
A Hybrid Time-Domain
Maxwell/MTLN-Equations Method to
Simulate EM-induced-Currents on
Electric Cable-Bundles Inside Cavities
J-P. Parmantier1, X. Ferrieres2 and P. Schickele1
1ONERA/DEMR, Université de Toulouse, F-31055 Toulouse - France
2ONERA/DEMR-LMA2S, Université de Toulouse, F-31055 Toulouse - France

ABSTRACT This paper proposes a time-domain hybrid method for coupling Multiconductor-
Transmission-Line Network equations and a Finite Element Method to evaluate the electromagnetic
response of the electric wires of a cable-bundle located inside a 3 dimensional structure. The method
is applied and demonstrated over a box structure made of several volumes containing a realistic
multiconductor cable-harness and illuminated by a plane wave. The formalism of the method is given
and the results obtained show the interest of this approach.

INDEX TERMS Maxwell-equations, Finite Element Method (FEM), Multiconductor-Transmission-Line
Network (MTLN), Time-domain hybridization.

I. INTRODUCTION
We are interested in the electromagnetic (EM) response of a
system composed of an electrical wiring located inside a 3D
structure. Considering the characteristic dimensions of the
three-dimensional (3D) structure and the bundles of electric
wires, such a problem is a typical multiscale problem for
which both components require specific equations that must
be coupled between each other in order to be able to handle
all the relevant parameters of the entire EM problem.
On the one hand, 3D numerical methods solving Maxwell’s
equations are now very mature to describe EM scattering
by and into realistic structures. Many techniques exist with
their advantages and their drawbacks depending on the
type of problem to address [1][2][3][4]. However, including
wire network models into 3D EM numerical techniques
is always a challenge. We may mention common issues
related to the description of wire routes in discretized 3D-
geometrical models or issues for maintaining the stability
of the global numerical scheme. By the way, many wire
models [5][6][7][8] embedded in 3D schemes cannot handle
the specificities of multiconductor networks : large number
of wires in branches, large variety of cable types, complex
connections at junctions and various types of load termina-
tions.
On the other hand, Multiconductor Transmission-Line Net-
work (MTLN) models allow capturing all those specificities
[9]. However they are limited by the Transmission-Line (TL)
theory which requires the quasi Transverse Electromagnetic

(TEM) approximation. Of course, nowadays, very efficient
hybridization techniques based on Field-to-Transmission-
Line (FTL) [10] allow users to couple MTLN equations
together with Maxwell’s equations. Nevertheless, they are
still limited by this TEM approximation which makes the
application of FTL impossible at high frequencies or when
a reference return conductor cannot be clearly defined for
the TEM model.
In this paper, we investigate a hybrid numerical method
that links TL-equations together with the Maxwell-equations
and that overcomes the previously mentioned limitations.
For this purpose, the capability to link both EM fields
and TL-induced currents including the reaction of one on
the other becomes a requirement. To this extent, we think
of applying a hybridization technique entirely set in the
time-domain making possible this reciprocal EM-field-to-
TL-currents reaction applicable at each time step of the
calculation. However, we want this hybridization technique
flexible enough in order to be able to choose the most
appropriate Maxwell-equation numerical scheme for the
calculation of the EM fields. In addition, we want to handle
excitation sources generated either as EM fields in the 3D
Maxwell calculation domain or voltage/current generators
on the MTLN calculation domain.
In order to validate our method and demonstrate its flex-
ibility we propose to apply it on a specific system made
of an electrical conductive box containing several volumes
in which a complex wiring harness is installed and illumi-
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nated by an incident plane wave. Due to the rectangular
geometry of the 3D structure we want to show how a
dedicated FEM method may improve the performance and
the precision of the field calculation. In section II of this
paper, we describe the application problem that will lead
our hybridization technique development and validation. In
section III, we introduce the formalism of our time-domain
hybridization technique and we put it into perspective with
the well-known thin-wire model. In section IV, we apply this
technique on our application test-case. First we show the
validation of our Multiconductor-Transmission-Line (MTL)
equation numerical scheme and introduce a FEM technique
dedicated to a cartesian meshed model of the geometrical
problem. Then we show the validation of the hybridization
process and how a MTLN model to account for topological
specificities of wiring harnesses is required to overcome
the thin-wire model limitations. Finally, we conclude on
the achievements of this paper and introduce prospects for
future improvements of our hybridization technique.

II. PHYSICAL PROBLEM DRIVING THE DEVELOPMENTS
The structure leading our development is a parallelepiped
box called NTC2, as "Numerical Test-case 2", that has been
defined and studied in a former H2020 European Project
called EPICEA, 2017-2019, (grant agreement no689007)
[11]. It consists of 3 interconnected cavities (Cavity 1, 2
and 3), 100cm× 90cm× 70cm each, in which an electrical
wiring is installed. The various dimensions are given in
Figure 1 with respect to a x, y, z reference system. In the
Figure, red and blue strips display current return networks
that do not have to be considered in our problem since
they are melted with the PEC faces and walls. The exterior
faces of the box are labelled Ti, i = 1, 3, Di, i = 1, 3,
Ri, i = 1, 3, Li, i = 1, 3 with end-faces noted F3 and B1.
The separation walls between the 3 cavities are labelled S1-2
and S2-3. The box is provided with 3 openings to the outside
labelled A1, A2 and A3, which are points of penetration
and loss of EM energy from the outside and to the outside.
The separation wall S1-2 is also provided with an internal
aperture labelled A1-2 allowing energy flowing between the
two separated cavities. In our problem, all the materials have
been considered PEC (Perfectly Electrical Conductors).

