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ABSTRACT In this paper, wavelets transformation (WT) and wavelet packet transformation (WPT) are 
used in solving, by the method of moments, a semicircular array of parallel wires electric field integral 
equation.  First, the integral equation is solved by applying the direct method of moments via point-
matching procedure, results in a linear system with a dense matrix.  Therefore, wavelet transformation and 
wavelet packet transformation are used to sparsify the impedance matrix, using two categories of wavelets 
functions, Biorthogonal (bior2.2) and Orthogonal (db4) wavelets.  The far-field scattering patterns and the 
comparison between wavelets transformation and wavelet packet transformation in term number of zeros in 
impedance matrix and CPU Time reduction are presented. Numerical results are presented to identify which 
technique is best suited to solve such scattering electromagnetic problems and compared with published 
results. 

INDEX TERMS: Arbitrary Array of Parallel Wires, Moment Method, Integral equation, Sparse Matrix, 
Wavelets, Wavelet Packet.

I.  INTRODUCTION 
he art of computation of electromagnetic (EM) 
problems has grown exponentially for three decades due 

to the availability of powerful computer resources. Solving 
electromagnetic problems requires the application of 
Maxwell’s Equations with the appropriate formulation and 
boundary conditions. Many powerful numerical analysis 
techniques have been developed in this area in the last 50 
years [1,4-5]. 
The use of method of moments (MoM) in EM has become 
popular since the work of Richmond in 1965 and 
Harrington [7] in 1967. The method has been successfully 
applied to a wide variety of EM problems of practical 
interest such as analysis of electromagnetic wave scattering, 
radiating, and guiding problems,  to mention a few. In 
conventional MoM, the unknown function is expanded in 
terms of known basis functions with unknown coefficients. 
Unfortunately, the conventional bases, trigonometric, 
Legendre, Bessel, Hermite, and Chebyshev, when applied 
directly to the integral equations, generally lead to a dense 
matrix. As a result, the inversion and the final solution of 
such a system of linear equations are very time consuming 
[7]. 

There has been an explosive growth of research on 
wavelets, particularly in the last decade, resulting in a 
plethora of books, journals, and research papers dealing 
with the topic [8]. Recently, to fix the poor frequency 
localization of high frequency wavelet bases, Coifman, 
Meyer, and Wickerhauser [1-6] have generalized the 
construction of many other orthonormal bases of time-
frequency atoms, corresponding to different tilings of the 
time-frequency plane. Wavelet packet base is one important 
example constructed, with time-frequency atoms that split 
the frequency and the time axis, respectively, in intervals of 
varying sizes. Wavelet packet bases are designed by 
dividing the frequency axis in intervals of varying sizes. 
These bases are particularly well adapted to decomposing 
signals that have different behavior in different frequency 
intervals [1-12]. The wavelets are a powerful technique for 
solving integral equations, resulting in sparse impedance 
matrices [1]. This is due to features of vanishing moments, 
orthogonality and multiresolution analysis in wavelets.  The 
wavelet approach is used directly on the impedance matrix 
in order to make it sparse rather than on the operator 
equations in the form of a set of basis functions to 
approximate the unknown. The conversion of dense 
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matrices into a sparse form requires O(N2) operations. The 
algorithm for solving the resulting sparse system requires 
only O(Nlog 2N) operations, as shown in [12]. 

This work is concerned to study of wavelets and wavelet 
packets for the Solution of Electromagnetic Integral 
Equations. The paper is divided into three main parts; first 
the problems of a plane wave by an arbitrary array of 
parallel wires and scattering are presented. The next section 
briefly presents the matrix formulation of wavelet transform 
and we discuss wavelet packets. The numerical examples 
suggesting sparsity of the transformed matrices and 
comparisons between wavelet and wavelet packets. The last 
section contains conclusions and suggestions for future 
research. 

II. PROBLEM FORMULATION 

A. BASIC THEORY of SCATTERING by an 
ARBITRARY ARRAY of PARALLEL WIRES 

Consider the problem of computing the scattering of a TM 
polarized electromagnetic wave from a 2-D an Arbitrary 
Array of Parallel Wires with the boundary contour. This 
problem is of more general nature than the scattering wire 
and antenna wire [2-3]. The far-field scattering 
characteristics are obtained from the surface current excited 
by an incident wave. An arbitrary array of N parallel, 
circular wires of infinite length placed parallel to the z-axis 
are assumed to exist in unbounded free space is illustrated 
in Fig. 1 [2-3]. Let a harmonic TM wave be incident on the 
wires. Assuming a time factor ejωt, the incident wave in 
phasor form is given by 

 
(a) 

 
(b) 

FIGURE 1.  (a) An array of three wires parallel to the z-axis, (b) a semicircular 
array of 30 parallel wires. 

