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ABSTRACT In this article we present the results of electromagnetic simulation, development and 
optimization of a guide polarizer with a diaphragm and pins. An original mathematical model was obtained 
using the wave matrix approach for a guide polarizer with one diaphragm and two pairs of pins. The 
discontinuity elements were modeled as inductive or capacitive conductivities for two kinds of linear 
perpendicular polarizations of the electromagnetic waves. The theoretical model is based on wave 
scattering and transfer matrices. The total matrix of a polarizer was developed using wave matrices of 
transmission of separate elements of a polarizer’s structure. Using elements of the general S-parameters the 
electromagnetic characteristics of a considered polarizer were obtained. In order to test the performance of 
a suggested mathematical model, it was simulated in a software based on the finite elements method in the 
frequency domain. The presented design of a polarizer is adjustable due to possibility of mechanical tuning 
of the heights of applied pins. Considered guide polarizer with one diaphragm and two pairs of pins 
provides a reflection coefficient of less than 0.36 and a transmission coefficient of more than 0.93 for both 
linear perpendicularly polarized modes. Therefore, a new theoretical technique was developed in the 
research for fast electromagnetic simulation of wave matrix elements of a guide polarizers with diaphragms 
and pins. Developed simulation approach can also be widely used for the development of new tunable guide 
filters, polarizers, rotators and other microwave components with diaphragms and pins. 

INDEX TERMS electromagnetic simulation; microwave engineering; waveguide components; 
electromagnetics; waveguide polarizer; microwave passive devices; wave matrix; polarization.

I. INTRODUCTION 
HE modernization of state-of-the-art radio engineering 
systems has contributed to the emergence of new radar 
and satellite telecommunication systems, metrological 

equipment, navigation systems and mobile communication 
systems. Ku-band is widely used in satellite television 
systems. One of the main reasons is the shorter 
electromagnetic wavelengths, which allow the reception of 
signals by parabolic antennas of small sizes [1]. Such 
systems are applied in radio engineering systems with 
polarization signal processing [2–11]. The development of 
these systems expanded information capacity of 
communication channels by the use of modern microwave 
filters, orthomode converters and waveguide polarizers. In 
particular, modern telecommunication systems apply 
various adjustable waveguide filters and other components 
[12–19]. The operating frequency range is regulated by 
means of pins. Orthomode transducers support separation 
of the transmitted and received orthogonal signals for the 
same antenna system [20–25]. They also direct the 
transmitted wave’s energy to an antenna and prevent the 
transmission to the sensitive receivers in radars. 

The function of a microwave waveguide polarizer is to 

convert electromagnetic waves from orthogonal circular 
polarizations into the waves with perpendicular linear 
polarizations. A polarizer can be designed and 
manufactured based on circular [26–31], coaxial [32–34] or 
rectangular/square waveguides [35–41]. The phase 
differential between linear polarizations of this device 
should be 90 degrees, therefore its stabilization in the 
operating frequency range is an actual problem. 

Coaxial polarizers [32–34] are used in dual-band radio 
engineering systems to transform the polarizations of 
signals in lower frequency band of two separate operating 
frequency bands. To create broadband and ultra-wideband 
waveguide polarizers the ridges are introduced into the 
structure [42–47]. The basic drawback of such devices is 
their sophisticated design and complicated mathematical 
methods, which are required for their analysis [48–56]. 

Waveguide septum polarizers are also frequently used 
[57–63]. They represent a specially formed phase-shifting 
structure created from a conductive metal septum with 
steps. The advantages of septum polarizers are broadband 
operation, good ellipticity coefficient of about 1 dB, ease of 
installation in a waveguide, versatility due to the possibility 
of choosing the type of polarization by installing a septum 
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in the waveguide and an acceptable cost for the consumer. 
It is especially important to provide resistance to fading and 
polarization mismatch for 5G wireless systems [64–70]. 

