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Abstract
The illumination of plasmonic mesostructures produces
high confinement of light in their vicinity. This confine-
ment of light can be enhanced in the gap between the two
metallic nanorods of a nanonantenna, in particular for the
design of biosensors. The nanometric gap can be reduced
if the elevation of temperature of the nanonantenna is suffi-
cient, and therefore the fine tuning of the sensor requires the
description of the photo-thermal induced dilation. The mul-
tiphysics problem associated to such photo-thermal and me-
chanical effects is modeled through a finite element method
(FEM). The problem consists in computing the electromag-
netic field, the temperature and the induced dilation surface.
This contribution consists in discussing the numerical effi-
ciencies of a sequential, and a coupled approaches, espe-
cially in terms of adaptive meshing of the space of compu-
tation. The relationship between the field enhancement and
the reduction of the gap is studied. Finally the validity of
the 2D multiphysic model is discussed.

1. Introduction

The concept of micro-thermic was introduced recently in
nanotechnology [1, 2]. Only a few experimental data on
the thermal properties of nano-materials are available [3, 4]
and a new field of investigation is open, experimentally
and theoretically, on the thermal effects at the micro and
nanoscale [5, 6, 7, 8, 9]. A temperature mapping near
nanostructures has been proposed recently, by measur-
ing fluorescence anisotropy [4]. The fluorescence lifetime
of molecules in the vicinity of metallic nanostructures is
known to depends on materials and separation [10, 11] but
also on temperature [4].

Among the family of nanosensors and nanodevices, the
nanoantennas are of great interest in biology [12]. The
dimer nanoantenas support multiple resonances and have
promising spectral properties [13]. A strong field enhance-
ment appears in the gap of the dimer nanoantenna. This en-
hancement depends on material and shape [13, 14, 15]. It
is straightforward that laser induced effects can lead to non
negligible thermal effects in nanostructures [7, 16]. Due
to the absorption properties of gold, we can expect a lo-
cal enhancement of the absorbed power density leading to
thermal nanometric source. A rough evaluation of the dila-
tion is following. Assuming an elevation of temperature of

120 K, the relative dilation of gold is about 0.0018. There-
fore the dilation of a nanoantenna with length 300 nm can
exceed half of a nanometer. The gap between the two gold
nanorods being nanometric, this deformation could lead to a
non-negligible detuning of the nanoantenna. Moreover, the
temperature elevation in the gap could be used to design a
nanometric source of heat with applications to modify lo-
cally the optical index [17] or to modify the fluorescence
rate of molecules [18].

Therefore, we wonder if the temperature of the whole
structure can lead to nanometric dilations. The effect of the
deformation of metal, induced by its illumination by a laser
beam, has never been studied, the thermal studies at this
scale being in their infancy. This first 2D study (with infi-
nite 1D objects along the x direction) is devoted to the com-
parison of two approaches of multiphysics coupling. The
paper is organized as follows. Sec. 2 is devoted to describe
the multiphysics model. In Sec. 3, numerical results, ap-
plied to nanoantenna are presented and discussed. A study
of the influence of the antenna length, gap and polarization
of the illumination is proposed. The Sec. 3.3 is devoted to
a first validation of the 2D approach with a 3D benchmark,
before concluding in Sec. 4.

2. The multiphysics model

It has been shown that finite element method can be used
to compute accurately the field enhancement in nanostruc-
tures, provided an adapted method of remeshing [19, 20].
This contribution proposes a finite element method of the
multiphysics problem of coupling between electromag-
netism, thermics and mechanics, with an adaptive remesh-
ing method. The Galerkin formulation of the finite element
method requires to define the boundary conditions on the
inner boundaries Γ1 between materials and on the outer
boundary Γ0, the frontier of the domain of computation.
The radius of the circular domain of computation is Re.