Let a harmonic TM wave be incident on the wires. 
Assuming a time factor ejωt, the incident wave in phasor 
form is given by [2] 

𝐻!" = 0                                          (1) 

And 

𝐸!" = 𝐸"(𝑥, 𝑦)𝑒#"$!                              (2) 

The incident wave may be, for example, one or more plane 
waves or a continuous spectrum of plane waves traveling in 
different directions, If a plane wave has an axis of 
propagation which makes an angle φ0 with the z axis, its 
field is given by 

𝐸"(𝑥, 𝑦) = 𝐸%𝑒#"&(()"*+!,-).!/0)"*+!)"*.!)           (3) 

ℎ = 𝑘𝑐𝑜𝑠𝜃"                                       (4) 

𝑘 = 23
4

                                             (5) 

The angle θi and φi, illustrated in Fig. 2, are the angular 
coordinates of the axis of propagation in the spherical 
coordinate system. The incident wave induces current on 
the surface of wire n. 

 
FIGURE 2.  : Propagation vector k [2]. 
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It can readily be shown that the field of a harmonic current 
In uniformly distributed on a circular cylinder of radius an 
has a z component given by [2-3] 

E5 = −I56H%
(2)(gρ5)e#789																	ρ5 > a5												(6)	

Where	

−I56 =
:;<"

=>"
I5J%(ga5)																																(7)	

g2 + h2 = k2																																							(8)	

J0 is Bessel function of order zero, and H0 is Hankel 
function of the second kind of order zero. By induction 
theorem, if In is regarded as the induced current, Eq. (7) 
may be considered as the scattered field, i.e. 

𝐸!? = −∑ 𝐼*6𝐻%
(2)(𝑔𝜌*)𝑒#"$!@

*AB                       (9) 

Where the summation is taken over all the N wires. On the 
surface of each wire (assumed perfectly conducting), 

𝐸!" = −𝐸!?,														𝜌 = 𝜌*																							(10) 

Substitution of  Eqs. (9) and (7) into Eq. (10) leads to N, 

I𝐼*6𝐻%
(2)(𝑔𝜌C*) = 𝐸!"(𝑥C, 𝑦C)

@

*AB

																			(11) 

Where 

𝜌C* = JK(𝑥C − 𝑥*)
2 + (𝑦C − 𝑦*)2	, 𝑚 ≠ 𝑛

𝑎C																																														, 𝑚 = 𝑛
             (12) 

And am is the radius of the mth wire. In matrix fro, Eq.(11) 
can be written as 

[𝐴][𝐼] = [𝐵]                                      (13) 

Or 

[𝐼] = [𝐴]#B[𝐵]                                    (14) 

Where 

𝐼* = 𝐼*6                                           (15) 

𝐴C* = 𝐻%
(2)(𝑔𝜌C*)                             (16) 

𝐵C = 𝐸%𝑒#"&((#)"*+!,-).!/(#)"*+!)"*.!)                     (17) 

Once 𝐼*6  is calculated from Eq. 14, the scattered  field can 
be obtained as 

𝐸!? = −∑ 𝐼*6𝐻%
(2)(𝑔𝜌*)𝑒#"$!@

*AB                       (18) 

Finally, we may calculate the ‘‘distant scattering pattern,’’ 
defined as  

𝐸(𝜑) = ∑ 𝐼*6 𝑒#"D((*,-)./0*)"*.)@
*AB                      (19) 

The following example, taken from Richmond’s work [3], 
will be used to illustrate the techniques discussed in the 
latter half of this section. 

B. The WAVELET TRANSFORM 

The idea behind applying wavelets to the Moment Method 
is to decrease the size of the discretization matrix of the 
integral equation. This approach is made by applying 
wavelets to the matrix obtained after discretization by the 
fast wavelet transform (FWT). Orthogonal wavelets have 
several properties such as orthonormal bases of L2(R), 
trade-off between orthogonality and continuity, order of 
regularity, and cancellation property, that are fascinating for 
electromagnetic field computations. Furthermore, 
orthogonal wavelets have localization properties in both the 
spatial and spectral domains [1,7-8]. 

