Flattened zero dispersion Photonic crystal fibers with embedded nano holes and ultra low confinement loss for supercontinuum generation
Main Article Content
Abstract
In this paper unique photonic crystal fiber (PCF) structure with nanoholes embedded have been studied. Embedded nanoholes have been filled with different materials of alcoholic groups like butanol, ethanol, methanol and propanol. Investigations of these structure shows flattened zero dispersion in visible range to far infrared regions. Simulated PCF structure reports ultra-low confinement loss of the order of 10-8 dB/km. Designed PCF promises to give large nonlinear coefficient of 3000 W-1Km-1 at 1335nm wavelengths. Numerical simulation of the fiber for the generation of supercontinuum generation (SCG) has been performed. Low power pump pulses of 50fs duration have been used. With a fiber of length of 15cm and pulses of 1kW, 2kW, 5kW and 10kW peak power, supercontinuum broadening of about 607nm, 908nm, 1987nm and 2405nm respectively.
Downloads
Article Details
Authors who publish with this journal agree to the following terms:
- Authors retain copyright and grant the journal right of first publication with the work simultaneously licensed under a Creative Commons Attribution License that allows others to share the work with an acknowledgement of the work's authorship and initial publication in this journal.
- Authors are able to enter into separate, additional contractual arrangements for the non-exclusive distribution of the journal's published version of the work (e.g., post it to an institutional repository or publish it in a book), with an acknowledgement of its initial publication in this journal.
- Authors are permitted and encouraged to post their work online (e.g., in institutional repositories or on their website) prior to and during the submission process, as it can lead to productive exchanges, as well as earlier and greater citation of published work (See The Effect of Open Access).
References
J C. Knight, T. A. Birks, P. Russell, D. M. Atkin,"All-silica single mode optical fiber photonic crystal cladding", Optics letters, vol. 21, pp.1547-1551, 1996.
M. Dudley. G. Genty, S. Coen, "Supercontinuum generation in photonic crystal fiber", Rev. Mod. Phys, vol. 78, issue-4, pp. 1135-1141, 2006.
M. Sharma, N. Borogohain, and S. Konar, "Index guiding photonic crystal fibers with large birefringence and walk-off", IEEE J. Lightwave Technol. vol. 31, pp. 3339-3344, 2013.
O. V. Shulika et al., "Characterization of all-normal-dispersion microstructured optical fiber via numerical simulation of passive nonlinear pulse reshaping and single-pulse flat-top supercontiuum", J. Nanophotonics vol. 8, pp. 83-89, 2014.
H. Saghaei, M. Ebnali-Heidari, M. K. Moravvej-Farshi, "Mid infrared supercontinuum generation via As2Se3 chalcogenide photonic crystal fibers", Appl. Opt., vol. 54, issue-8, pp. 2072-2079, 2015.
V.Q. Nguyen, J.S. Sanghera, F. H. Kung, I. D. Aggarwal, I. K. Lloyd, "Effect of temperature on the absorption loss of chalcogenide glass fibers", Appl. Opt., vol. 38, issue-15, pp.3206-3213, 1999.
T. A. Birks, J. C. Knight, P. St, J. Russell, "Endlessly single-mode photonic crystal fiber", Opt. Lett. Vol. 22, pp. 961-963, 1997.
X. Freng, et al., "Single-Mode tellurite glass holey fibre with extremely large mode area for nonlinear applications", Opt. Express, vol. 16 (18), pp.13651-13655, 2008.
G. K. M. Hasanuzzaman, S. Rana, M. S. Habib, "A novel low loss, highly birefringent photonic crystal fiber in THz regime", IEEE Photon. Technol. Lett., vol. 28, issue-8, pp. 899-902, 2016.
K.P. Hansen, "Dispersion flattened hybrid-core non-linear photonic crystal fiber", Opt. Express vol. 11, pp.1503-1509, 2003.
J. Wang, C. Jiang, W. Hu, M. Gao, "Properties of index guided PCF with air core", Opt. Laser Technol., vol. 39, pp. 317-321, 2006.