The geometry is defined in the (y, z) plane and the sub-
script 1 (resp. 2) indicates the gold nanonatenna (resp. the
surrounding medium: air). The inset in Fig. 4 illustrates the
geometry. The material electromagnetic, thermic and me-
chanic characteristics are constants for each material, and
therefore the multiphysics problem is linear.



2.1. Electromagnetism

The computation of the electromagnetic field is ob-
tained from the finite element Galerkin formulation
of the Helmholtz’ equation with complex permittivity
ǫr(y, z) [19]. The pure imaginary is ı with ı2 = −1. The
unknown field is the magnetic x component, the consid-
ered polarization of the incoming being p. Therefore, the
electromagnetic problem is scalar. The incoming wave is
monochromatic with angular frequency ω and wavelength
in vacuum λ0. The wave vector k0 of the incoming wave is
along z and therefore the electric field is along y, |k0| = k0.
c is the speed of light in vacuum and ǫ0 is the permittivity of
vacuum. The material parameter is the relative permittivity
ǫr(y, z) which is assumed to be a dimensionless constant in
each isotropic and homogeneous material. The electromag-
netic problem is therefore linear. The partial differential
equation (PDE) is
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The natural conditions on the external boundaries are the
classical diffusion conditions [21]. The natural boundary
condition at the interface between materials is the continu-
ity of the normal component of the electric excitation. Then
the electric field is deduced from the magnetic field and the
Maxwell-Ampere equation. To compute the dilation, an hy-
pothesis on the illumination is used: a gaussian beam with
power P , and diameter D [22]. Therefore, the amplitude of
the incoming electric field on the external boundary Γ0 can
be deduced [23] :
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The absorbed electromagnetic field produces a source term
for the stationary heat equation, which is proportional to the
imaginary part of the permittivity of media ǫ0ǫr(y, z):

Q(y, z) =
ωǫ0ℑ(ǫr(y, z))

2
|E(y, z)(ǫr)|

2 (5)

The following numerical parameters are used in computa-
tions. The wavelength is λ0 = 632.8 nm, ǫ1 = (0.2 +
3.32ı)2 = −11 + 1.33ı (gold), ǫ2 = 1 (air), D = 25µm,
P = 30mW. The thermal source is proportional to the
imaginary part of the relative permittivity ǫ1.

2.2. Thermics

The stationary heat equation is solved assuming thermal
conductivities λ(y, z), including the mesoscopic correc-
tion related to the hypothesis of phonon diffusion and of

electron-phonon interaction [24, 25]. The temperature vari-
ation depends on both imaginary part of the permittivity and
the thermal conductivity. The remeshing process enables
the control of the numerical error on the temperature [23].

[∇ · (λ(y, z)∇)]T (y, z) +Q(y, z) = 0 (6)

with the following boundary conditions:

n12. [(λ2∇T2)− (λ1∇T1)] = 0 on Γ1 (7)
n12. (λ2∇T2) = −T2 on Γ0 (8)

The natural boundary conditions are the flux conservation
across the material interfaces and the convective condition
at the external boundary [23]. At a convective boundary,
the heat loss is proportional to the difference of temperature
between the surface and the coolant. In this approach, the
temperature elevation is used for the dilation computation
and therefore, the temperature of the coolant is arbitrary
set to 0. The thermal source Q exists only in the medium
1 (nanonatenna). The following numerical parameters are
used in computations. The thermal conductivity of a nanos-
tructure is reduced in nanowires [26] and depends on their
length. It can be evaluated to 125W.K−1.m−1 in the con-
sidered case, the factor of reduction being about 0.5. The
electron and phonons mean-free path in Gold being about
40 nm, the typical size rc of the nanostructures, the effec-
tive thermal conductivity can be evaluated:

λ1 ≈
λbulk

1 + 4

3

lp
rc

≈
1

2
λbulk. (9)

In the numerical applications, the media are supposed to be
isotropic and homogenous. The thermal conductivities of
bulk gold being λBulk = 250Wm−1K−1, we therefore use
λ1 = 125Wm−1K−1 and λ2 = 0.026Wm−1K−1 (air).
The computed temperature T is the source for the problem
of thermal dilation.