In this section, the impedance matrix (IM) obtained by 
MoM is reduced to sparse one by a wavelet matrix 
transform and, hence, the computation cost is relatively 
lowered. By using the MoM, we obtain the matrix equation 
as Eq.13, where [Z] is a dense impedance matrix. 
Introducing a wavelet matrix [W], the matrix equation is 
then transformed as [8]: 

[Z]6[I]6 = [V]6                                (20) 

Z6 = WZWE, I6 = (WE)6I, and  V6 = WV 

Here T stands for the transpose of a matrix. One [I]6 is 
solved; the desired solution is obtained as: 

[I] = [W]E[I]6                             (21) 

Z6 has numerous very small elements which can be 
neglected (threshold) without largely affecting the solution.  
Practical considerations require that matrices must satisfy 
the following design criteria [8]. 

• The matrix must be (effectively) sparse. 
• Matrices must be sparse, so that matrix–matrix 

multiplications cost only. 
• The condition number of is not much larger than 

that of. 
The last criterium is dictated by the fact that iterative 
methods converge more slowly for systems with larger 
condition numbers. 
The continuous operator and discrete operator are related 
by 

Z = lim
F→H

𝑃I𝑍𝑃I = lim
I→H

𝑉I                      (22) 



  

 VOL. 9, NO. 3, NOVEMBER 2020
  
11 

where ZF is the approximation of Z projected on Vj and 
tested in Vj. The nonstandard form method toward the 
sparsification of an existing impedance matrix is: 
Since: 

VF/B = VF⊕WF                              (23) 

ZF/B = ^
AFF BFF

CFF Z>>6
F b                             (24) 

Where, 

A>>6
FF = 〈ψF,>	, Z(ψF,>6)〉 

B>>6
FF = 〈ψF,>	, Z(φF,>6)〉                        (25) 

C>>6
FF = 〈φF,>	, Z(ψF,>6)〉 

Z>>6
F = 〈φF,>	, Z(φF,>6)〉 

Matrix A>>6
FF   is very sparse because both of the expansion 

and testing functions are wavelets. Matrices B>>6
FF and 

C>>6
FF 	are composed of a mix of scalet and wavelet. Matrix 
Z>>6
F   is dense because both of the expansion and testing 

functions are scalets. These submatrices represent the 
interaction between the sources and fields in different 
subspaces [8]. Submatrix A, B, C, and Z of the matrix Z 
can be evaluated as follows. 

A>>6
FF = ∑ ∑ g5#2>gK#2>65K 〈φF/B,5	, Z(φF/B,K)〉          (26) 

B>>6
FF = ∑ ∑ g5#2>hK#2>6Z5,K

F/B
K5                        (27) 

C>>6
FF = ∑ ∑ h5#2>gK#2>6Z5,K

F/B
K5                        (28) 

Z>>6
F = ∑ ∑ h5#2>hK#2>6Z5,K

F/B
K5                      (29) 

The development of detailed steps relies on the two 
equations 

φF,> = ∑ h5#2>φF/B,55                           (30) 

ψF,> = ∑ g5#2>φF/B,55                           (31) 

Where h and g are the lowpass and bandpass filter 
coefficients, respectively. 

We may further improve the matrix sparsity in the 
nonstandard form as follows. Let us consider the lower-left 
quarter, C j j. Notice the fact that 

CL,F = gA
L#B,F

CL#B,F
h 								𝑙 = 𝑗, 𝑗 − 1,… . . ,1.            (32) 

A>,>6
L#B,F = 〈𝜓L#B,>	, Z(ψF,>$)〉                     (33) 

= ∑ g5#2>	C5,>6
L,F

*      (34) 

With; 

C>,>6
L#B,F = ∑ h5#2>	C5,>6

L,F
*                    (35) 

Note that the lower level implies a wider support of the 
basis and a fewer number of elements in the expansion of 
the unknown. This process can be repeated, as 

A>,>6
F#2,F = ∑ g5#2>	C5,>6

F#B,F
*                 (36) 

C>,>6
F#2,F = ∑ h5#2>	C5,>6

F#B,F
*                (37) 

In the same manner, the upper-right quarter 

BF,L = [AF,L#B BF,L#B], 𝑙 = 𝑗, 𝑗 − 1,… ,1.           (38) 

A>,>6
F,L#B = 〈𝜓L,>	, Z(ψF#L,>$)〉                  (39) 

A>,>6
F,L#B = ∑ g5#2>6	B5,>6

F,L
*                     (40) 

And; 

B>,>6
F,L#B = 〈𝜓L,>	, Z(φL#B,>$)〉                  (41) 

B>,>6
F,L#B = ∑ h5#2>6	B>,5

F,L
*                       (42) 

Finally, we are ready to attack the lower-right block CF. 