The resonant features of the pins limit the application of 
waveguide polarizers with them [71–83], since this design 
has a lower bandwidth. In addition, at the boundaries of the 
operating frequency range the ellipticity coefficient takes 
large values, which is undesirable effect in modern satellite 
communication systems. 

The main advantage of a waveguide polarizer with 
diaphragms over polarizers of other types is the ability to 
provide the most broadband mode of operation with good 
electromagnetic characteristics. A positive feature of using 
pin polarizers is the ability to tune them [79–83]. On the 
contrary, waveguide polarizers with diaphragms are not 
adjustable devices. Consequently, it is proposed to combine 
wideband diaphragm structures with adjustable pins. Thus, 
in this research we will introduce several pins into the 
design of a guide iris polarizer to enable its tuning. 

Therefore, in this research we will solve an actual 
problem of the development of new adjustable square 
waveguide polarizers applying diaphragm and pins, which 
provides the effective electromagnetic characteristics in the 
operating frequency band. 

II. THEORETICAL MODELING OF WAVEGUIDE 
POLARIZERS WITH DIAPHRAGM AND PINS 

The mathematical calculation and initial estimation of 
electromagnetic characteristics of a waveguide polarizers 
with diaphragms is usually carried out by means of the 
theory of equivalent microwave circuits [84]. It was 
implemented before using wave scattering and transmission 
matrices in [85–87]. This approach makes it possible to 
express the basic values of the polarizer through the 
elements of the generalized transmission or scattering 
matrix. Let's use it to create our mathematical model. 

The inner geometrical configuration of a developed and 
analyzed polarization converter containing a diaphragm and 
four pins is presented in Fig. 1. 

 
FIGURE 1. General view of a waveguide polarizer with diaphragm and pins. 

The design of this polarizer contains four identical pins 
and one diaphragm. Each pair of pins is located 
symmetrically with respect to the diaphragm, which in turn 
is located in the center of the waveguide section. 

For the theoretical analysis we will apply a single-wave 
approach using the wave matrix technique [85–87]. The 
equivalent networks of a considered waveguide polarizer for 
the cases of capacitive and inductive diaphragms are given 
in Fig. 2a and 2b, respectively. 

 
(a) 

 
(b) 

FIGURE 2. Equivalent networks of a polarizer with a diaphragm of capacitive 
type (a) and inductive type (b) . 

The equivalent conductivities of diaphragm in a square 
waveguide are determined by the following formulas [85]:  

,                       (1) 

,                        (2) 

where a is the width of walls of a square waveguide; d is 
the width of spacing or diaphragm window; λg is the length 
of fundamental wave in a considered square guide. 

Two equivalent circuits have uniform sections of the 
transmission line with electrical length θ, which is 
calculated by the formula: 

.                                  (3) 

The wavelength in a square waveguide is 
determined as follows [7, 8]: 

,                       (4) 

where λ0 is the length of electromagnetic wave in vacuum, 
2a is the cutoff length of the fundamental TE10 wave in a 
square guide. 

The equivalent conductivity of the pin in a rectangular 
waveguide is defined by the following expression [88]: 

,   (5) 

where ,  is pin’s height, k stands for the wave 
number, r designates radius of a cylindrical pin. 

For the vertically polarized fundamental mode TE10 the 
equivalent circuit of a square waveguide can be divided into 
five simple two-port circuits (Fig. 2, a). They include a two-
port circuit that is equivalent to a capacitive diaphragm, two 
circuits that are equivalent to a capacitive pin, and two 
circuits of regular transmission line segments. These 
circuits are described by the transfer matrices [10]: 
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;     (6) 

;                      (7) 

,     (8) 

where  and  denote the conductivity of the pin 
and diaphragm, respectively;  θ1 is an electric length of the 
equivalent transmission line. 

