Study of Parameter Influence on Quality on the Electromagnetic Imaging Reconstruction from the Spectrum of the Diffracted Field: Application to Reconstruction of the leakage Current of ISM Applicators

Main Article Content

Y. Mejdoub
A. Ghammaz
H. Rouijaa
K. Senhaji Rhazi

Abstract

The ISM applicators generate leakage currents that can disrupt satellite TV transmission, taking into account the effects of the electromagnetic waves and those of the CEM. We are interested in these as a way to reconstitute their leakage currents, using the Micro-waves Imagery. We propose such a method of spectral analysis, which is intended to reconstruct the equivalent current distribution (position and form) to an object starting from the diffracted field spectrum by the Micro-waves Imagery. Our contribution resides in the influence of different parameters (N number of the measurement point, and the distance z0 of the measurement plane) on the reconstitution quality. This method is presented and illustrated; an algorithm of reconstructing the image of an object existing within a surrounding homogenous medium with known dielectric properties, this algorithm is developed with MATLAB. This method leads to more significant results, and quickly permits to get information about the object form.

Downloads

Download data is not yet available.

Article Details

How to Cite
Mejdoub, Y., Ghammaz, A., Rouijaa, H., & Senhaji Rhazi, K. (2019). Study of Parameter Influence on Quality on the Electromagnetic Imaging Reconstruction from the Spectrum of the Diffracted Field: Application to Reconstruction of the leakage Current of ISM Applicators. Advanced Electromagnetics, 8(4), 16–23. https://doi.org/10.7716/aem.v8i4.1086
Section
Research Articles

References

M. Pastorino, S. Caorsi, and A. Massa, A global optimization technique for microwave nondestructive evaluation, IEEE Transactions on Instrumentation and Measurement 51(4): 666-673, 2002.

View Article

P. M. Meaney, M. W. Fanning, T. Raynolds, C. J. Fox, Q. Fang, C. A. Kogel, S. P. Poplack, and K. D. Paulsen, Initial clinical experience with microwave breast imaging in women with normal mammography, Academic Radiology 14(2): 207-218, 2007.

View Article

L. P. Song, C. Yu, Q. H. Liu, Through-wall imaging (TWI) by radar: 2-D tomographic results and analyses, IEEE Transactions on Geoscience and Remote Sensing 43(12): 2793-2798, 2005.

View Article

A. Sabouni, S. Noghanian, S. Pistorius, Experimental results for microwave tomography imaging based on FDTD, Progress In Electromagnetics Research M 33: 69-82, 2013.

View Article

Y. Mejdoub, A.GHAMMAZ, H. ROUIJAA, Reconstitution des courants de fuite des applicateurs ISM par imagerie micro-onde, International conference, Telecom2009 and 6ème JFMMA, Agadir, Morroco. March 11-13, 2009.

A. Ghammaz, S. Leffeuvre, N. Teissandier, Spectral behavior of domestic microwave ovens and its effects on the ISM band, Annales des telecommunications 8: 1178-1188, 2003.

A. Lahham, A. Sharabati, Radiofrequency radiation leakage from microwave ovens, Advance Radiation Protection Dosimetry, 157( 4): 488 - 490, 2013.

View Article

A.J. Devaney, A computer simulation study of diffraction tomography, IEEE Trans. Biomed. Eng 7: 377-386, 1983.

View Article

W. Tabbara, B. Duchêne, C. Pichot, D. Lesselier, L. Chommeloux, N. Joachimowicz, Diffraction tomography: contribution to the analysis of some applications in microwaves and ultrasonics. Inverse Problems 4: 305-331, 1988.

View Article

M. F. Adams, A. P. Anderson, Three-dimensional image-construction technique and its application to coherent microwave diagnostics, Proc IEEE 127: 138-142, 1980.

View Article

C. Dourthe, Tomographie micro-onde d'objets enterrés, Application à l'auscultation radar. Thèse de doctorat en Géotechnique, Ecole Nationale des Ponts et Chaussées, 1997.

N. Joachimowicz, C. Pichot, J.P. Hugonin, Inverse scattering: an iterative numerical method for electromagnetic imaging, IEEE Trans. Antennas Propagat AP-39: 1742-1752, 1991.

View Article

P. Lobel, R. Kleinman, C. Pichot, L. Blanc-Féraud, M. Barlaud, Conjugate-gradient method for solving inverse scattering with experimental data, IEEE Antennas Propag. Mag 38: 48-51, 1996.

View Article

A. Lobel, Problèmes de diffraction inverse: reconstruction d'images et optimisation avec régularisation par préservation des discontinuités - Application à l'imagerie micro-onde, Thèse de doctorat en Sciences de l'ingénieur, Université de Nice-Sophia Antipolis, September 1996.

Y. Mejdoub, A. Ghammaz, H. Rouijaa, Electromagnetic Imaging Reconstruction from the Spectrum of the Diffracted Field, International Journal of Microwave And Optical Technology, 14(1): 23-30, 2019.

S. Caorosi, G. L. Gragnani, M. Pastorino, Two-Dimensional Microwave Imaging by a Numerical Inverse Scattering Solution, IEEE Trans. Microwave Theory Tech 38: 981-989, 1990.

View Article

A. Franchois, C. Pichot, Microwave imaging-complex permittivity reconstruction with a levenberg-marquardt method, IEEE Trans. Antennas Propagat 45: 203-215, 1997.

View Article

J. De Zaeytijd, A. Franchois, C. Eyraud, J.M. Geffrin, Full-wave three dimensional microwave imaging with a regularized Gauss-Newton method, Verona, Italy -2007.

View Article

K. D. Paulsen, P. M. Meaney, M. J. Moskowitz, J.M. Sullivan, A Dual Mesh Scheme for Finite Element Based Reconstruction Algorithms, IEEE Trans. Medical Imag 14: 504-514, 1995.

View Article

Amer Zakaria, Joe LoVetri, Application of Multiplicative Regularization to the Finite-Element Contrast Source Inversion Method, IEEE transactions on antennas and propagation, 59(9): 3495-3498, 2011.

View Article

P. M. Meaney, Q. Fang, S. D. Geimer, A. V. Streltsov, K. D. Paulsen, 3D Scalar Microwave Image Reconstruction Algorithm, IEEE MTT-S International Microwave Symposium Digest, pp. 2269-2272, 2002.

M. Chouiti, Détection et Reconstruction de forme d'Objets par les Techniques d'Imagerie Micro-ondes, Thèse de doctorat en Sciences de l'ingénieur, Faculte des Sciences, Université de Abou-bekr belkaid - Tlemcen, Avril 2017.