J. C. Knight, J. Broeng, T.A. Birks, P.St.J. Russell, "Photonic band gap guidance in optical fibers", Science, vol. 282 pp. 1476-1478, 1998.
A. Ferrando, E. Silvestre, P. Andres, "Nearly zero ultra-flattened dispersion in photonic crystal fibers," Opt. Lett., vol. 25, pp.790-792, 2000.
F. Poletti, V. Finazzi, T. M. Monro, N. G. R. Broderick, V. Tse, D.J. Richardson, "Inverse design and fabrication tolerances of ultra-flattened dispersion holey fibers", Opt. Express, vol. 13, pp. 3728 - 3736, 2005.
T. L Wu, C. H. Chao, "A novel ultra-flattened Dispersion Photonic Crystal fibers", IEEE Photon. Technol. Lett., vol. 17, pp. 67-69, 2005.
P. Kumar, V. Kumar, J. S. Roy, "Design of quad core photonic crystal fiber with flatteneed zero dispersion", International Journal of Electronics Communicationtios (AEU), Vol. 98, pp. 265-272, Nov. 2018.
X. Lei, "Highly nonlinear with low confinement losses square photonic crystal fiber based on a four-hole unit", Infrared Phy. Technol., vol. 66, pp. 29-33, 2014.
G. Jiang, Y. F, Y. Haung, "High birefringence rectangular- hole photonic crystal fiber", Optical Fiber Technology, vol. 26, part B, pp. 163-171, Dec., 2015.
J-S Chiang, T-L Wu, "Analysis of propagation characteristics for an octagonal photonic crystal fiber (O-PCF)", Opt. Comm. Vol. 258, 2006.
S. M. A. Razzak, Y. Namihira, F. Begum, S. Kaijage, N. Zou, "Design of a decagonal photonic crystal fiber with ultra-Flattened chromatic dispersion", IEICE Trans. Electron., E89-C (6), pp. 830-837, 2006.
P. Kumar, Rohan, V. Kumar, J. S. Roy, "Dodecagonal photonic crystal fibers with negative dispersion and low confinement loss," Optik vol. 144, pp. 363-369, 2017.
K. Saitoh, N. Florous, and M. Koshiba, "Ultra-flattened chromatic dispersion controllability using a defected-core photonic crystal fiber with low confinement losses," Opt. Express, vol. 13, pp. 8365-8371, 2005.
M. Zhang, F. Zhang, Z. Zhang, and X. Chen, "Dispersion ultra-flattened square-lattice photonic crystal fiber with small effective mode area and low confinement loss," Optik, vol. 125, pp. 1610-1614, 2014.
J. K. Ranka, R. S. Windeler, A. J. Stentz, "Visible continuum generation in air-silica microstructure optical fibers with anomalous dispersion at 800 nm," Opt. Lett. Vol. 25, pp. 25-27, 2000.
P. A. Anderson, C. Peucheret, K. Hiligose, K. S. Berg, K. P. Hasen, P. Jeppesen, "Supercontinuum generation in a photonic crystal fiber using picosecond pulses at 1550nm", ICTON/ESPC'03, pp. 66-69, 2003.
A. Hartung, A. M. Heidt and H. Bartelt, "Design of all normal dispersion microstructured optical fibers for pulse preserving supercontinuum generation", Opt. Express, vol. 19, pp. 7742-7749, 2011.
A. Aguirre, N. Nishizawa, J. G. Fujomoto, W. Seitz, M. Lederer, D. Kopf, "Continuum generation in a novel photonic crystal fiber for ultrahigh resolution optical coherence tomography at 800nm and 1300nm", Opt. Express, vol. 14, pp. 1145-1160, 2006.
A. Mandilara, C. Valagiannopoulos, and V. M. Akulin, "Classical and quantum dispersion-free coherent propagation by tailoring multimodal coupling" Physical review, vol. 99, pp. 02349(1)-02349(8), 2019.
Ming-Jun Li ; D. A. Nolan, "Optical Transmission Fiber Design Evolution", Journal of Lightwave Technology , vol. 26 ,no. 9, pp. 1079-1092, May 2008.