A wiring is routed into the 3 cavities, along 3 branches
connecting B1, R2 and F3 faces, going through the separa-
tion walls S1-2 and S2-3 into small holes called H1-2 and
H2-3. The topology of the 3 branches is as follows :
• from the R1 face, Branch 1, 1.95m-long, runs along

the z axis in Cavity 1, in parallel to the corner made
by L1 and R1 faces, crosses wall S1-2 into Cavity 2,
in parallel to the corner made by faces L2 and R2, and
ends up at a separation junction, just before the small
hole H1-2 ;

• Branch 2, 0.55m-long, runs along the z axis from this
separation junction into Cavity 3, in parallel to the
corner made by faces L3 and R3 though the small hole
H2-3 ;

• Branch 3, 0.45m-long, runs along the y axis in Cavity
2, in parallel to the corner made by the S2-3 separation
wall and R2 face.

All 3 branches are at 5cm from all closest faces and walls.
They end-up at terminations labelled Ter1 for Branch 1,
Ter2 for Branch 2 and Ter3 for Branch 3.

Lossy dielectric cubes, 20cm×20cm×20cm, are located in
each cavity as shown in Figure 1 in order to lower the quality
factors, as encountered in real industrial structures. In real
structures, such losses are brought by furniture, electric and
electronic equipment, passengers, wall and floor coating
etc... The electrical properties of each cube are: relative
dielectric permittivity εr = 2.5 and electric conductivity
σ = 3.7mS/m.

As far as the EM excitation is concerned, the structure is
illuminated by an incident plane wave whose characteristics
are as follows :
• the wave vector k is located in the xz plane, inclined

by 45o relatively to the z axis ;
• the electric field, E, is also located in the xz plane,

inclined by 45o relatively to the x axis ;
• the magnetic field, H , is along the y axis.
The time dependent waveform applied to the plane wave-

excitation is a Gaussian pulse given by f(t) = Aexp(−((t−
t0)/a)2), with A = 1V/m, t0 = 7E− 10s and a = 2.5E−
10s.

The electrical wiring topology is described in Figure 2.
The wiring is made of several types of electrical wires fol-
lowing branches 1, 2, 3 and connecting impedance networks
located at termination junctions called J1, J5 and J6. A
junction J3 allows the connection between the electric wires
at the level of the junction of the 3 branches. Junctions J2
and J4 simply provide the continuity of the electric wires
when crossing into H1-2 and H2-3 holes.
In Branch 1 running between junctions J1 and J3, the wiring
is made of a 50Ω (characteristic impedance) coaxial cable
and a single-wire cable, both of them located inside an
overshield. In Branch 2, the coaxial cable and single wire
of Branch 1 are continuing their route up to junction J5 to
which a pair-cable is added. The 3 types of cables are inside
an overshield with the same electrical characteristics as in
Branch 1, thereby prolonging the overshield on Branch 1. In
Branch 3, the two wires of the pair-cable of Branch 2 are
continuing inside a shield, becoming therefore a shielded
pair cable. At the level of junction J3, perfect connection
between all the electric wires in each branch and between
all cable shields is provided. The single wire in branches 1
and 2 is connected to 10kΩ common-mode resistances at
both ends. The wire of the coaxial cable is connected to
50Ω common-mode resistances at both ends. The wires of
the pair running in Branch 2 and Branch 3 are connected to
two differential loads made of 1kΩ resistance in series with
a 2nF capacitance.

All cable shields, the coaxial-cable shield, the shielded-
pair shield and the overshield are connected at their ends,
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(a) Topological description and wiring routes

(b) Main dimensions

(c) Absorbing cubes, locations and dimensions

(d) Plane wave excitation

FIGURE 1: 3D-structure problem geometry, absorbing ele-
ments, dimensions and source excitation.

at the levels of junctions J1, J5 and J6, respectively corre-
sponding to the connection points Ter1, Ter2 and Ter3 in the
structure. No other connection to the structure is considered
along the branches between those 3 junctions. Note that
all shields and cable shields are considered as equivalent
wires of the multiconductor bundles and labelled as such in
Figure 1.