2.3. Mechanics

The temperature elevation in the whole domain of compu-
tation and its derivative are used to compute the dilation
within a classical thermo-elasticity formulation. The dila-
tion are expected to be nanometric and the materials are
described within elasticity theory. The constitutive rela-
tions, considering orthotropics materials with Lamé con-
stants, where E is the Young’s modulus and ν the Pois-
son’s coefficient, enable to compute the stress and to de-
duce the displacement U = (Uy, Uz) of the interfaces
of materials, assuming isotropic thermal dilatation coeffi-
cient α. In the following, G = E/((1 + ν)(1 − 2ν)),
C11 = G(1 − ν) = C22, C12 = Gν, C33 = G(1 − 2ν)/2
and b = Gα(1 + ν).

∂y(C11∂yUy + C12∂zUz)+

∂z(C33(∂zUy + ∂yUz)) = ∂ybT (10)
∂z(C12∂yUy + C22∂zUz)+

∂y(C33(∂zUy + ∂yUz)) = ∂zbT (11)
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The natural boundary conditions are deduced from the con-
tinuity of the displacement of boundaries. The boundaries
are free (there is no load on them). In the numerical ap-
plications, the media are supposed to be homogenous. The
following numerical parameters are used: ν1 = 0.44 (gold),
ν2 = 0 (air); E1 = 78GPa (gold), E2 = 142kPa (air);
α1 = 14.6.10−6K−1 (gold), α2 = 1/273.15K−1 (air).

The multiphysics problem can be solved for an arbitrary
geometry by using a finite elements method.

2.4. The finite element methods

The Galerkin finite element formulation [21] uses a mesh
adaptation to regrid the domain of computation to reach a
topology error is lower than 10−4. Two main approaches of
the multiphysics problem can be considered. Both are per-
turbation methods, assuming small dilations, which do not
modify the physical constants (permittivity, thermal con-
ductivity and mechanical characteristics):

• M1: The three problems are considered sequentially:
first the electromagnetic field is computed. Then
the temperature is computed from the stationary heat
equation with the electromagnetic source term. Fi-
nally the dilation is computed from the temperature.
Each problem is solved independently and therefore
the inversion method can be adapted to the symme-
try of the coupling matrix: the Lanczos method [27]
is used for the electromagnetic problem, and the or-
thomin [28] method is used for the thermics and di-
lation problems.

• M2: The three problems are solved together, on a
common mesh and the same method of inversion
(Lanczos) are used.

The error control and the specificity of each physical prob-
lem could lead to the premature conclusion that M1 is more
efficient than M2. Actually, the effective coupling of EDP
can only be handled by M2. Nevertheless, M1 can be con-
sidered as a reference, to control the accuracy of M2.

The precision p is the maximal relative variation of each
computed solution, between two adjacent nodes, over the
entire domain of computation. The field enhancement in
the gap of the nanonatenna requires fine grid [19]. The min-
imum distance between nodes is λ0/1000 to reproduce the
high gradient of the electric field in the gap. This fine mesh-
ing is not contradictory with the continuous model of mat-
ter, as it is required only to reproduce accurately the field
variations in the vicinity of the matter. On the contrary,
a much less fine grid can be used to compute the temper-
ature as it is quasi homogeneous in the material structure
and exhibit lower spatial variations. The temperature being
the source of dilations, a similar corse grid can be used for
dilation.

A systematic study of the influence of the method of
resolution is of interest. Table 1 shows the number of adap-
tive meshing, the final number of cells and the precision for
each problem.

Table 1: Performances of the decoupled (M1) and coupled
(M2) methods. Nr is the total number of remeshing, the
number of cellsNc and the precision (maximum of error be-
tween adjacent nodes among the whole mesh). For method
M1, the final mesh of a problem is not imported in the next
one. The computational time is less than 4 min for both
methods.