According to the theory of wave matrices, general wave 
T-matrix of the waveguide polarizer is given as the product 
of partial transfer matrices [7, 8]: 

.  (9) 

For propagation of the main electromagnetic wave 
polarized in horizontal direction the equivalent circuit of 
the polarizer can be divided into three simple two-port 
circuits (Fig. 2b). They include a two-port inductive 
diaphragm equivalent circuit and two two-port transmission 
line section circuits. In this case the influence of an 
inductive pins is neglected. The equivalent circuits are 
described by the following transfer matrices: 

;                      (10) 

,     (11) 

where θ2 stands for an electric length of the equivalent 
transmission line. 

Then the general wave transmission matrix for the 
fundamental electromagnetic mode with horizontal linear 
polarization is determined as follows: 

.       (12) 

The mathematical relation between wave T-matrix and 
S-matrix is determined by the following formula [84–86]: 

,   (13) 

where  denotes the determinant of transfer matrix  
calculated using (9) and (12). 

From the formula (13) we obtain expressions for the 
reflection factor  and transfer factor  of the 
analyzed waveguide polarizer [7, 8] as follows: 

;   .                   (14) 

Therefore, the mathematical model of a guide polarizer 
with diaphragm and pins was developed based on the wave 
matrix method. In the following section we will apply 
created mathematical model for analysis of electromagnetic 
characteristics and development of a guide polarizer. 

III. RESULTS OF MATHEMATICAL AND NUMERICAL 
SIMULATION OF ELECTROMAGNETIC PERFORMANCE 

This section presents the results of calculations of the 
reflection and transfer factors of the waveguide polarizer 
obtained using the developed mathematical model for the 
satellite operating frequency range from 11.7 to 12.5 GHz. 

Fig. 3 indicates that module of the reflection 
coefficient of the developed mathematical model of a 
waveguide polarizer for both fundamental modes TE01 and 
TE10 is less than 0.37 in the frequency range from 11.7 
GHz to 12.5 GHz. The lowest magnitude of the absolute 
value of the reflection factor of the polarizer is 0.06 at a 
frequency of 11.7 GHz. 

 
FIGURE 3. Reflection coefficients simulated by a mathematical model. 

Fig. 4 demonstrates that module of the transmission 
coefficient of developed mathematical waveguide 
polarizer for both fundamental modes TE01 and TE10 is 
greater than 0.937 in the DBS-band from 11.7 GHz to 
12.5 GHz. The highest magnitude of the absolute value of 
the reflection factor of the polarizer is 0.994 at a 
frequency of 12.05 GHz. 

    
FIGURE 4. Dependences of module of transmission coefficients on frequency 
for both linear polarizations calculated by the mathematical model. 
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Fig. 5 shows the dependences of conductivity on 
frequency for the pin of developed polarizer for different 
heights. Due to the inaccuracy of manufacturing, the 
characteristics of a real polarizer would differ from those 
calculated using a mathematical model. They can be 
adjusted by changing the height of the pins. In Fig. 5 it is 
seen that with an increase in the height of the pin, the 
maximum value of the conductivity of the pin increases. 

 
FIGURE 5. Simulated conductivity of the pin for different heights. 

Below we present the results of numerical modeling 
applying the finite element technique in the frequency 
domain [89, 90]. As a result, graphical dependences of the 
reflection and transfer factors of the polarizer in the 
operating frequency range were obtained. 

Fig. 6 presents the dependences of module of 
reflection coefficient on frequency for both polarizations. 

 
FIGURE 6. Dependences of module of the reflection coefficient on frequency 
for horizontal and vertical polarizations calculated by the numerical model. 

Fig. 7 presents the dependences of phase of reflection 
coefficient on frequency for both polarizations. 

 
FIGURE 7. Dependences of phase of the reflection coefficient on frequency for 
horizontal and vertical polarizations calculated by the numerical model. 

Fig. 6 demonstrates that module of the reflection 
coefficient of developed waveguide polarizer for both 
fundamental modes TE01 and TE10 is less than 0.36 in the 
DBS-band from 11.7 GHz to 12.5 GHz. The lowest 
magnitude of the modulus of the reflection coefficient of 
the polarizer is 0 at a frequency of 12.06 GHz. 