Actually, such a wiring topology has been designed on
purpose to show how a shielding strategy may be entirely
broken by an inappropriate management of the shield con-
nections. Indeed, the overshield in branches 1 and 2 is
mounted properly, with its extremities connected to the
structure, which enables maximum current circulation on it.
However, the expected shielding effect on the whole network
may be totally ineffective for two main reasons. First, the
connections of this overshield to the structure should be
done when crossing walls at the levels of J2 and J4 in order
to confine EM field in each of the 3 cavity volumes of the
3D-structure and avoid shield current conduction from one
volume to the other. Second, and especially, this overshield
topology is not maintained in branch 3 in which the shield
of the shielded pair is connected to the shield of the coaxial
cables running in branches 1 and 2. If some EM coupling
happens in branch 3, the induced current on this shield
is likely to separate into the two shields of the coaxial
cables and thereby drive some currents inside the overshield,
which is not wanted. A proper topology connection would
have been to connect the shield of the shielded pair to the
overshield at the level of J3.

FIGURE 2: Wiring topology under study.

III. NUMERICAL MODEL PROPOSED TO SIMULATE THE
PHYSICAL PROBLEM.
Two main modelling strategies are available in the literature
to assess EM coupling on cables at system level :

• a simplified modeling of the wiring integrated into
Maxwell’s equations, also known in the literature as
"thin-wire" formalism [5] ;

• a FTL hybridization method between a MTLN equation
for determination of the wiring electrical response and
Maxwell’s equations to evaluate the wiring voltage and
current equivalent generators coming from incident EM
field terms [12]. Among those models, the Agrawal
model is very appropriate from a numerical modelling
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point of view because it requires only voltage genera-
tors equal to the tangential incident electric fields along
the MTLN routes [13].

For a precise modelling of a real wiring problem includ-
ing various types of cables, in terms of propagation, EM
shielding, cross-coupling inside bundles, and topology in
terms on connectivity of those cables, FTL is very appro-
priate [14],[15] and is now commonly accepted for complex
wiring modelling at system level [10], [16]. However, its
application suffers from a major approximation which is the
absence of scattered EM field reaction of the wire induced
currents over the incident fields. In the two following
paragraphs, we briefly present the mathematical equations
of the thin-wire and FTL strategies and the improvements
we propose to FTL in order to establish an hybridization
technique that solves this field reaction limitation.

A. THIN WIRE FORMALISM IN TIME-DOMAIN VOLUME
3D TECHNIQUES
The well-known formalism proposed by R. Holland [5] can
be written by the system of equations :

ε∂tE + σE + J = ∇×H
µ∂tH = −∇× E
∂tI = −ν2∂lq − E

L
∂tq = −∂lI

(1)

where E, H , I and q are respectively the electric and
magnetic fields in the computational domain Ω ⊂ IR3 and
the currents and charges on the wire structures, in the
computation domain Ωl ⊂ IR. The terms E = E · u, with
u the vector director of the wire, and J = I/S are coupled
terms which are given by the computed electric fields E in Ω
and the electrical currents I evaluated on the wires. ν defines
the propagation velocity of the medium characterized by its
permittivity ε and its conductivity σ. S is homogeneous to a
surface (see [5]) and the quantity L is, an inductance value
given by the thin-wire formalism. The reader will refer to
[5] for more details on these definitions.

To complete the system of equations (1), a condition on
the electric field is added for perfectly metallic walls, given
by n×E = 0, where n is the normal to the wall. In addition,
PML (Perfectly Matched Layers) [18] are used to bound the
computational domain Ω and the condition n × E = 0 is
set on the boundary ∂Ω of this computational domain.
At wire ends, several conditions can be considered :
• q = 0, the electric charge is null when the wire is

connected to a PEC surface ;
• I = 0, the total current on wire is null when the wire

is not connected to any surface or any wire ;
• q = ±I/ν defines the electric charge when the wire is

assumed to be infinite ;
• for n wires wi, i = 1, n, connected to each other, we

have
n∑

i=1

Īi = 0 and ∀i = 1, n, Vi = V0, where V0 is

a real value, Vi is the voltage at the end of the wire

wi, and Īi is the signed current (+ when going into the
junction, - when outgoing from the junction). Also for
any wire wi, the voltage Vi at one of its extremities,
is also equal to Liν

2qi (we have LiCi = 1/ν2 and
Vi = qi/Ci), with Li the inductance of the wire and
qi the electric charge at this extremity.

In addition to the fact that each network branch is
modelled as a unique wire, the general numerical constraint
of this model is the fact that the wires must be considered as
thin wires, i.e. their radius are much smaller than the size of
the mesh-cell. Doing so, the calculated currents can be seen
as "averaged currents" on network branches and it becomes
impossible to distinguish the currents in each elementary
cable in the branches. Another disadvantage of the Holland
model is that the wire directions must follow the mesh cells.
Nowadays, several models called "oblique wires" [6], [7],
[8] have been proposed in the literature. However, whatever
those improvements, the current calculated in the thin-wire
models is not equal to the total branch current since the
connectivity at junctions and end loads of each wire is
not accounted for. This limitation may result in significant
errors, especially at low frequency or late time responses.