S. M. Abdur Razzak, Yoshinori Namihira, "Proposal for highly nonlinear dispersion flattened octagonal photonic crystal fibers", IEEE Photonics Technol. Lett., vol. 20(4), pp.249-251, 2008.
A. Camerlingo, X. Feng, F. Poletti, G.M. Ponzo, F. Parmigiani, P. Horak, M.N. Petrovich, P. Petropoulos, W. H. Loh, D.J. Richardson "Near-zero dispersion highly nonlinear lead-silicate W-type fiber for application at 1.55um", Opt. Exp. vol. 18(15), pp.15747-15756, 2010.
K. Saitoh and M. Koshiba, "Highly nonlinear dispersion-flattened photonic crystal fibers for supercontinuum generation in a telecommunication window," Opt. Express, vol. 12, pp. 2027-2032, 2004.
L. Dong, B. K. Thomas, and L. Fu, "Highly nonlinear silica suspended core fibers," Opt. Express, vol. 16, 16423-16430.
V. Finazzi, T.M. Monro, and D.J. Richardson, "Small-core silica suspended core fibers: nonlinearity and confinement loss trade-offs", J. Opt. Soc. Am. B , vol. 20, pp. 1427-1436, 2003.
C. Valagiannopoulos and P. G. Lagoudakis , "Photonic crystals for optimal color conversion in light-emitting diodes: a semi-analytical approach", Journal of the Optical Society of America B, Vol. 35, no. 5, pp. 1105-1112, 2018.
R. Bhattacharya and S. Konar, "Design of a Photonic Crystal Fiber with Zero Dispersion Wavelength Near 0.65 μm", Fiber and Integrated Optics, vol. 27, pp. 89-98, 2008.
A. Yu. Petrov and M. Eich , "Zero dispersion at small group velocities in photonic crystal waveguides ", Appl. Phys. Lett. , vol. 85, pp. 4866-4868, 2004.
F. Poli, A. Cucinotta, S. Selleri, "Photonic crytal fibers properties and applications", Springer series in materail sciences, 2007.
A. Ghatak, K. Thyagarajan, "Introduction to Fiber optics", 1st South Asian Edition 1999.
J. D. Joannopoulos, Steven G. Johnson, Josgua N. Winn, Robert D. Mede, Photonic crystal fiber: Molding the flow of light, 2nd edition, Priceton University Press, 2008.
J. M. Dudely, J. R. Tylor,"Supercontinuum generation in optical fibers", Cambridge University Press, Cambridge, UK, 2010.
M. sharma, S. Konar, R. K. khan,"Supercontinuum generation in highly nonlinear hexagonal photonic crystal fiber at very low power", Journal of Nanophotonics, vol. 9, pp.1-8, 2015.
A. H. Bouk, A. Cucinotta, F. Poli, S. Selleri, "Dispersion properties of square-lattice photonic crystal fibers", Opt. Express, vol. 12, pp. 941-946, 2004.
F. Poletti, V. Finazzi, T. M. Monro, N. G. Brodreick, V. Tse, D. J. Richardson,"Inverse design and fabrication tolerances of ultra-flattened dispersion holey fibers", Opt. Express, vol. 13, pp. 3728-3736, 2005.
G. P. Agrawal, "Nonlinear Fiber Optics", (Academic Press, 2011).
M. Sharma, S. Konar, "Three octave spanning supercontinuum by red-shifted dispers wave in photonic crystal fibers", Journal of Modern Optics, pp. 1-10, 2015.
G. D. Kirishna, G. Prasanan, S. K. Sudheer, V. P. M. Pillai, "Analysis of zero dispersion shift and supercontinuum generation near IR in circular photonic crystal fibers", Optik, vol. 145, pp. 599-607, 2017.
M. L. Ferhat, L. Cherbi, I. Haddouche, "Supercontinnum generation in silica photonic crystal fiber at 1.3µm and 1.65µm wavelength for optical coherence tomography", Optik, vol. 152, pp. 106-115, 2018.
M. Sharma, S. Konar, "Broadband supercontinuum generationin lead silicate photonic crystal fibers employing optical pulses of 50W peak powers", Optics Communication, vol. 380, pp. 310-319, 2016.