C. WAVELET PACKET  
This section is based on the work of Pr. Stéphane Mallat in 
his book “A Wavelet Tour of Signal Processing the Sparse 
Way “Ref [1]. Wavelet packets were introduced by 
Coifman, Meyer, and Wickerhauser [1] by generalizing the 
link between multiresolution approximations and wavelets. 
Orthonormal wavelet packet bases are computed with 
conjugate mirror filters that divide the frequency axis in 
separate intervals of various sizes.If the signal properties 
change over time, it is preferable to isolate different time 
intervals with translated windows. A space Vj of a 
multiresolution approximation is decomposed in a lower-
resolution space Vj+1 plus a detail space Wj+1. This is done 
by dividing the orthogonal basis nφF(𝑡 − 2N𝑛q*∈P of Vj  
into two new orthogonal bases [1-12] 
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!φ!"#(𝑡 − 2$"#𝑛(%∈' of Vj+1  and  !𝜓!"#(𝑡 − 2$"#𝑛(%∈'   of Wj+1      (43) 

The decompositions of φF/B and 𝜓F/B in the basis  nφF(𝑡 −
2N𝑛q

*∈P
 are specified by a pair of conjugate mirror filters 

h[n] and g[n]=(1)1-n h[1-n]. 

Theorem of Coifman, Meyer, and Wickerhauser generalizes 
this result to any space Uj that admits an orthogonal basis 
of functions translated by n2 j for n∈Z.  Let nθF/B(t −
2Q/Bn)q

5∈R
 be an orthonormal basis of a space Uj. Let h and 

g be a pair of conjugate mirror filters. Define 

θ!"#( (t) = ∑ h[n]θ!(t − 2!n)")
*+,)   

And                            θ!"## (t) = ∑ g[n]θ!(t − 2!n)")
*+,)                         (44) 

The family 

n𝜃I/B% (𝑡 − 2F/B𝑛); 𝜃I/BB (𝑡 − 2F/B𝑛)	q
*∈P

              (45) 

Is an orthonormal basis of Uj. 

Theorem Coifman, Meyer, and Wickerhauser proves that 
we can set Uj=Wj and divide these detail spaces to derive 
new bases. This space admits an orthogonal basis of scaling 
functions {φS(𝑡 − 2T𝑛)}*∈P with φS(𝑡) = 2#T/2φ(2#T𝑡) 
[1]. 

The two wavelet packet orthogonal bases at the children 
nodes are defined by the splitting relations (43): 

𝜓I/B
V (𝑡) = ∑ ℎ[𝑛]𝜓I

V(𝑡 − 2F𝑛)/H
*A#H           (46) 

And 

𝜓I/B
2V/B(𝑡) = ∑ 𝑔[𝑛]𝜓I

V(𝑡 − 2F𝑛)/H
*A#H          (47) 

Since n𝜓I
V(𝑡 − 2F𝑛)q

*∈P
is orthonormal. 

Where,  

ℎ[𝑛] = 〈𝜓I/B
2V (𝑢), 𝜓I

V(𝑢 − 2F𝑛)〉 

and              𝑔[𝑛] = 〈𝜓I/B
2V/B(𝑢), 𝜓I

V(𝑢 − 2F𝑛)〉               (48) 

Any node of the binary tree is labeled by ( j, p), where j-L 
>=0 is the depth of the node in the tree, and p is the number 
of nodes that are on its left at the same depth j -L. Such a 
tree is illustrated in Figure 3. To each node ( j, p) we 
associate a space WF

V, which admits an orthonormal basis 

zψF
V(t − 2Fn){

5∈R
by going down the tree [1]. 

 
FIGURE 3.  Binary tree of wavelet packet spaces[1]. 

III. NUMERICAL RESULTS 

The above theory was implemented has been coded in 
Matlab language for calculating the  induced current, and 
scattering pattern  of the an Arbitrary Array of Parallel 
Wires  and comparison of three methods, MoM, MoM/WT, 
and MoM/WPT, in terms of Sparsity of IM and CPU Time 
to reverse IM.  The geometrical and physical parameters of 
a circular array of Parallel Wires are summarized in table 1. 
The wavelets employed is constructed from Daubechies 
orthogonal wavelet with vanishing moment N = 4 and 
Biorthogonal wavelets with vanishing moment p=2 and 𝑝̌. 

TABLE 1. Geometrical and physical parameters of an Arbitrary Array of 
Parallel Wires [2]. 