To mitigate such drawbacks, a model has been proposed
in [19] that makes it possible to handle multiconductor ca-
bles made of several wires provided that the wires radius (as
well as the distance between wires) remain small compared
to the mesh-cell size and run within a homogeneous medium
in each mesh-cell. Unfortunately, those limitations together
with the limited possibilities of connections between several
wires at wire-junctions make this problem not applicable for
realistic wire system modelling.

B. HYBRID MAXWELL/MTLN EQUATION
As for the thin-wire formalism, the principle of the hybrid
method consists in coupling two systems of equation :
one system, based on Maxwell’s equations, to evaluate the
EM fields and one system, based on MTLN equations, to
evaluate the induced currents on the wires of the MTLN
model. Unlike for the thin-wire formalism, this hybrid
method allows the user to consider complex network topolo-
gies made of a large variety of multiconductor cables and
wire junctions, including electrical circuit networks at wire-
junctions and end-loads. The network model description
uses a topological model made of junctions and tubes
representing respectively the wiring junctions and branches
according to EM topology [20] (see Figure 3). Each tube k
supports a MTL model. Figure 4 displays the elementary
circuit-cell of a 2 wire MTL labelled k. The electrical
properties of this circuit are described by series Zk per-unit-
length (p.u.l.) impedance and Yk p.u.l. admittance matrices.
A usual and convenient approximation consists in decom-
posing those two matrices in two not-frequency-dependent
parts with a resistance Rk matrix and a conductance Gk

matrix respectively and two linear frequency (ω = 2πf , f :
frequency) varying parts with a p.u.l. inductance Lk matrix
and a p.u.l. capacitance Ck matrix respectively. All those
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matrices depend on the geometry cross-section and elec-
trical properties of the MTLs [21]. As far as cable-shields
and bundle-overshields are concerned they also include the
transfer impedance (Zt) properties of those shields [22]. In
our approach, this model is based on a common reference
conductor in which all the TL currents of the wires return.

In the general MTLN theory, this reference can be made
by the nearest structure to the cable or one of the wires
in a cable bundle. On the one hand, FTL theory, imposes
to set this reference as the closest structure. On the other
hand, our hybrid numerical modelling strategy, as in the
Holland formalism, makes it possible to consider the set of
mesh-cells surrounding the cable bundle as a fictitious and
equivalent reference conductor. It appears when deriving the
TL or MTL equations in the 3D model but unlike the real
electric wires of the electric conductors it does not have real
existence. It offers several advantages :

• the identification of the "closest structure" is not always
easy to make when this one is not plane. This is
for example the case for network branches running
along corners or over curved surfaces. Encapsulating
the MTL model within surrounding mesh-cells makes
them fully independent from the surrounding structure ;

• even if the "closest structure surface" can be identified,
its geometry or the height of the network branches
with respect to this structure may change, which
makes the related MTL models become Non-Uniform
Transmission-Lines (NUTL) models. In other terms,
the MTL cross-section changes with the position along
the tubes. The resolution of NUTL requires approaches
that are all equivalent to breakdown the MTL in small
uniform MTLs [22], which makes the calculation of
course most costly than usual uniform MTLs. Our time-
domain formulation of MTL model naturally requires
such a decomposition in elementary cells as in Figure
3 and the fact of sampling those MTL cells is not
a limitation and allows us to consider NUTL models
when, for example, the geometry of the surrounding
cells vary along the wires ;

• the TEM approximation must be verified and remains a
limitation for the application of MTL models. However,
when the reference is taken in the mesh-cell, the dimen-
sion of the mesh-cells is generally smaller compared to
the height of the bundle to the closest structure surface
(again, when this one can be identified), which pushes
ahead the frequency limit of the model.

The equations of the model are given by the Maxwell-
equations and N transmission lines equations corresponding
to the N tubes in the network configuration. Let Ω ⊂ IR3

and ∀k = 1, N,Ωk ⊂ IR, be respectively the compu-
tational domains for the EM fields and the Ik and Vk,
electrical current and voltage vectors. Then, we search
(E(t, x), H(t, x)) ∈ IR6, ∀(t, x) ∈]0, T [×Ω and for all
k = 1, N , (Ik(t, `), Vk(t, `)) ∈ IR2mk , with mk, the number

FIGURE 3: Topological model of the Figure 2 wiring net-
work under study. The network model is made of junctions
(J1 to J6) and tubes (T1 to T5). "(x)" denotes the number
of conductors in the tubes.