Fig. 8 and Fig. 9 present the dependences absolute 
value of the transmission coefficient and its argument on 
frequency for the developed polarizer. 

 
FIGURE 8. Dependences of module of transmission coefficients on frequency 
for horizontal and vertical polarizations calculated by the numerical model. 

 
FIGURE 9. Dependences of phase of the transmission coefficient on frequency 
for horizontal and vertical polarizations calculated by the numerical model. 

In Fig. 8 it can be seen that in the operating 
frequency range of 11.7–12.5 GHz the modulus of the 
transmission coefficient reaches a maximum value of 
1.0 at a frequency of 12.06 GHz. Fig. 9 shows that the 
phase for horizontal polarization decreases from 165° 
to 78°, and for vertical polarization decreases from 
78° to -20°. The minimum value of the modulus of the 
transmission coefficient of the waveguide polarizer is 
0.931 at a frequency of 11.7 GHz. 

Fig. 10 presents the dependences module of 
the cross polarization transformation on 
frequency for the developed polarizer. This 
indicator demonstrates the process of converting 
vertical polarization to horizontal and vice versa. 
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FIGURE 10. Dependences of module of cross polarization transformation 
coefficients on frequency for both polarizations calculated by numerical model. 

In Fig. 10 it can be seen that in the operating frequency 
range of 11.7–12.5 GHz, the modulus of the cross 
polarization transformation reaches a maximum value of 
−86.5 dB at a frequency of 12.02 GHz. The minimum value 
of the cross polarization transformation by vertical 
polarization is −88.3 dB at 12.47 GHz. The minimum value 
of the cross polarization transformation by vertical 
polarization is −91.1 dB at 11.7 GHz and the maximum 
value of  the cross polarization transformation by vertical 
polarization is −87.5 dB at 12.5 GHz. 

Table 1 presents main electromagnetic parameters of 
the optimized guide polarizer with a diaphragm and 4 pins 
in the operating band 11.7–12.5 GHz. These results were 
obtained by the mathematical and numerical models. 

 
TABLE I. COMPARISON OF THE ELECTROMAGNETIC PARAMETERS CALCULATED BY 

TWO METHODS FOR A WAVEGUIDE POLARIZER WITH A DIAPHRAGM AND PINS   

Type of 
model 

Maximal level of 
reflection coefficient 

Minimal level of 
transmission coefficient 

Mathematical 
model  0.37 0.937 

Numerical 
method  0.36 0.932 

 
Therefore, we can conclude from Table 1 that all the 

maximal levels of the reflection coefficient and minimal 
levels of the transmission coefficient almost coincided for 
both theoretical methods. This proves the correctness of the 
developed electromagnetic model of a waveguide polarizer 
with a diaphragm and pins. 

IV. CONCLUSIONS 
In this paper a new mathematical model of a polarizer 

based on a square waveguide with a diaphragm and four 
pins was developed. The proposed design of a polarizer 
provides the possibility to adjust the electromagnetic 
characteristics of the polarizer by changing the length of the 
pins. Using the developed mathematical model, the total 
scattering matrix elements were obtained and optimized in 
the operating satellite DBS-band. The waveguide polarizer 
maintains modulus of the reflection coefficient less than 
0.37. The modulus of the transmission coefficient is higher 
than 0.93 for both perpendicular linear polarizations. The 
cross polarization transformation reaches a maximum value 

of −86.5 dB at a frequency of 12.02 GHz and reaches a 
minimum value of −91.1 dB at the frequency of 11.7 GHz. 

The developed theoretical model can be used to develop 
and optimize scattering matrix elements of waveguide 
polarizers and other components with diaphragms and pins. 
Next researches need to focus on the creation of 
mathematical models with a larger number of diaphragms 
and pins to ensure better performance of the polarizer. The 
proposed waveguide structure can also be suggested to 
create new adjustable waveguide filters and phase shifters 
for various radio engineering applications. 
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