. Arianos, M. A. Francavilla, M. Righero, F. Vipiana, P. Savi, S. Bertuol, M. Ridel, J-P Parmantier, L. Pisu, M. Bozzetti and G. Vecchi, Evaluation of the modeling of an EM illumination on an aircraft cable harness, IEEE Trans. Electromagn. Compat., vol. 56, no. 4, pp. 844-853, Aug 2014.
C. Kasmi, M. Darces and M. Hélier, Statistical analysis of a spurious signal level in a low voltage PLC network, International Symposium on Electromagnetic Compatibility - EMC EUROPE, 2012, pp. 1-5.
X. Ferrières, J-P. Parmantier, S. Bertuol, A. Ruddle, Application of hybrid finite difference / finite volume to solve an automotive problem, IEEE Trans. Electromagn. Compat., vol. 46, no 4, pp. 624-634, Nov. 2004.
J-P. Parmantier, F. Issac, S. Bertuol, F. Boulay : Modèle unifié d'un câble multiconducteur blindé : application à la susceptibilité et à l'émission électromagnétique - CEM 2000 Clermont-Ferrand. 14/16 mars 2000, pp 131-136.
P. Degauque et J-P. Parmantier, Chapitre 2 : Couplage aux structures filaires, in Compatibilité Electromagnétique, Collection technique et scientifique des télécommunications, Lavoisier, Hermes. Paris 2007. In French.
S. Bertuol, J-P. Parmantier, F. Issac, I. Junqua, P. Foutrel, Cellule triaxiale à discontinuité de blindage pour la caractérisation de câbles blindés élémentaires par une approche combinée de mesures et de calculs, CEM 2006 Saint-Malo. 4/6 April 2006.
M. Ridel, P. Savy, J.-P. Parmantier, Characterization of Complex Aeronautic Harness - Numerical and Experimental Validations". IEEE Trans. Electromagn. Compat. - Volume 33 - Issue 5 - 2013 pp.341-352 - 2013.
S. Arianos, M. A. Francavilla, M. Righero, F. Vipiana, P. Savi, S. Bertuol, M. Ridel, J-P. Parmantier, L. Pisu, M. Bozzetti, G. Vecchi, Evaluation of the Modeling of an EM Illumination on an Aircraft Cable Harness. IEEE Transactions on EMC, Vol. 26, 4, Aug. 2014, pp. 844-853.
F.M. Tesche, M.V. Ianoz, T. Karlsson, "EMC Analysis Methods and Computational Models", John Wiley & Sons, pp.247-266. 1997.
RG58 Coaxial Cable, Farnell data sheet. [Online] Available at: https://www.farnell.com/datasheets/2095749.pdf
J.P. Parmantier, S-parameter determination with a pair of current injection and measurement probes. Interaction Notes. Note 552. October 1998. [Online] Available at: http://ece-research.unm.edu/summa/notes/