FIGURE 4: Two-wires Multiconductor Transmission Line
elementary circuit cell model.

of wires in the cable k, and (t, `) ∈]0, T [×Ωk, so that :

ε
∂E

∂t
+ σE + J = ∇×H

µ0
∂H
∂t = −∇× E

E(t = 0, .) = H(t = 0, .) = 0 on Ω
∀t ∈]0, T [, n× E(t, x) = 0 ∀x ∈ ∂Ω

On Ωk, ∀k ∈ {1, ...,H} :

Lk
∂Ik
∂t

+Rk Ik = −∂Vk
∂`
− E · uk

On Ωk, ∀k ∈ {1, ..., N} :

Ck
∂Vk
∂t

+Gk Vk = −∂Ik
∂`

Ik(t = 0, .) = Vk(t = 0, .) = 0 on Ωk, ∀k ∈ {1, ...,H}
+ boundaries conditions onJUm, ∀m ∈ {1, ...,M}

where T defines the observed time, n, the outward normal at
the boundary ∂Ω of the domain Ω, uk the director vector of
the cable k and ∀m = 1,M, JUm is the junction m in the
topological network. The number of junctions in the network
is equal to M . In these equations, Rk, Lk, Gk and Ck are
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the matrices of size mk × mk that define respectively the
p.u.l. resistance, inductance, conductance and capacitance
matrices as described in Figure 4.

As for the thin-wire formalism, the two coupling terms
are defined by the current density J and the tangential
electric field component along the wire path, E · uk. Like
in the thin-wire formalism, we indeed define an averaged
path (also called "central path") for each tube on which
we compute the electrical fields required to evaluate the
E · uk terms [13]. Next, this value is injected as a voltage
generator source term distributed along the length of each
wire of the tube k. Then, we can evaluate the current vector,
Ik, whose components are the currents on all wires of the
tubes. The sums of those currents on each tube k, Itot,k, act
themselves as distributed current density sources Jk that
generate an EM scattered field correction to obtain the total
field. These sources are defined as Jk = Itot,k/S, where
S is equivalent to a surface (section of the cable bundle
modelled by the tube k) (see [23][24]). This model is valid
as far as the MTL models cables grouped together in bundles
for which the applied tangential electric field, E · uk, can
be supposed to be indistinctly the same for all the wires
and for which the distributed current density source Jk can
be supposed as supported by the central path of the bundle.
This model also supposes that, in our modelling approach,
there will be only one central path in each cell of the 3D
model. This approach also allows the user to account for
EM coupling between cable bundles running in close central
paths. The EM coupling between cable bundles is made by
the exchange of EM fields in the Maxwell-equations.

C. IMPROVEMENTS OF THE HYBRID MTLN/MAXWELL’S
EQUATIONS
As said before, the FTL is a simplified form of a Maxwell’s
equations/MTLN hybridization strategy. In most references,
the FTL is applied in the frequency-domain because of the
possibility offered to the user to run separately the EM
field calculation and the MTLN calculation. The numeri-
cal interest of this weak hybridization is that the MTLN
calculation is much faster than the Maxwell calculation.
In particular, the EM field source term calculation to be
applied in the MTLN model can be done once for all and
several MTLN models can be run for those same EM source
terms, provided that the central path of the MTLN model
is not changed. This is why a frequency-domain MTLN
equation such as the Baum Liu Tesche (BLT) equation
of EM topology is particularly appropriate. When time-
domain solvers are used for the EM field calculation, those
fields have to be Fourier transformed. This is the case for
example for references [14], [15] and [17] for which the
Yee-scheme [25] is used to deal with Maxwell’s equations.
Even if this approach is valid at low frequency (under the
upper validation limit of the TEM mode), the absence of
scattered EM fields generated by the wire induced currents
remains a simplification that limits the validity scope of
the approach, especially at high frequencies when cables

are strongly EM-coupled with their 3D environment, as for
radiating antennas.

Let us also stress the point that Agrawal’s FTL ap-
proach is not a simple simplification of our time-domain
hybridization technique that could be obtained by neglecting
the J source term in the first equation of (2). Indeed,
we remind that the FTL hybridization formulation requires
MTL models referenced to the structure [12] whereas our
hybridization technique requires MTL models referenced to
cells surrounding the MTL central path. The counterpart of
our approach is that the EM field calculation and MTLN
calculation cannot be performed separately as for the FTL
approach applied in the frequency-domain.

In our hybridization approach, the problems associated
with signal processing are thereby avoided by using an entire
system of equations in the time-domain. The resolution of
the MTL-equations is made by decomposing each MTL into
Ns elementary cells (segments) as in Figure 4 for which the
elementary length ∆x is equivalent to an averaged value of
the cell-size in the 3D mesh. The coupling term E · u on
each segment is calculated as an average of the Eki terms,
which requires splitting each segment Si into ni parts so
that each part is inside a cell. Then, for the segment Si :

E.u =

∑
j=1,ni

∫
lj∈SuppSi

EKj .udl∑
j=1,ni

∫
lj∈SuppSi

dl
(2)

where SuppSi is the set of cells Kj with a non-zero
intersection with the segment and lj the length-part of the
segment inside the cell Kj .

Then, on each wire of the segment, the electrical current
is evaluated by using a finite difference leap-frog scheme
in time and in space [5], except at the extremities of the
wires belonging to junctions. At this level, the currents on
wires are evaluated by solving a linear system corresponding
to the electric circuit network linking those currents to the
voltages developed in the junction circuit components and
at connection points. For processing the practical problem
presented in section II, in addition to ideal junction models
such as short-circuits, open circuits and ideal connection
between wires (without losses), we have thereby considered
end-circuit networks with electrical circuit components as
shown in Figure 5.