Method Problem Nr Nc p
M1 Electrom. 2 1834 1.4 10−3

6 8676 1.3 10−4

11 39404 1.3 10−5

Thermics 2 1592 9.4 10−6

5 2406 7.1 10−6

9 34110 1.2 10−6

Mechanics 1 3233 8.7 10−4

3 3585 1.5 10−4

5 9644 1.6 10−5

9 57770 1.6 10−6

M2 Coupled 2 3233 1.4 10−3

10 4914 8.4 10−4

12 6343 3.2 10−4

The convergence of the methods is studied as a function
of the maximal error on the computed variable (Tab. 1). The
three problems does not exhibit the same speed of conver-
gence. The strong electric field enhancement in the gap
requires at least 11 remeshing to reach a precision lower
than 10−4. On the contrary, the smooth variations of the
temperature are revealed with a corse grid. The numerical
resolution of the mechanics problem exhibits the same be-
havior as the thermic one. If the three problems are solved
simultaneously (M2), the precision is close to that of the
electromagnetic problem. M2 shows a slower convergence
than M1. Therefore, solving the coupled problem is less
stable as that of the recursive one (M1). The quality of M1
and M2 should also be compared in term of solutions. Ta-
ble 2 shows the maxima of each computed unknown over
the domain of computation.

Table 2: Convergence for the variables of interest. The in-
coming field intensity being |E0|

2 = 4.48.1010. The com-
putations are made for a 10 nm gap and corresponds to the
precisions indicated in Tab. 1.

Electromagnetism Thermics Mechanics
M1

max |E|2 max(Q) max(T ) max(|U |)
(V.m−1) (W.m−3) (K) (nm)
1.49 1012 1.258 1015 149.3 0.6
1.46 1012 1.255 1015 149.3 0.6
1.48 1012 1.255 1015 149.3 0.6

M2
1.49 1012 1.256 1015 149.5 0.6
1.49 1012 1.255 1015 149.5 0.6
1.49 1012 1.255 1015 149.5 0.6
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Figure 1: Intensity |E|2 showing the high confinement of
light in the gap between the gold dimer, L = 400nm, R1 =
30nm and a 10nm gap.

The results in Table 2 show that both methods give the
same results even if their numerical properties are not the
same (Tab. 1). According to the illumination power and fo-
cusing, the temperature elevation can overpass 100 K in the
gold structures. The dilation of each nanorod induces a de-
crease of the gap of more than 10%. These values depend
on the optical and thermal constants, and on the illumina-
tion properties.

The application of this model to the study of the tem-
perature and dilation as a function of the gap is of interest
for practical applications.

3. The dilation of nanoantenna: the gap
modification

In this section two polarizations of illumination are consid-
ered. If the electric field is parallel to the long axis of the
nanonatenna, the polarization is called parallel ‖. The per-
pendicular polarization (⊥) is also investigated. The pur-
pose is to find a relationship between the field enhancement,
the temperature elevation and the dilation. To assess the re-
sults, various lengthes L and gaps are used. The radius of
the domain of computation is 2µm.

3.1. Polarization‖

Figures 1-4 illustrate the results of computations for gold
nanonatenna with R1 = 30nm and for various lengthes L
and gaps.

The electromagnetic intensity (the square of the electric
field) is confined in the gap and the finite element method
is able to describe this high gradient [29, 20]. The source of
heat Q is proportional to the intensity of the electric field.
The temperature elevation ∆T is quasi uniform in the gold
metal, but the dilation is localized at the end of the nanorods
and in the gap.

In figure 4 are plotted the dilation for various gaps. The

Figure 2: Density of heat source for the stationary heat
equation, induced by illumination at 632.8nm: a gaus-
sian beam of diameter 25µm, with power P = 30mW.
L = 400nm, R1 = 30nm and a 10nm gap.