Parameters No. of 
wire 

Wire 
radius 

Cylinder 
radius 

wave 
length 

E0 

Values N=30 Ka=0.05 R=1.12λ λ=1 1 

The plots of Scattering pattern E(φ) against φ for array of 
parallel wire are portrayed in Figs. 4.a and 4.b for the 
Daubechies and Biorthogonal wavelets, respectively.  The 
results, scattering pattern, using MoM, MoM/WT, and 
MoM/WPT are showing and compared with published 
results Ref. [2-3]. We see a good agreement between three 
methods. 
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(b) 

FIGURE 4.  : Scattering pattern for the plane array wires with φ0=0 and 𝜃! =
"
#
: (a) 

Daubechies wavelet and (b) Biorthogonal wavelet. 

The comparison between the MoM/WT and MoM/WPT 
from the point of sparsity level as a ratio which is the 
percentage of the nonzero elements in the impedance 
matrix is presented in figures 5.a and 5.b using Daubechies 
and Biorthogonal wavelets, respectively. 

 
(a) 

 
(b) 

FIGURE 5.  : WT and WPT matrix sparsity as a function of Threshold for the 
array parallels wires: (a) Daubechies wavelet and (b) Biorthogonal wavelet. 

As seen in Figures 5, the MoM/WPT method gives the 
matrix sparsity more than the MoM/WT method, for 
example for Thr = 0.6 the MoM / WPT the rate of  sparsity 
is 97% while for MoM/WT is 94% for the Daubechie 
wavelet, the same for the Biorthogonal wavelet. We 
observe also that the number of zeros in IM increases when 
increasing the threshold; this is due to canceling of the 
impedance matrix elements. 

In order to better explain the benefits of the performed 
computational model, the following quantities have been 
also considered [19]: 

𝑒𝑟𝑟Y(𝑡ℎ𝑟) =
‖P%#P#&#‖"
‖P#&#‖"

		and    𝑚𝑒𝑚 = @'
@C-C

       (49)                                    

Where Zmom, Nmom are the computed solution and 
number of matrix entries with MOM and Zw ,  N[the 
solution impedance  and number of matrix entries with 
wavelet-MoM and the symbol ‖ ‖2denotes the L2 norm. 
 
Table 2 shows a comparison CPU Time, CPU Time 
reduction, relative error and memory requirement using 
MoM/WT and MoM/WPT methods associated with 
Daubechies and Biorthogonal wavelets in characterizing 
array parallel wires. The calculations are made on a PC 
computer with AMD Dual-Core 1.30 GHz CPU, 2 GB 
memory and Windows 7 Professional system. 
TABLE 2. Comparison CPU Time, CPU Time reduction, relative error and 
memory requirement. 

Parameters Wavelets Daubechies Biorthogonal 
 

CPU (ms) 
 
 

MoM/WT 17.44 17.79 

MoM/WPT 17.16 16.98 

CPU Time 
to reverse 
IM (ms) 

MoM/WT 1.84 2.19 
MoM/WPT 1.56 1.38 

CPU 
reduction % 

MoM/WT 12.80 11.05 

MoM/WPT 14.2 15.1 

 
mem % 

MoM/WT 70.1 70.26 

MoM/WPT 69.86 69.78 

Relative 
error 

MoM/WT 0.0920 0.0913 
MoM/WPT 0.0887 0.0876 

 

Table 2 also reveals that the use of MoM/WT and 
MoM/WPT leads to a CPU Time reduction of 11.05% and 
15.10%, respectively, for a threshold of 0.6.  This is due to 
the fact that the CPU time to invert a matrix is proportional 
to the number of non-zero matrix elements. On the other 
hand, we can notice that the MoM/WPT(db4)  given 
relative error less than MoM/WT. 

IV. CONCLUSIONS 

In this paper, the scattering from a circular array of parallel 
wires has been analyzed using a numerical technique based 
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on the MoM and wavelets. In the first, the wavelet 
transforms and wavelet packet transforms have been 
applied to the MoM matrix in order to obtain a sparseness 
in the system matrix. In the second, a comparison among 
these techniques, MoM/WT and MoM/WPT, is presented 
using numerical examples. Several plots for the Scattering 
pattern presented, regarding various methods. The 
computed results were compared with published results 
Ref. [2-3] and very good agreement was observed. In 
summary, the above-described use of wavelet packet 
transformations for the solution of electromagnetic integral 
equations appears to be superior in all aspects of 
comparison including characterization of the matrix 
sparsity, and computation time. 
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