The fact of defining a TL model with respect to a
reference conductor may question the way to manage con-
nections of the wires at their ends as well as, from a
general point of view, the connections between wires. In
our modelling approach, all the loads are lumped loads
compared to the geometrical dimensions of the problem.
Thereby they do not have any geometrical dimension. They
will always be connected to the 3D structure or to electrical
wires on which it will be always possible to apply our TL
model. Some issues can be raised for TL resistance losses
that may not be considered as lumped. In such a case, we
will distribute the total resistance of interest into a wire
model.
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FIGURE 5: Junction circuit models used in the Figure 1
multiple cavity test-case. The figure displays the voltages
and currents to be linked to the MTLN voltages and currents.

IV. APPLICATION ON THE RECTANGULAR CAVITY
TEST-CASE
In this section, we apply our hybrid method to solve the
problem presented in section II. Here, we want to show
the interest of our hybridization method to address the
wiring network installed in the rectangular-shape object. In
particular, we want to show the advantage of combining
both an accurate Maxwell-equation scheme for evaluating
the required electric fields as sources of the MTLN model
and a method accurate enough to describe correctly any
wiring harness topology.
As a first step, we want to validate our time-domain nu-
merical scheme. First, we compare our MTLN technique
to a reference frequency-domain MTLN scheme for a self-
sufficient configuration of the Figure 2 wiring. Then we
describe the formalism of a specific Finite Element Method
(FEM) scheme to be applied on a cartesian mesh of course
well adapted to our rectangular object.
As a second step, we investigate the validation of the hy-
bridization process between the two time-domain numerical
schemes. At the beginning, we focus on the exchange of
field and current source terms in our hybridization process
on a simplified configuration called "single-wire network".

Then, we show the need to describe correctly the topology
of a wiring network. To this extend, we will consider the
real "multiconductor network" problem of section II, with
all the cables and the real connections between the electric
wires. In order to show the limitation of the usual thin-wire
model, we will compare the total branch currents of this real
network configuration with the currents on the wires in the
single-wire network configuration.

In this section, all the results are presented in the time-
domain in order to highlight the advantage of this method as
far as time-domain results are the objective of the analysis.

A. VALIDATION OF OUR MTLN NUMERICAL SCHEME
Figure 6 shows some comparison results in the frequency-
domain between our MTLN formalism (Fourier transformed

results) and a reference BLT formalism-based reference
solver working in the frequency-domain, CRIPTE [26]. The
excitation of the wiring is such that there is no need of
Maxwell’s equation to obtain the wiring electrical response;
for this purpose, a voltage generator is applied on the first
conductor of tube T1 at the level of junction J1 (refer
to Figure 2). In the two methods, MTL p.u.l. parameters
are chosen as the closest reference structure. In the first
comparison (a), the wire extremities are all loaded on 50Ω
at junctions J1, J5 and J6. In the second comparison (b),
the real circuit components and real circuit junctions are
considered as described in Figure 2. The frequency band of
analysis has been chosen low enough such that the TEM
mode approximation remains acceptable.

The results in Figure 6 are similar in the two methods and
provide a good validation of our MTLN solver. The small
differences observed on the resonance peaks are due to the
difference of frequency sampling made in the frequency-
domain calculation and imposed by our Fast Fourier Trans-
form process.

(a)

(b)

FIGURE 6: Current observed on wire 2 of tube T1 for the
wiring network of Figure 2.
(a) : all end loads equal to 50Ω. (b) : real loads.
Comparison between a reference BLT solver (named
"CRIPTE") and our time-domain MTLN solver (named
"TLM").
Excitation: voltage generator on wire 1 of tube T1 at the
level of junction J1.
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B. DEDICATED FEM MODEL FOR THE
MAXWELL-EQUATION RESOLUTION
As far as the evaluation of EM fields is concerned and
considering the parallelepiped shape of the 3D structure, we
introduce a high-order spatial approximation FEM applied
on a cartesian mesh. This method allows us to compute an
accurate solution by reducing numerical dispersive errors
compared to usual 3D methods [8], [27]. The numerical
approximation of electric and magnetic fields on a cell K
are given by :

~EK(t, x, y, z) =
r∑

l1=1

r+1∑
l2=1

r+1∑
l3=1

Ex
K,l1l2l3(t)~ϕx

l1l2l3(x, y, z)+

r+1∑
l1=1

r∑
l2=1

r+1∑
l3=1

Ey
K,l1l2l3

(t)~ϕy
l1l2l3

(x, y, z)+

r+1∑
l1=1

r+1∑
l2=1

r∑
l3=1

Ez
K,l1l2l3(t)~ϕz

l1l2l3(x, y, z)