Figure 3: Temperature elevation, solution of the stationary
heat equation. L = 400nm, R1 = 30nm and a 10nm gap.

dilation appears to be slightly higher in the gap than at the
ends of the dimer. The coupling between the two gold par-
ticles is reduced for the 200 nm gap and the field enhance-
ment tends to become identical at their ends and also the
relative dilation. The total energy is conserved and there-
fore, for small gaps,the field enhancement in the gap which
contributes to the scattering of light by the nanoantenna,
reduces the absorption of energy and the temperature ele-
vation. Figure 5 shows the variation of temperature as a
function of the initial gap. If the length of particles is lower
than 250 nm, the temperature elevation is governed by the
field enhancement in the gap. On the contrary, for larger
lengthes, the temperature increases with the gap. Therefore,
we could conclude to the existence of two thermal regimes:
the long nanoantenna behaves as a single nanoparticle with-
out gap.
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Figure 4: Photo-thermally induced dilations of the sur-
face of each nanorod (the two nanorods are a dimer
nanonatenna). L = 400nm, R1 = 30nm and the gap is
indicated.
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Figure 5: Temperature elevation as a function of the initial
gap (in nm).

The figure 6 shows the gap reduction in percent un-
der the above described illumination. The reduction of the
smaller gap (10 nm) is about 10% and therefore for long
nanoantenna. For small gaps, the absolute relative reduc-
tion increases rapidly with the length of particles and tends
toward a limit when the gap reaches 200 nm. Consequently,
the volume of the nanoantenna which increases the integral
of the thermal source Q should be considered for the anal-
ysis of the relative gap reduction.

The dilation of nanonantenna is not linearly connected
to the temperature increase with the gap. The intensity en-
hancement (the ratio of the maximum of intensity in the gap
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Figure 6: Gap reduction after illumination in percents as a
function of the initial gap (in nm).
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Figure 7: Intensity enhancement in the gap between the two
nanorods.

to the maximum of the illumination intensity) is plotted in
Fig. 7 in logscale. This local enhancement can be used to
excite molecules for SERS biosensor. But the optimization
of such biosensor should take into account the decrease of
the gap as well as the increase of the temperature around the
nanonantenna. Actually, the relative reduction of the gap
is linearly related to the field enhancement η = |E|/|E0|
(Fig. 8). This behavior will be specifically investigated in
further studies as it could help to design the nanonantenna
for specific applications. The same study for a transverse
polarization of light is also investigated in the following.

3.2. Polarization⊥ vs polarization ‖

It is well known that the polarization state of the illumi-
nation plays a key role in the nanoworld [30, 31, 4]. The
electromagnetic field around dimer has not the same be-
havior if the polarization of the incoming light is upright to
the nanonantenna axis. In particular, the field in the gap is
weaker. We investigate the influence of this polarization of
the incoming illumination on the dilation, of the gap and of
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Figure 8: Linear behavior of the relative gap reduction as a
function of the field enhancement.
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Figure 9: Maximum of intensity |E|2, (V 2/m2), as a func-
tion of the particle length L and the gap for parallel polar-
ization.

the antenna length. For comparison, the plots of the temper-
ature elevation, the gap reduction and the temperature ele-
vation are given for parallel and upright to the nanonatenna
axis polarizations

The field enhancement in upright polarization is weaker
than in parallel and the influence of the gap is less than that
of the length (Figs 9 and 10). The contrast of the intensity is
also decreased in the map 10. The gap is no more governing
the field enhancement.

The same behavior can be observed in the temperature
elevation (Figs 11 and 12). Whatever the gap is, the tem-
perature depends mainly on the length of the nanonatenna.
Nevertheless, the magnitude of the maximum of tempera-
ture elevation is almost the same in both cases.

Figures 13 and 14 are more correlated. The maximum
of the gap reduction occurs for a small gap and for large
antenna lengthes. The gap is more reduced with upright
polarization.

Surprisingly, the global dilation of the gap exhibits the
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Figure 10: Maximum of intensity |E|2, (V 2/m2), as a
function of the particle length L and the gap for perpen-
dicular polarization
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Figure 11: Maximum of elevation of temperature, (K), as
a function of the particle length L and the gap for parallel
polarization.

same behavior for both polarizations, as a function of the
length and the gap. Moreover the effect of the field en-
hancement in the gap for parallel polarization seems to have
less influence on temperature and dilation, excepted for the
shortest gap, for which the scattering of this nanosource de-
presses the absorbed energy required for the temperature
elevation.

3.3. From 2D to 3D problems ?

The 2D approach has been chosen for its speed of computa-
tion with the objective to optimize such nanostructures for
biological applications [32, 33] or to retrieve unknown ex-
perimental data from measurements [34]. Nevertheless, the
order of magnitude of the temperature and dilation could
differ, if computed for 2D or 3D geometries. The order of
magnitude of the 2D results should be faced to these ob-
tained from 3D computation.

The electromagnetic field absorbed in a sphere or an
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a function of the particle length L and the gap for perpen-
dicular polarization
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of the particle lengthL and the gap for parallel polarization.
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Figure 14: Relative reduction of the gap, (%), as a func-
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polarization
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Figure 15: Ratio of the mean value of Q for the sphere and
the cylinder: Q3D/Q2D as a function of the radius of the
objects.

infinite cylinder of same radius can be analytically calcu-
lated [35]. For simplicity, we consider the same material
parameters as in the previous sections. The mean value of
the source term Q for the stationary heat equation (Eq. 5)
can therefore be evaluated and then, solving the stationary
heat equation in the appropriate system of coordinates gives
the temperature elevation:

T2D(0) ≈
Q3D

6k2
R2 (12)

T3D(0) ≈
Q2D

4k2
R2, (13)

and the ratio of the temperature elevations:

T3D(0)

T2D(0)
≈

1

3

Q3D

Q2D

(14)

The ratio of their mean value Q3D/Q2D is about 3 for a
radius between 40 and 70nm, the figure 15. The curve is
oscillating between 1.5 and 4.2. Consequently, the ratio of
the source terms offsets partially the coefficient 1/3 but the
ratio tends torward 1/2 for radii larger than 200 nm. In
the case of R = 100nm, the temperature elevation is about
the same for the two nano-objects. The figure 16 shows the
finite element computation of the temperature for a cylinder
and a sphere of radius 100nm. The finite element gives
satisfactory results, especially in the metal. In this case, the
maximal deformation is about 2 nm.

The 2D finite element approach gives therefore the cor-
rect order of magnitude for the temperature, and the dilation
can be quickly computed from this temperature elevation.
Nevertheless, the physical constants of gold are not well
known at this scale. In particular, the relative permittivity
and the thermal conductivity could vary by a factor greater
than 2 [36].
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Figure 16: Temperature elevation along y axis for a sphere
and an infinite cylinder along x direction. Finite element
and analytical results for the sphere are compared.

4. Conclusions

Two complementary numerical approaches of the photo in-
duced dilations in nanostructures are proposed. The nu-
merical values of temperature and dilation are character-
istics of the 2D objects and therefore the method should
be extended to 3D nanonantenna. Nevertheless, the mul-
tiphysics approaches, with mesh deformation induced by
photo-thermal dilation, could help to improve numerical
methods especially for non linear processes. Actually, the
sequential approach seems to be the equivalent to the cou-
pled approach for linear problems, where physical con-
stants do not dependent on the temperature. The non linear
or strongly coupled models are an open domain for numer-
ical approaches and finite element method will certainly be
an efficient tool to solve them. The reliability of results de-
pends on the measurement of optical, thermal and mechan-
ical constants for gold and therefore sensitivity and toler-
ance studies [37, 38, 39] should be done before the inverse
problem resolution [34, 40]. The next step could consist in
tuning theoretically the temperature around nanostructures
with optimization methods [34, 38], to design specific sam-
ples that could be characterized experimentally.
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