~HK(t, x, y, z) =

r+1∑
l1=1

r∑
l2=1

r∑
l3=1

Hx
K,l1l2l3(t)~ψx

l1l2l3(x, y, z)+

r∑
l1=1

r+1∑
l2=1

r∑
l3=1

Hy
K,l1l2l3

(t)~ψy
l1l2l3

(x, y, z)+

r∑
l1=1

r∑
l2=1

r+1∑
l3=1

Hz
K,l1l2l3(t)~ψz

l1l2l3(x, y, z)

where

∀(K, l1, l2, l3) ∈ τh × [1, r]× [1, r + 1]× [1, r + 1]

~ϕx
l1l2l3,K

(x, y, z) = Lg
l1
Lgl
l2
Lgl
l3
~ex

∀(K, l1, l2, l3) ∈ τh × [1, r + 1]× [1, r]× [1, r + 1]

~ϕy
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(x, y, z) = Lgl
l1
Lg
l2
Lgl
l3
~ey

∀(K, l1, l2, l3) ∈ τh × [1, r + 1]× [1, r + 1]× [1, r]

~ϕz
l1l2l3,K

(x, y, z) = Lgl
l1
Lgl
l2
Lg
l3
~ez

∀(K, l1, l2, l3) ∈ τh × [1, r + 1]× [1, r]× [1, r]
~ψx
l1l2l3,K

(x, y, z) = Lgl
l1
Lg
l2
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~ex

∀(K, l1, l2, l3) ∈ τh × [1, r]× [1, r + 1]× [1, r]
~ψy
l1l2l3,K

(x, y, z) = Lg
l1
Lgl
l2
Lg
l3
~ey

∀(K, l1, l2, l3) ∈ τh × [1, r]× [1, r]× [1, r + 1]
~ψz
l1l2l3,K

(x, y, z) = Lg
l1
Lg
l2
Lgl
l3
~ez

In these definitions, r defines the spatial approximation
order, Lg

l1
(x) the Lagrangian polynomial of degree r whose

roots are the Gauss points inside [x1K , x2K ] and Lgl
l1

(x)
the Lagrangian polynomial of degree r + 1 whose roots
are the Gauss-Lobatto points inside [x1K , x2K ]. The def-
initions of Lg

l2
(y), Lgl

l2
(y), Lg

l3
(z) and Lgl

l3
(z), are similar

by using [y1K , y2K ] and [z1K , z2K ]. In these definitions
K = [x1K , x2K ]× [y1K , y2K ]× [z1K , z2K ]. Figure 7 repre-
sents the location of the basis function in the cartesian cell.
Figure 8 shows the interest of choosing such a FEM scheme
instead of the usual Yee’s scheme to model cartesian cavity

FIGURE 7: FEM method. Location of the electric field and
magnetic field basis function for r = 2 with respect to the
x axis and z axis respectively.

problems by comparing time-domain result of a TE3,3,0

mode inside a 1m perfectly metallic cube. The gain obtained
in accuracy is obvious.

FIGURE 8: TE3,3,0 cavity mode inside a 1m perfectly
metallic cube. Plots labelled "DIFOE" are results obtained
with the FEM method with various spatial orders (2, 3 and
5) and various mesh sizes. Plots labelled "FDTD" are results
obtained with the Yee’s scheme for various mesh sizes.

C. HYBRIDIZATION TECHNIQUE APPLIED ON A
SINGLE-WIRE NETWORK CONFIGURATION
In the "single-wire" network configuration, we simplify our
multiple cavity problem by considering that each branch
of the wiring of section II is made of a single wire. The
plane wave illumination is the one defined in Figure 1.
The connections between the 3 wires are ideal (without
losses) at the level of junction J3 and short-circuit end-
load conditions are applied at the ends of the 3 wires. The
interest of this configuration is to provide the possibility
to validate our hybrid technique by comparing it with a
full-wave FEM scheme embedding an equivalent Holland
thin-wire model [8] of the wiring. For this configuration,
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we will investigate the advantage of having a high spatial
approximation order scheme to evaluate the electric fields
source terms of the MTLN model and the need to take
into account the J current density sources derived from
the currents induced on the wires in Maxwell’s equations
for the update of the EM fields. Figure 9 displays time-
domain results obtained with the FEM method of spatial
order 1. On the left hand side, we have compared our hybrid
method with the reference full-wave approach embedding
the thin-wire model. Perfect agreement is obtained between
the hybridization and the reference FEM methods. On the
right hand side we compare the hybrid method when the
electrical current reaction term J is taken or not in the
formulation. The results clearly show the importance to take
into account in the Maxwell-equations the current-density
sources due to the currents induced on the cables. In the
classical FTL model, these source terms are not considered :
our example demonstrates that this assumption may lead
to overestimation of the oscillation amplitudes. Indeed, the
hybrid approach implicitly accounts for radiation losses on
the wires by its formulation that includes the reaction of the
induced currents on the wires on the incident field. Such
losses cannot be accounted for in the FTL model.

As far as the FEM approximation order is concerned,
the results in Figure 10 present electrical currents in the
single-wire configuration for various FEM spatial orders
using the full-wave method comparing order 1 and order
2 on the one side and order 2 and order 3 on the other
side. The results show the advantage of using a large spatial
order approximation scheme in order to obtain an accurate
solution without numerical dissipative and dispersive errors.
In particular, large spatial orders offer the possibility to
use larger mesh cells providing significant gain in memory
storage, CPU time and, finally enhancement of the global
computational cost. Particularly, Figure 10 shows that a
spatial order equal to 2 is sufficient to obtain an accurate
solution. This simulation justifies the need to introduce in
our hybrid FEM/MTLN technique a high-order scheme to
solve Maxwell’s equations ; the order 2 will be used for
subsequent results in the next MLTN configurations.

D. HYBRIDIZATION TECHNIQUE APPLIED ON THE
MULTICONDUCTOR CONFIGURATION
After the validation of the field and current exchange process
in our hybridization technique, we want now to show the
interest of being able to account properly for the multicon-
ductor electrical characteristics of the wiring. To this extent,
we are interested in comparing the results obtained on
the single-wire configuration with the real multiconductor
configuration, both of them being under the plane wave
illumination defined in Figure 1. For this, we compared the
total currents flowing in each branch of the two network
models.

In Figure 11, we show several comparisons of currents
obtained on the 3 branches of the network for three config-
urations :

• the single wire configuration studied in the previous
paragraph to validate the hybridization method ;

• the multiconductor configuration with all extremities
loaded on short-circuits. This configuration should be
the closest to the single wire configuration since, de-
spite the specific connections of the wires, there are
short-circuit loads at the extremities ;

• the multiconductor configuration with all extremities
loaded on the real end-loads. This configuration pre-
serves both the specific connections between wires as
well as the specific loads at the extremities.

In branches 1 and 2, we obtain very similar results in the
3 configurations. This can be explained by the fact that all
the cables inside those branches are located in an overshield
short-circuited at its both ends. This conductor drives the
largest part of the current in the bundles. Branches 1 and
2 are also paths on which the incident electric field, that
drives the induced current is maximum. The current being
negligible on the cables compared to the overshield, the end
loads of those cables do not really matter. From these points
of views, the currents on the other cables can be neglected
and the single conductor model is appropriate to capture the
current induced on the overshield.

On the contrary, in Branch 3, there is no overshield. In
the two multiconductor configurations, this branch is made
of a shielded pair, which shield is connected to the shield
of the coaxial cable in branches 1 and 2, but not to the
overshield as mentioned in section II. Since the two wires
of the shielded pair are loaded with differential loads at both
ends, their induced current is insignificant. Hopefully, the
current is much lower on the coaxial-cable shield because
the incident field is much lower than in the two other
branches, due to the plane-wave illumination configuration.
It is then logical that the current induced on this branch
is also much lower. However, this is not the case in the
single-wire configuration for which the wire in Branch 3
is connected to the two other branches. Such a connection
configuration would be quite appropriate only if the shield
of the shielded pair was connected to the overshield at the
level of J3, which is not the case as mentioned in section II.
Thereby, even if the incident field is low in this branch, the
current is linked to the current in branches 1 and 2 by the
Kirchhoff law. Note that the current in branch 3 is higher
than in the previous configuration and is almost equal to the
sum of the currents in Branch 1 and Branch 2.

V. CONCLUSION
In this paper, we have presented a hybrid method for
coupling Maxwell’s equations and MTLN equations in
the time-domain for EM-coupling applications of complex
multiconductor wiring installed in 3D scattering objects.
This approach presents two main advantages :
• the formulation in the time-domain makes natural at

each time-step the reaction of the currents over the
fields, which is impossible in the usual FTL approach
and which is required at high frequencies when the
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FIGURE 9: Current on wire 1 of tube T1. FEM/MTLN
results with and without J current density sources in the
Maxwell-equations. "FEM only": full-wave FEM method
enbedding the thin-wire model of the wiring. "Hybrid
FEM/MTLN": our hybrid method.

FIGURE 10: Influence of the FEM spatial order on the
precision of the solution. Left [0, 5e − 08s], right [5e −
8s, 10e− 8s].

TEM mode required by the MTL model is not re-
spected anymore ;

• the MTLN model, in addition to a precise description
of the cable bundles provides a realistic description of
the multiconductor wiring, which allows us to have all
the currents on all the wires.

We have demonstrated these advantages on a generic par-
allelepiped 3D structure in which a realistic wiring harness
made of several types of electric cables was installed. Due
to the particular shape of the 3D structure, we have showed
the interest of being able to choose the appropriate 3D
technique. In our case, our choice fell on a FEM technique
dedicated to cartesian meshes and allowing us to obtain high
precision on EM fields and gain on the computational cost.

Possible development of this modelling approach may

FIGURE 11: Currents on the network branches. "Single
wire": single-wire configuration. "Multiconductor SC": mul-
ticonductor configuration with all wires loaded on short-
circuits at their extremities, "Real multiconductor": multi-
conductor configuration with all wires loaded their real loads
at their extremities

concern the investigation of the spatial order required by the
MTLN technique with respect to the spatial order chosen for
the FEM method.
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